Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/Core/util/BlasUtil.h
- Committer:
- ykuroda
- Date:
- 2016-10-13
- Revision:
- 0:13a5d365ba16
File content as of revision 0:13a5d365ba16:
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BLASUTIL_H #define EIGEN_BLASUTIL_H // This file contains many lightweight helper classes used to // implement and control fast level 2 and level 3 BLAS-like routines. namespace Eigen { namespace internal { // forward declarations template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs=false, bool ConjugateRhs=false> struct gebp_kernel; template<typename Scalar, typename Index, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false> struct gemm_pack_rhs; template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder, bool Conjugate = false, bool PanelMode = false> struct gemm_pack_lhs; template< typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int ResStorageOrder> struct general_matrix_matrix_product; template<typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version=Specialized> struct general_matrix_vector_product; template<bool Conjugate> struct conj_if; template<> struct conj_if<true> { template<typename T> inline T operator()(const T& x) { return numext::conj(x); } template<typename T> inline T pconj(const T& x) { return internal::pconj(x); } }; template<> struct conj_if<false> { template<typename T> inline const T& operator()(const T& x) { return x; } template<typename T> inline const T& pconj(const T& x) { return x; } }; template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false> { EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); } }; template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, false,true> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return c + pmul(x,y); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::imag(x)*numext::real(y) - numext::real(x)*numext::imag(y)); } }; template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,false> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return c + pmul(x,y); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); } }; template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,true> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return c + pmul(x,y); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return Scalar(numext::real(x)*numext::real(y) - numext::imag(x)*numext::imag(y), - numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); } }; template<typename RealScalar,bool Conj> struct conj_helper<std::complex<RealScalar>, RealScalar, Conj,false> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const { return padd(c, pmul(x,y)); } EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const { return conj_if<Conj>()(x)*y; } }; template<typename RealScalar,bool Conj> struct conj_helper<RealScalar, std::complex<RealScalar>, false,Conj> { typedef std::complex<RealScalar> Scalar; EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const { return padd(c, pmul(x,y)); } EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const { return x*conj_if<Conj>()(y); } }; template<typename From,typename To> struct get_factor { static EIGEN_STRONG_INLINE To run(const From& x) { return x; } }; template<typename Scalar> struct get_factor<Scalar,typename NumTraits<Scalar>::Real> { static EIGEN_STRONG_INLINE typename NumTraits<Scalar>::Real run(const Scalar& x) { return numext::real(x); } }; // Lightweight helper class to access matrix coefficients. // Yes, this is somehow redundant with Map<>, but this version is much much lighter, // and so I hope better compilation performance (time and code quality). template<typename Scalar, typename Index, int StorageOrder> class blas_data_mapper { public: blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {} EIGEN_STRONG_INLINE Scalar& operator()(Index i, Index j) { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; } protected: Scalar* EIGEN_RESTRICT m_data; Index m_stride; }; // lightweight helper class to access matrix coefficients (const version) template<typename Scalar, typename Index, int StorageOrder> class const_blas_data_mapper { public: const_blas_data_mapper(const Scalar* data, Index stride) : m_data(data), m_stride(stride) {} EIGEN_STRONG_INLINE const Scalar& operator()(Index i, Index j) const { return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; } protected: const Scalar* EIGEN_RESTRICT m_data; Index m_stride; }; /* Helper class to analyze the factors of a Product expression. * In particular it allows to pop out operator-, scalar multiples, * and conjugate */ template<typename XprType> struct blas_traits { typedef typename traits<XprType>::Scalar Scalar; typedef const XprType& ExtractType; typedef XprType _ExtractType; enum { IsComplex = NumTraits<Scalar>::IsComplex, IsTransposed = false, NeedToConjugate = false, HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit) && ( bool(XprType::IsVectorAtCompileTime) || int(inner_stride_at_compile_time<XprType>::ret) == 1) ) ? 1 : 0 }; typedef typename conditional<bool(HasUsableDirectAccess), ExtractType, typename _ExtractType::PlainObject >::type DirectLinearAccessType; static inline ExtractType extract(const XprType& x) { return x; } static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); } }; // pop conjugate template<typename Scalar, typename NestedXpr> struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> > : blas_traits<NestedXpr> { typedef blas_traits<NestedXpr> Base; typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; enum { IsComplex = NumTraits<Scalar>::IsComplex, NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex }; static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); } }; // pop scalar multiple template<typename Scalar, typename NestedXpr> struct blas_traits<CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> > : blas_traits<NestedXpr> { typedef blas_traits<NestedXpr> Base; typedef CwiseUnaryOp<scalar_multiple_op<Scalar>, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); } }; // pop opposite template<typename Scalar, typename NestedXpr> struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> > : blas_traits<NestedXpr> { typedef blas_traits<NestedXpr> Base; typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType; typedef typename Base::ExtractType ExtractType; static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return - Base::extractScalarFactor(x.nestedExpression()); } }; // pop/push transpose template<typename NestedXpr> struct blas_traits<Transpose<NestedXpr> > : blas_traits<NestedXpr> { typedef typename NestedXpr::Scalar Scalar; typedef blas_traits<NestedXpr> Base; typedef Transpose<NestedXpr> XprType; typedef Transpose<const typename Base::_ExtractType> ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS typedef Transpose<const typename Base::_ExtractType> _ExtractType; typedef typename conditional<bool(Base::HasUsableDirectAccess), ExtractType, typename ExtractType::PlainObject >::type DirectLinearAccessType; enum { IsTransposed = Base::IsTransposed ? 0 : 1 }; static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); } }; template<typename T> struct blas_traits<const T> : blas_traits<T> {}; template<typename T, bool HasUsableDirectAccess=blas_traits<T>::HasUsableDirectAccess> struct extract_data_selector { static const typename T::Scalar* run(const T& m) { return blas_traits<T>::extract(m).data(); } }; template<typename T> struct extract_data_selector<T,false> { static typename T::Scalar* run(const T&) { return 0; } }; template<typename T> const typename T::Scalar* extract_data(const T& m) { return extract_data_selector<T>::run(m); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_BLASUTIL_H