Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/SVD/JacobiSVD.h
- Committer:
- ykuroda
- Date:
- 2016-10-13
- Revision:
- 0:13a5d365ba16
File content as of revision 0:13a5d365ba16:
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_JACOBISVD_H #define EIGEN_JACOBISVD_H namespace Eigen { namespace internal { // forward declaration (needed by ICC) // the empty body is required by MSVC template<typename MatrixType, int QRPreconditioner, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex> struct svd_precondition_2x2_block_to_be_real {}; /*** QR preconditioners (R-SVD) *** *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for *** JacobiSVD which by itself is only able to work on square matrices. ***/ enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; template<typename MatrixType, int QRPreconditioner, int Case> struct qr_preconditioner_should_do_anything { enum { a = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, b = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, ret = !( (QRPreconditioner == NoQRPreconditioner) || (Case == PreconditionIfMoreColsThanRows && bool(a)) || (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) }; }; template<typename MatrixType, int QRPreconditioner, int Case, bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret > struct qr_preconditioner_impl {}; template<typename MatrixType, int QRPreconditioner, int Case> class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false> { public: typedef typename MatrixType::Index Index; void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {} bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&) { return false; } }; /*** preconditioner using FullPivHouseholderQR ***/ template<typename MatrixType> class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> { public: typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime }; typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType; void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.rows(), svd.cols()); } if (svd.m_computeFullU) m_workspace.resize(svd.rows()); } bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) { if(matrix.rows() > matrix.cols()) { m_qr.compute(matrix); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); return true; } return false; } private: typedef FullPivHouseholderQR<MatrixType> QRType; QRType m_qr; WorkspaceType m_workspace; }; template<typename MatrixType> class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> { public: typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, Options = MatrixType::Options }; typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) { if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.cols(), svd.rows()); } m_adjoint.resize(svd.cols(), svd.rows()); if (svd.m_computeFullV) m_workspace.resize(svd.cols()); } bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) { if(matrix.cols() > matrix.rows()) { m_adjoint = matrix.adjoint(); m_qr.compute(m_adjoint); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); return true; } else return false; } private: typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; QRType m_qr; TransposeTypeWithSameStorageOrder m_adjoint; typename internal::plain_row_type<MatrixType>::type m_workspace; }; /*** preconditioner using ColPivHouseholderQR ***/ template<typename MatrixType> class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> { public: typedef typename MatrixType::Index Index; void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.rows(), svd.cols()); } if (svd.m_computeFullU) m_workspace.resize(svd.rows()); else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); } bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) { if(matrix.rows() > matrix.cols()) { m_qr.compute(matrix); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); else if(svd.m_computeThinU) { svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); } if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); return true; } return false; } private: typedef ColPivHouseholderQR<MatrixType> QRType; QRType m_qr; typename internal::plain_col_type<MatrixType>::type m_workspace; }; template<typename MatrixType> class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> { public: typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, Options = MatrixType::Options }; typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) { if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.cols(), svd.rows()); } if (svd.m_computeFullV) m_workspace.resize(svd.cols()); else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); m_adjoint.resize(svd.cols(), svd.rows()); } bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) { if(matrix.cols() > matrix.rows()) { m_adjoint = matrix.adjoint(); m_qr.compute(m_adjoint); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); else if(svd.m_computeThinV) { svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); } if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); return true; } else return false; } private: typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; QRType m_qr; TransposeTypeWithSameStorageOrder m_adjoint; typename internal::plain_row_type<MatrixType>::type m_workspace; }; /*** preconditioner using HouseholderQR ***/ template<typename MatrixType> class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> { public: typedef typename MatrixType::Index Index; void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.rows(), svd.cols()); } if (svd.m_computeFullU) m_workspace.resize(svd.rows()); else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); } bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) { if(matrix.rows() > matrix.cols()) { m_qr.compute(matrix); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); else if(svd.m_computeThinU) { svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); } if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); return true; } return false; } private: typedef HouseholderQR<MatrixType> QRType; QRType