Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/Geometry/Rotation2D.h
- Committer:
- jsoh91
- Date:
- 2019-09-24
- Revision:
- 1:3b8049da21b8
- Parent:
- 0:13a5d365ba16
File content as of revision 1:3b8049da21b8:
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_ROTATION2D_H #define EIGEN_ROTATION2D_H namespace Eigen { /** \geometry_module \ingroup Geometry_Module * * \class Rotation2D * * \brief Represents a rotation/orientation in a 2 dimensional space. * * \param _Scalar the scalar type, i.e., the type of the coefficients * * This class is equivalent to a single scalar representing a counter clock wise rotation * as a single angle in radian. It provides some additional features such as the automatic * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar * interface to Quaternion in order to facilitate the writing of generic algorithms * dealing with rotations. * * \sa class Quaternion, class Transform */ namespace internal { template<typename _Scalar> struct traits<Rotation2D<_Scalar> > { typedef _Scalar Scalar; }; } // end namespace internal template<typename _Scalar> class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2> { typedef RotationBase<Rotation2D<_Scalar>,2> Base; public: using Base::operator*; enum { Dim = 2 }; /** the scalar type of the coefficients */ typedef _Scalar Scalar; typedef Matrix<Scalar,2,1> Vector2; typedef Matrix<Scalar,2,2> Matrix2; protected: Scalar m_angle; public: /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ inline Rotation2D(const Scalar& a) : m_angle(a) {} /** Default constructor wihtout initialization. The represented rotation is undefined. */ Rotation2D() {} /** \returns the rotation angle */ inline Scalar angle() const { return m_angle; } /** \returns a read-write reference to the rotation angle */ inline Scalar& angle() { return m_angle; } /** \returns the inverse rotation */ inline Rotation2D inverse() const { return -m_angle; } /** Concatenates two rotations */ inline Rotation2D operator*(const Rotation2D& other) const { return m_angle + other.m_angle; } /** Concatenates two rotations */ inline Rotation2D& operator*=(const Rotation2D& other) { m_angle += other.m_angle; return *this; } /** Applies the rotation to a 2D vector */ Vector2 operator* (const Vector2& vec) const { return toRotationMatrix() * vec; } template<typename Derived> Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); Matrix2 toRotationMatrix() const; /** \returns the spherical interpolation between \c *this and \a other using * parameter \a t. It is in fact equivalent to a linear interpolation. */ inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const { return m_angle * (1-t) + other.angle() * t; } /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } /** Copy constructor with scalar type conversion */ template<typename OtherScalarType> inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) { m_angle = Scalar(other.angle()); } static inline Rotation2D Identity() { return Rotation2D(0); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const { return internal::isApprox(m_angle,other.m_angle, prec); } }; /** \ingroup Geometry_Module * single precision 2D rotation type */ typedef Rotation2D<float> Rotation2Df; /** \ingroup Geometry_Module * double precision 2D rotation type */ typedef Rotation2D<double> Rotation2Dd; /** Set \c *this from a 2x2 rotation matrix \a mat. * In other words, this function extract the rotation angle * from the rotation matrix. */ template<typename Scalar> template<typename Derived> Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) { using std::atan2; EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0)); return *this; } /** Constructs and \returns an equivalent 2x2 rotation matrix. */ template<typename Scalar> typename Rotation2D<Scalar>::Matrix2 Rotation2D<Scalar>::toRotationMatrix(void) const { using std::sin; using std::cos; Scalar sinA = sin(m_angle); Scalar cosA = cos(m_angle); return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); } } // end namespace Eigen #endif // EIGEN_ROTATION2D_H