Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/Cholesky/LLT.h
- Committer:
- jsoh91
- Date:
- 2019-09-24
- Revision:
- 1:3b8049da21b8
- Parent:
- 0:13a5d365ba16
File content as of revision 1:3b8049da21b8:
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_LLT_H #define EIGEN_LLT_H namespace Eigen { namespace internal{ template<typename MatrixType, int UpLo> struct LLT_Traits; } /** \ingroup Cholesky_Module * * \class LLT * * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features * * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. * The other triangular part won't be read. * * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite * matrix A such that A = LL^* = U^*U, where L is lower triangular. * * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, * for that purpose, we recommend the Cholesky decomposition without square root which is more stable * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other * situations like generalised eigen problems with hermitian matrices. * * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations * has a solution. * * Example: \include LLT_example.cpp * Output: \verbinclude LLT_example.out * * \sa MatrixBase::llt(), class LDLT */ /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, * the strict lower part does not have to store correct values. */ template<typename _MatrixType, int _UpLo> class LLT { public: typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; typedef typename MatrixType::Index Index; enum { PacketSize = internal::packet_traits<Scalar>::size, AlignmentMask = int(PacketSize)-1, UpLo = _UpLo }; typedef internal::LLT_Traits<MatrixType,UpLo> Traits; /** * \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via LLT::compute(const MatrixType&). */ LLT() : m_matrix(), m_isInitialized(false) {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem \a size. * \sa LLT() */ LLT(Index size) : m_matrix(size, size), m_isInitialized(false) {} LLT(const MatrixType& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_isInitialized(false) { compute(matrix); } /** \returns a view of the upper triangular matrix U */ inline typename Traits::MatrixU matrixU() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return Traits::getU(m_matrix); } /** \returns a view of the lower triangular matrix L */ inline typename Traits::MatrixL matrixL() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return Traits::getL(m_matrix); } /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. * * Since this LLT class assumes anyway that the matrix A is invertible, the solution * theoretically exists and is unique regardless of b. * * Example: \include LLT_solve.cpp * Output: \verbinclude LLT_solve.out * * \sa solveInPlace(), MatrixBase::llt() */ template<typename Rhs> inline const internal::solve_retval<LLT, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "LLT is not initialized."); eigen_assert(m_matrix.rows()==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b"); return internal::solve_retval<LLT, Rhs>(*this, b.derived()); } #ifdef EIGEN2_SUPPORT template<typename OtherDerived, typename ResultType> bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const { *result = this->solve(b); return true; } bool isPositiveDefinite() const { return true; } #endif template<typename Derived> void solveInPlace(MatrixBase<Derived> &bAndX) const; LLT& compute(const MatrixType& matrix); /** \returns the LLT decomposition matrix * * TODO: document the storage layout */ inline const MatrixType& matrixLLT() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return m_matrix; } MatrixType reconstructedMatrix() const; /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, * \c NumericalIssue if the matrix.appears to be negative. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return m_info; } inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } template<typename VectorType> LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); protected: static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } /** \internal * Used to compute and store L * The strict upper part is not used and even not initialized. */ MatrixType m_matrix; bool m_isInitialized; ComputationInfo m_info; }; namespace internal { template<typename Scalar, int UpLo> struct llt_inplace; template<typename MatrixType, typename VectorType> static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) { using std::sqrt; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; typedef typename MatrixType::ColXpr ColXpr; typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; typedef Matrix<Scalar,Dynamic,1> TempVectorType; typedef typename TempVectorType::SegmentReturnType TempVecSegment; Index n = mat.cols(); eigen_assert(mat.rows()==n && vec.size()==n); TempVectorType temp; if(sigma>0) { // This version is based on Givens rotations. // It is faster than the other one below, but only works for updates, // i.e., for sigma > 0 temp = sqrt(sigma) * vec; for(Index i=0; i<n; ++i) { JacobiRotation<Scalar> g; g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); Index rs = n-i-1; if(rs>0) { ColXprSegment x(mat.col(i).tail(rs)); TempVecSegment y(temp.tail(rs)); apply_rotation_in_the_plane(x, y, g); } } } else { temp = vec; RealScalar beta = 1; for(Index j=0; j<n; ++j) { RealScalar Ljj = numext::real(mat.coeff(j,j)); RealScalar dj = numext::abs2(Ljj); Scalar wj = temp.coeff(j); RealScalar swj2 = sigma*numext::abs2(wj); RealScalar gamma = dj*beta + swj2; RealScalar x = dj + swj2/beta; if (x<=RealScalar(0)) return j; RealScalar nLjj = sqrt(x); mat.coeffRef(j,j) = nLjj; beta += swj2/dj; // Update the terms of L Index rs = n-j-1; if(rs) { temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); if(gamma != 0) mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); } } } return -1; } template<typename Scalar> struct llt_inplace<Scalar, Lower> { typedef typename NumTraits<Scalar>::Real RealScalar; template<typename