m_qr; typename internal::plain_col_type<MatrixType>::type m_workspace; }; template<typename MatrixType> class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> { public: typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, Options = MatrixType::Options }; typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) { if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.cols(), svd.rows()); } if (svd.m_computeFullV) m_workspace.resize(svd.cols()); else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); m_adjoint.resize(svd.cols(), svd.rows()); } bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) { if(matrix.cols() > matrix.rows()) { m_adjoint = matrix.adjoint(); m_qr.compute(m_adjoint); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); else if(svd.m_computeThinV) { svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); } if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); return true; } else return false; } private: typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType; QRType m_qr; TransposeTypeWithSameStorageOrder m_adjoint; typename internal::plain_row_type<MatrixType>::type m_workspace; }; /*** 2x2 SVD implementation *** *** JacobiSVD consists in performing a series of 2x2 SVD subproblems ***/ template<typename MatrixType, int QRPreconditioner> struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false> { typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; typedef typename SVD::Index Index; static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {} }; template<typename MatrixType, int QRPreconditioner> struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true> { typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename SVD::Index Index; static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q) { using std::sqrt; Scalar z; JacobiRotation<Scalar> rot; RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); if(n==0) { z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); work_matrix.row(p) *= z; if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); if(work_matrix.coeff(q,q)!=Scalar(0)) { z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); work_matrix.row(q) *= z; if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); } // otherwise the second row is already zero, so we have nothing to do. } else { rot.c() = conj(work_matrix.coeff(p,p)) / n; rot.s() = work_matrix.coeff(q,p) / n; work_matrix.applyOnTheLeft(p,q,rot); if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); if(work_matrix.coeff(p,q) != Scalar(0)) { Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); work_matrix.col(q) *= z; if(svd.computeV()) svd.m_matrixV.col(q) *= z; } if(work_matrix.coeff(q,q) != Scalar(0)) { z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); work_matrix.row(q) *= z; if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); } } } }; template<typename MatrixType, typename RealScalar, typename Index> void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, JacobiRotation<RealScalar> *j_left, JacobiRotation<RealScalar> *j_right) { using std::sqrt; using std::abs; Matrix<RealScalar,2,2> m; m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); JacobiRotation<RealScalar> rot1; RealScalar t = m.coeff(0,0) + m.coeff(1,1); RealScalar d = m.coeff(1,0) - m.coeff(0,1); if(t == RealScalar(0)) { rot1.c() = RealScalar(0); rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1); } else { RealScalar t2d2 = numext::hypot(t,d); rot1.c() = abs(t)/t2d2; rot1.s() = d/t2d2; if(t<RealScalar(0)) rot1.s() = -rot1.s(); } m.applyOnTheLeft(0,1,rot1); j_right->makeJacobi(m,0,1); *j_left = rot1 * j_right->transpose(); } } // end namespace internal /** \ingroup SVD_Module * * * \class JacobiSVD * * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix * * \param MatrixType the type of the matrix of which we are computing the SVD decomposition * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally * for the R-SVD step for non-square matrices. See discussion of possible values below. * * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product * \f[ A = U S V^* \f] * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left * and right \em singular \em vectors of \a A respectively. * * Singular values are always sorted in decreasing order. * * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. * * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. * * Here's an example demonstrating basic usage: * \include JacobiSVD_basic.cpp * Output: \verbinclude JacobiSVD_basic.out * * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. * * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to * terminate in finite (and reasonable) time. * * The possible values for QRPreconditioner are: * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. * Contrary to other QRs, it doesn't allow computing thin unitaries. * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive * process is more reliable than the optimized bidiagonal SVD iterations. * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking * if QR preconditioning is needed before applying it anyway. * * \sa MatrixBase::jacobiSvd() */ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD { public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; typedef typename MatrixType::Index Index; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), MatrixOptions = MatrixType::Options }; typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType; typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType; typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; typedef typename internal::plain_row_type<MatrixType>::type RowType; typedef typename internal::plain_col_type<MatrixType>::type ColType; typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> WorkMatrixType; /** \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via JacobiSVD::compute(const MatrixType&). */ JacobiSVD() : m_isInitialized(false), m_isAllocated(false), m_usePrescribedThreshold(false), m_computationOptions(0), m_rows(-1), m_cols(-1), m_diagSize(0) {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem size. * \sa JacobiSVD() */ JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) : m_isInitialized(false), m_isAllocated(false), m_usePrescribedThreshold(false), m_computationOptions(0), m_rows(-1), m_cols(-1) { allocate(rows, cols, computationOptions); } /** \brief Constructor performing the decomposition of given matrix. * * \param matrix the matrix to decompose * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, * #ComputeFullV, #ComputeThinV. * * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non-default) FullPivHouseholderQR preconditioner. */ JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) : m_isInitialized(false), m_isAllocated(false), m_usePrescribedThreshold(false), m_computationOptions(0), m_rows(-1), m_cols(-1) { compute(matrix, computationOptions); } /** \brief Method performing the decomposition of given matrix using custom options. * * \param matrix the matrix to decompose * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, * #ComputeFullV, #ComputeThinV. * * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non-default) FullPivHouseholderQR preconditioner. */ JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions); /** \brief Method performing the decomposition of given matrix using current options. * * \param matrix the matrix to decompose * * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). */ JacobiSVD& compute(const MatrixType& matrix) { return compute(matrix, m_computationOptions); } /** \returns the \a U matrix. * * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU. * * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. * * This method asserts that you asked for \a U to be computed. */ const MatrixUType& matrixU() const { eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?"); return m_matrixU; } /** \returns the \a V matrix. * * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV. * * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. * * This method asserts that you asked for \a V to be computed. */ const MatrixVType& matrixV() const { eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?"); return m_matrixV; } /** \returns the vector of singular values. * * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the * returned vector has size \a m. Singular values are always sorted in decreasing order. */ const SingularValuesType& singularValues() const { eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); return m_singularValues; } /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ inline bool computeU() const { return m_computeFullU || m_computeThinU; } /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ inline bool computeV() const { return m_computeFullV || m_computeThinV; } /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. * * \param b the right-hand-side of the equation to solve. * * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. * * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. */ template<typename Rhs> inline const internal::solve_retval<JacobiSVD, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived()); } /** \returns the number of singular values that are not exactly 0 */ Index nonzeroSingularValues() const { eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); return m_nonzeroSingularValues; } /** \returns the rank of the matrix of which \c *this is the SVD. * * \note This method has to determine which singular values should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline Index rank() const { using std::abs; eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); if(m_singularValues.size()==0) return 0; RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold(); Index i = m_nonzeroSingularValues-1; while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; return i+1; } /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), * which need to determine when singular values are to be considered nonzero. * This is not used for the SVD decomposition itself. * * When it needs to get the threshold value, Eigen calls threshold(). * The default is \c NumTraits<Scalar>::epsilon() * * \param threshold The new value to use as the threshold. * * A singular value will be considered nonzero if its value is strictly greater than * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. * * If you want to come back to the default behavior, call setThreshold(Default_t) */ JacobiSVD& setThreshold(const RealScalar& threshold) { m_usePrescribedThreshold = true; m_prescribedThreshold = threshold; return *this; } /** Allows to come back to the default behavior, letting Eigen use its default formula for * determining the threshold. * * You should pass the special object Eigen::Default as parameter here. * \code svd.setThreshold(Eigen::Default); \endcode * * See the documentation of setThreshold(const RealScalar&). */ JacobiSVD& setThreshold(Default_t) { m_usePrescribedThreshold = false; return *this; } /** Returns the threshold that will be used by certain methods such as rank(). * * See the documentation of setThreshold(const RealScalar&). */ RealScalar threshold() const { eigen_assert(m_isInitialized || m_usePrescribedThreshold); return m_usePrescribedThreshold ? m_prescribedThreshold : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon(); } inline Index rows() const { return m_rows; } inline Index cols() const { return m_cols; } private: void allocate(Index rows, Index cols, unsigned int computationOptions); static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } protected: MatrixUType m_matrixU; MatrixVType m_matrixV; SingularValuesType m_singularValues; WorkMatrixType m_workMatrix; bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; bool m_computeFullU, m_computeThinU; bool m_computeFullV, m_computeThinV; unsigned int m_computationOptions; Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; RealScalar