Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/Core/Map.h
- Committer:
- jsoh91
- Date:
- 2019-09-24
- Revision:
- 1:3b8049da21b8
- Parent:
- 0:13a5d365ba16
File content as of revision 1:3b8049da21b8:
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MAP_H #define EIGEN_MAP_H namespace Eigen { /** \class Map * \ingroup Core_Module * * \brief A matrix or vector expression mapping an existing array of data. * * \tparam PlainObjectType the equivalent matrix type of the mapped data * \tparam MapOptions specifies whether the pointer is \c #Aligned, or \c #Unaligned. * The default is \c #Unaligned. * \tparam StrideType optionally specifies strides. By default, Map assumes the memory layout * of an ordinary, contiguous array. This can be overridden by specifying strides. * The type passed here must be a specialization of the Stride template, see examples below. * * This class represents a matrix or vector expression mapping an existing array of data. * It can be used to let Eigen interface without any overhead with non-Eigen data structures, * such as plain C arrays or structures from other libraries. By default, it assumes that the * data is laid out contiguously in memory. You can however override this by explicitly specifying * inner and outer strides. * * Here's an example of simply mapping a contiguous array as a \ref TopicStorageOrders "column-major" matrix: * \include Map_simple.cpp * Output: \verbinclude Map_simple.out * * If you need to map non-contiguous arrays, you can do so by specifying strides: * * Here's an example of mapping an array as a vector, specifying an inner stride, that is, the pointer * increment between two consecutive coefficients. Here, we're specifying the inner stride as a compile-time * fixed value. * \include Map_inner_stride.cpp * Output: \verbinclude Map_inner_stride.out * * Here's an example of mapping an array while specifying an outer stride. Here, since we're mapping * as a column-major matrix, 'outer stride' means the pointer increment between two consecutive columns. * Here, we're specifying the outer stride as a runtime parameter. Note that here \c OuterStride<> is * a short version of \c OuterStride<Dynamic> because the default template parameter of OuterStride * is \c Dynamic * \include Map_outer_stride.cpp * Output: \verbinclude Map_outer_stride.out * * For more details and for an example of specifying both an inner and an outer stride, see class Stride. * * \b Tip: to change the array of data mapped by a Map object, you can use the C++ * placement new syntax: * * Example: \include Map_placement_new.cpp * Output: \verbinclude Map_placement_new.out * * This class is the return type of PlainObjectBase::Map() but can also be used directly. * * \sa PlainObjectBase::Map(), \ref TopicStorageOrders */ namespace internal { template<typename PlainObjectType, int MapOptions, typename StrideType> struct traits<Map<PlainObjectType, MapOptions, StrideType> > : public traits<PlainObjectType> { typedef traits<PlainObjectType> TraitsBase; typedef typename PlainObjectType::Index Index; typedef typename PlainObjectType::Scalar Scalar; enum { InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 ? int(PlainObjectType::InnerStrideAtCompileTime) : int(StrideType::InnerStrideAtCompileTime), OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 ? int(PlainObjectType::OuterStrideAtCompileTime) : int(StrideType::OuterStrideAtCompileTime), HasNoInnerStride = InnerStrideAtCompileTime == 1, HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0, HasNoStride = HasNoInnerStride && HasNoOuterStride, IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned), IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic, KeepsPacketAccess = bool(HasNoInnerStride) && ( bool(IsDynamicSize) || HasNoOuterStride || ( OuterStrideAtCompileTime!=Dynamic && ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%16)==0 ) ), Flags0 = TraitsBase::Flags & (~NestByRefBit), Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit), Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime)) ? int(Flags1) : int(Flags1 & ~LinearAccessBit), Flags3 = is_lvalue<PlainObjectType>::value ? int(Flags2) : (int(Flags2) & ~LvalueBit), Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit) }; private: enum { Options }; // Expressions don't have Options }; } template<typename PlainObjectType, int MapOptions, typename StrideType> class Map : public MapBase<Map<PlainObjectType, MapOptions, StrideType> > { public: typedef MapBase<Map> Base; EIGEN_DENSE_PUBLIC_INTERFACE(Map) typedef typename Base::PointerType PointerType; #if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API typedef const Scalar* PointerArgType; inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast<PointerType>(ptr); } #else typedef PointerType PointerArgType; inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; } #endif inline Index innerStride() const { return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; } inline Index outerStride() const { return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() : IsVectorAtCompileTime ? this->size() : int(Flags)&RowMajorBit ? this->cols() : this->rows(); } /** Constructor in the fixed-size case. * * \param dataPtr pointer to the array to map * \param a_stride optional Stride object, passing the strides. */ inline Map(PointerArgType dataPtr, const StrideType& a_stride = StrideType()) : Base(cast_to_pointer_type(dataPtr)), m_stride(a_stride) { PlainObjectType::Base::_check_template_params(); } /** Constructor in the dynamic-size vector case. * * \param dataPtr pointer to the array to map * \param a_size the size of the vector expression * \param a_stride optional Stride object, passing the strides. */ inline Map(PointerArgType dataPtr, Index a_size, const StrideType& a_stride = StrideType()) : Base(cast_to_pointer_type(dataPtr), a_size), m_stride(a_stride) { PlainObjectType::Base::_check_template_params(); } /** Constructor in the dynamic-size matrix case. * * \param dataPtr pointer to the array to map * \param nbRows the number of rows of the matrix expression * \param nbCols the number of columns of the matrix expression * \param a_stride optional Stride object, passing the strides. */ inline Map(PointerArgType dataPtr, Index nbRows, Index nbCols, const StrideType& a_stride = StrideType()) : Base(cast_to_pointer_type(dataPtr), nbRows, nbCols), m_stride(a_stride) { PlainObjectType::Base::_check_template_params(); } EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) protected: StrideType m_stride; }; template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> ::Array(const Scalar *data) { this->_set_noalias(Eigen::Map<const Array>(data)); } template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> ::Matrix(const Scalar *data) { this->_set_noalias(Eigen::Map<const Matrix>(data)); } } // end namespace Eigen #endif // EIGEN_MAP_H