MatrixType> static typename MatrixType::Index unblocked(MatrixType& mat) { using std::sqrt; typedef typename MatrixType::Index Index; eigen_assert(mat.rows()==mat.cols()); const Index size = mat.rows(); for(Index k = 0; k < size; ++k) { Index rs = size-k-1; // remaining size Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); RealScalar x = numext::real(mat.coeff(k,k)); if (k>0) x -= A10.squaredNorm(); if (x<=RealScalar(0)) return k; mat.coeffRef(k,k) = x = sqrt(x); if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); if (rs>0) A21 /= x; } return -1; } template<typename MatrixType> static typename MatrixType::Index blocked(MatrixType& m) { typedef typename MatrixType::Index Index; eigen_assert(m.rows()==m.cols()); Index size = m.rows(); if(size<32) return unblocked(m); Index blockSize = size/8; blockSize = (blockSize/16)*16; blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); for (Index k=0; k<size; k+=blockSize) { // partition the matrix: // A00 | - | - // lu = A10 | A11 | - // A20 | A21 | A22 Index bs = (std::min)(blockSize, size-k); Index rs = size - k - bs; Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); Index ret; if((ret=unblocked(A11))>=0) return k+ret; if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck } return -1; } template<typename MatrixType, typename VectorType> static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } }; template<typename Scalar> struct llt_inplace<Scalar, Upper> { typedef typename NumTraits<Scalar>::Real RealScalar; template<typename MatrixType> static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat) { Transpose<MatrixType> matt(mat); return llt_inplace<Scalar, Lower>::unblocked(matt); } template<typename MatrixType> static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat) { Transpose<MatrixType> matt(mat); return llt_inplace<Scalar, Lower>::blocked(matt); } template<typename MatrixType, typename VectorType> static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) { Transpose<MatrixType> matt(mat); return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); } }; template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> { typedef const TriangularView<const MatrixType, Lower> MatrixL; typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; static inline MatrixL getL(const MatrixType& m) { return m; } static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } static bool inplace_decomposition(MatrixType& m) { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } }; template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> { typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; typedef const TriangularView<const MatrixType, Upper> MatrixU; static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } static inline MatrixU getU(const MatrixType& m) { return m; } static bool inplace_decomposition(MatrixType& m) { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } }; } // end namespace internal /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix * * \returns a reference to *this * * Example: \include TutorialLinAlgComputeTwice.cpp * Output: \verbinclude TutorialLinAlgComputeTwice.out */ template<typename MatrixType, int _UpLo> LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a) { check_template_parameters(); eigen_assert(a.rows()==a.cols()); const Index size = a.rows(); m_matrix.resize(size, size); m_matrix = a; m_isInitialized = true; bool ok = Traits::inplace_decomposition(m_matrix); m_info = ok ? Success : NumericalIssue; return *this; } /** Performs a rank one update (or dowdate) of the current decomposition. * If A = LL^* before the rank one update, * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector * of same dimension. */ template<typename _MatrixType, int _UpLo> template<typename VectorType> LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); eigen_assert(v.size()==m_matrix.cols()); eigen_assert(m_isInitialized); if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) m_info = NumericalIssue; else m_info = Success; return *this; } namespace internal { template<typename _MatrixType, int UpLo, typename Rhs> struct solve_retval<LLT<_MatrixType, UpLo>, Rhs> : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs> { typedef LLT<_MatrixType,UpLo> LLTType; EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs) template<typename Dest> void evalTo(Dest& dst) const { dst = rhs(); dec().solveInPlace(dst); } }; } /** \internal use x = llt_object.solve(x); * * This is the \em in-place version of solve(). * * \param bAndX represents both the right-hand side matrix b and result x. * * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. * * This version avoids a copy when the right hand side matrix b is not * needed anymore. * * \sa LLT::solve(), MatrixBase::llt() */ template<typename MatrixType, int _UpLo> template<typename Derived> void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const { eigen_assert(m_isInitialized && "LLT is not initialized."); eigen_assert(m_matrix.rows()==bAndX.rows()); matrixL().solveInPlace(bAndX); matrixU().solveInPlace(bAndX); } /** \returns the matrix represented by the decomposition, * i.e., it returns the product: L L^*. * This function is provided for debug purpose. */ template<typename MatrixType, int _UpLo> MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return matrixL() * matrixL().adjoint().toDenseMatrix(); } /** \cholesky_module * \returns the LLT decomposition of \c *this */ template<typename Derived> inline const LLT<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::llt() const { return LLT<PlainObject>(derived()); } /** \cholesky_module * \returns the LLT decomposition of \c *this */ template<typename MatrixType, unsigned int UpLo> inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> SelfAdjointView<MatrixType, UpLo>::llt() const { return LLT<PlainObject,UpLo>(m_matrix); } } // end namespace Eigen #endif // EIGEN_LLT_H