Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/Core/util/Meta.h
- Committer:
- jsoh91
- Date:
- 2019-09-24
- Revision:
- 1:3b8049da21b8
- Parent:
- 0:13a5d365ba16
File content as of revision 1:3b8049da21b8:
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_META_H #define EIGEN_META_H namespace Eigen { namespace internal { /** \internal * \file Meta.h * This file contains generic metaprogramming classes which are not specifically related to Eigen. * \note In case you wonder, yes we're aware that Boost already provides all these features, * we however don't want to add a dependency to Boost. */ struct true_type { enum { value = 1 }; }; struct false_type { enum { value = 0 }; }; template<bool Condition, typename Then, typename Else> struct conditional { typedef Then type; }; template<typename Then, typename Else> struct conditional <false, Then, Else> { typedef Else type; }; template<typename T, typename U> struct is_same { enum { value = 0 }; }; template<typename T> struct is_same<T,T> { enum { value = 1 }; }; template<typename T> struct remove_reference { typedef T type; }; template<typename T> struct remove_reference<T&> { typedef T type; }; template<typename T> struct remove_pointer { typedef T type; }; template<typename T> struct remove_pointer<T*> { typedef T type; }; template<typename T> struct remove_pointer<T*const> { typedef T type; }; template <class T> struct remove_const { typedef T type; }; template <class T> struct remove_const<const T> { typedef T type; }; template <class T> struct remove_const<const T[]> { typedef T type[]; }; template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; }; template<typename T> struct remove_all { typedef T type; }; template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; }; template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; }; template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; }; template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; }; template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; }; template<typename T> struct is_arithmetic { enum { value = false }; }; template<> struct is_arithmetic<float> { enum { value = true }; }; template<> struct is_arithmetic<double> { enum { value = true }; }; template<> struct is_arithmetic<long double> { enum { value = true }; }; template<> struct is_arithmetic<bool> { enum { value = true }; }; template<> struct is_arithmetic<char> { enum { value = true }; }; template<> struct is_arithmetic<signed char> { enum { value = true }; }; template<> struct is_arithmetic<unsigned char> { enum { value = true }; }; template<> struct is_arithmetic<signed short> { enum { value = true }; }; template<> struct is_arithmetic<unsigned short>{ enum { value = true }; }; template<> struct is_arithmetic<signed int> { enum { value = true }; }; template<> struct is_arithmetic<unsigned int> { enum { value = true }; }; template<> struct is_arithmetic<signed long> { enum { value = true }; }; template<> struct is_arithmetic<unsigned long> { enum { value = true }; }; template <typename T> struct add_const { typedef const T type; }; template <typename T> struct add_const<T&> { typedef T& type; }; template <typename T> struct is_const { enum { value = 0 }; }; template <typename T> struct is_const<T const> { enum { value = 1 }; }; template<typename T> struct add_const_on_value_type { typedef const T type; }; template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; }; template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; }; template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; }; template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; }; /** \internal Allows to enable/disable an overload * according to a compile time condition. */ template<bool Condition, typename T> struct enable_if; template<typename T> struct enable_if<true,T> { typedef T type; }; /** \internal * A base class do disable default copy ctor and copy assignement operator. */ class noncopyable { noncopyable(const noncopyable&); const noncopyable& operator=(const noncopyable&); protected: noncopyable() {} ~noncopyable() {} }; /** \internal * Convenient struct to get the result type of a unary or binary functor. * * It supports both the current STL mechanism (using the result_type member) as well as * upcoming next STL generation (using a templated result member). * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack. */ template<typename T> struct result_of {}; struct has_none {int a[1];}; struct has_std_result_type {int a[2];}; struct has_tr1_result {int a[3];}; template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)> struct unary_result_of_select {typedef ArgType type;}; template<typename Func, typename ArgType> struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;}; template<typename Func, typename ArgType> struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;}; template<typename Func, typename ArgType> struct result_of<Func(ArgType)> { template<typename T> static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); template<typename T> static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0); static has_none testFunctor(...); // note that the following indirection is needed for gcc-3.3 enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type; }; template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)> struct binary_result_of_select {typedef ArgType0 type;}; template<typename Func, typename ArgType0, typename ArgType1> struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)> {typedef typename Func::result_type type;}; template<typename Func, typename ArgType0, typename ArgType1> struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;}; template<typename Func, typename ArgType0, typename ArgType1> struct result_of<Func(ArgType0,ArgType1)> { template<typename T> static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); template<typename T> static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0); static has_none testFunctor(...); // note that the following indirection is needed for gcc-3.3 enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type; }; /** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. * Usage example: \code meta_sqrt<1023>::ret \endcode */ template<int Y, int InfX = 0, int SupX = ((Y==1) ? 1 : Y/2), bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) > // use ?: instead of || just to shut up a stupid gcc 4.3 warning class meta_sqrt { enum { MidX = (InfX+SupX)/2, TakeInf = MidX*MidX > Y ? 1 : 0, NewInf = int(TakeInf) ? InfX : int(MidX), NewSup = int(TakeInf) ? int(MidX) : SupX }; public: enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret }; }; template<int Y, int InfX, int SupX> class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; /** \internal determines whether the product of two numeric types is allowed and what the return type is */ template<typename T, typename U> struct scalar_product_traits { enum { Defined = 0 }; }; template<typename T> struct scalar_product_traits<T,T> { enum { // Cost = NumTraits<T>::MulCost, Defined = 1 }; typedef T ReturnType; }; template<typename T> struct scalar_product_traits<T,std::complex<T> > { enum { // Cost = 2*NumTraits<T>::MulCost, Defined = 1 }; typedef std::complex<T> ReturnType; }; template<typename T> struct scalar_product_traits<std::complex<T>, T> { enum { // Cost = 2*NumTraits<T>::MulCost, Defined = 1 }; typedef std::complex<T> ReturnType; }; // FIXME quick workaround around current limitation of result_of // template<typename Scalar, typename ArgType0, typename ArgType1> // struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> { // typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type; // }; template<typename T> struct is_diagonal { enum { ret = false }; }; template<typename T> struct is_diagonal<DiagonalBase<T> > { enum { ret = true }; }; template<typename T> struct is_diagonal<DiagonalWrapper<T> > { enum { ret = true }; }; template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> > { enum { ret = true }; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_META_H