m_prescribedThreshold; template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex> friend struct internal::svd_precondition_2x2_block_to_be_real; template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything> friend struct internal::qr_preconditioner_impl; internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols; internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows; MatrixType m_scaledMatrix; }; template<typename MatrixType, int QRPreconditioner> void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions) { eigen_assert(rows >= 0 && cols >= 0); if (m_isAllocated && rows == m_rows && cols == m_cols && computationOptions == m_computationOptions) { return; } m_rows = rows; m_cols = cols; m_isInitialized = false; m_isAllocated = true; m_computationOptions = computationOptions; m_computeFullU = (computationOptions & ComputeFullU) != 0; m_computeThinU = (computationOptions & ComputeThinU) != 0; m_computeFullV = (computationOptions & ComputeFullV) != 0; m_computeThinV = (computationOptions & ComputeThinV) != 0; eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U"); eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V"); eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns."); if (QRPreconditioner == FullPivHouseholderQRPreconditioner) { eigen_assert(!(m_computeThinU || m_computeThinV) && "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " "Use the ColPivHouseholderQR preconditioner instead."); } m_diagSize = (std::min)(m_rows, m_cols); m_singularValues.resize(m_diagSize); if(RowsAtCompileTime==Dynamic) m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); if(ColsAtCompileTime==Dynamic) m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); m_workMatrix.resize(m_diagSize, m_diagSize); if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this); if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this); if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols); } template<typename MatrixType, int QRPreconditioner> JacobiSVD<MatrixType, QRPreconditioner>& JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) { check_template_parameters(); using std::abs; allocate(matrix.rows(), matrix.cols(), computationOptions); // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, // only worsening the precision of U and V as we accumulate more rotations const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min(); // Scaling factor to reduce over/under-flows RealScalar scale = matrix.cwiseAbs().maxCoeff(); if(scale==RealScalar(0)) scale = RealScalar(1); /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ if(m_rows!=m_cols) { m_scaledMatrix = matrix / scale; m_qr_precond_morecols.run(*this, m_scaledMatrix); m_qr_precond_morerows.run(*this, m_scaledMatrix); } else { m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale; if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows); if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize); if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols); if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize); } /*** step 2. The main Jacobi SVD iteration. ***/ bool finished = false; while(!finished) { finished = true; // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix for(Index p = 1; p < m_diagSize; ++p) { for(Index q = 0; q < p; ++q) { // if this 2x2 sub-matrix is not diagonal already... // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't // keep us iterating forever. Similarly, small denormal numbers are considered zero. using std::max; RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); // We compare both values to threshold instead of calling max to be robust to NaN (See bug 791) if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold) { finished = false; // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q); JacobiRotation<RealScalar> j_left, j_right; internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); // accumulate resulting Jacobi rotations m_workMatrix.applyOnTheLeft(p,q,j_left); if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose()); m_workMatrix.applyOnTheRight(p,q,j_right); if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right); } } } } /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ for(Index i = 0; i < m_diagSize; ++i) { RealScalar a = abs(m_workMatrix.coeff(i,i)); m_singularValues.coeffRef(i) = a; if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; } /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ m_nonzeroSingularValues = m_diagSize; for(Index i = 0; i < m_diagSize; i++) { Index pos; RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos); if(maxRemainingSingularValue == RealScalar(0)) { m_nonzeroSingularValues = i; break; } if(pos) { pos += i; std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos)); if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i)); if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i)); } } m_singularValues *= scale; m_isInitialized = true; return *this; } namespace internal { template<typename _MatrixType, int QRPreconditioner, typename Rhs> struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> { typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType; EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs) template<typename Dest> void evalTo(Dest& dst) const { eigen_assert(rhs().rows() == dec().rows()); // A = U S V^* // So A^{-1} = V S^{-1} U^* Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp; Index rank = dec().rank(); tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs(); tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp; dst = dec().matrixV().leftCols(rank) * tmp; } }; } // end namespace internal /** \svd_module * * \return the singular value decomposition of \c *this computed by two-sided * Jacobi transformations. * * \sa class JacobiSVD */ template<typename Derived> JacobiSVD<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const { return JacobiSVD<PlainObject>(*this, computationOptions); } } // end namespace Eigen #endif // EIGEN_JACOBISVD_H