Eigne Matrix Class Library

Dependents:   MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more

Revision:
0:13a5d365ba16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Geometry/Translation.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,206 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_TRANSLATION_H
+#define EIGEN_TRANSLATION_H
+
+namespace Eigen { 
+
+/** \geometry_module \ingroup Geometry_Module
+  *
+  * \class Translation
+  *
+  * \brief Represents a translation transformation
+  *
+  * \param _Scalar the scalar type, i.e., the type of the coefficients.
+  * \param _Dim the  dimension of the space, can be a compile time value or Dynamic
+  *
+  * \note This class is not aimed to be used to store a translation transformation,
+  * but rather to make easier the constructions and updates of Transform objects.
+  *
+  * \sa class Scaling, class Transform
+  */
+template<typename _Scalar, int _Dim>
+class Translation
+{
+public:
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
+  /** dimension of the space */
+  enum { Dim = _Dim };
+  /** the scalar type of the coefficients */
+  typedef _Scalar Scalar;
+  /** corresponding vector type */
+  typedef Matrix<Scalar,Dim,1> VectorType;
+  /** corresponding linear transformation matrix type */
+  typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
+  /** corresponding affine transformation type */
+  typedef Transform<Scalar,Dim,Affine> AffineTransformType;
+  /** corresponding isometric transformation type */
+  typedef Transform<Scalar,Dim,Isometry> IsometryTransformType;
+
+protected:
+
+  VectorType m_coeffs;
+
+public:
+
+  /** Default constructor without initialization. */
+  Translation() {}
+  /**  */
+  inline Translation(const Scalar& sx, const Scalar& sy)
+  {
+    eigen_assert(Dim==2);
+    m_coeffs.x() = sx;
+    m_coeffs.y() = sy;
+  }
+  /**  */
+  inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
+  {
+    eigen_assert(Dim==3);
+    m_coeffs.x() = sx;
+    m_coeffs.y() = sy;
+    m_coeffs.z() = sz;
+  }
+  /** Constructs and initialize the translation transformation from a vector of translation coefficients */
+  explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
+
+  /** \brief Retruns the x-translation by value. **/
+  inline Scalar x() const { return m_coeffs.x(); }
+  /** \brief Retruns the y-translation by value. **/
+  inline Scalar y() const { return m_coeffs.y(); }
+  /** \brief Retruns the z-translation by value. **/
+  inline Scalar z() const { return m_coeffs.z(); }
+
+  /** \brief Retruns the x-translation as a reference. **/
+  inline Scalar& x() { return m_coeffs.x(); }
+  /** \brief Retruns the y-translation as a reference. **/
+  inline Scalar& y() { return m_coeffs.y(); }
+  /** \brief Retruns the z-translation as a reference. **/
+  inline Scalar& z() { return m_coeffs.z(); }
+
+  const VectorType& vector() const { return m_coeffs; }
+  VectorType& vector() { return m_coeffs; }
+
+  const VectorType& translation() const { return m_coeffs; }
+  VectorType& translation() { return m_coeffs; }
+
+  /** Concatenates two translation */
+  inline Translation operator* (const Translation& other) const
+  { return Translation(m_coeffs + other.m_coeffs); }
+
+  /** Concatenates a translation and a uniform scaling */
+  inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const;
+
+  /** Concatenates a translation and a linear transformation */
+  template<typename OtherDerived>
+  inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const;
+
+  /** Concatenates a translation and a rotation */
+  template<typename Derived>
+  inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const
+  { return *this * IsometryTransformType(r); }
+
+  /** \returns the concatenation of a linear transformation \a l with the translation \a t */
+  // its a nightmare to define a templated friend function outside its declaration
+  template<typename OtherDerived> friend
+  inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t)
+  {
+    AffineTransformType res;
+    res.matrix().setZero();
+    res.linear() = linear.derived();
+    res.translation() = linear.derived() * t.m_coeffs;
+    res.matrix().row(Dim).setZero();
+    res(Dim,Dim) = Scalar(1);
+    return res;
+  }
+
+  /** Concatenates a translation and a transformation */
+  template<int Mode, int Options>
+  inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const
+  {
+    Transform<Scalar,Dim,Mode> res = t;
+    res.pretranslate(m_coeffs);
+    return res;
+  }
+
+  /** Applies translation to vector */
+  inline VectorType operator* (const VectorType& other) const
+  { return m_coeffs + other; }
+
+  /** \returns the inverse translation (opposite) */
+  Translation inverse() const { return Translation(-m_coeffs); }
+
+  Translation& operator=(const Translation& other)
+  {
+    m_coeffs = other.m_coeffs;
+    return *this;
+  }
+
+  static const Translation Identity() { return Translation(VectorType::Zero()); }
+
+  /** \returns \c *this with scalar type casted to \a NewScalarType
+    *
+    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+    * then this function smartly returns a const reference to \c *this.
+    */
+  template<typename NewScalarType>
+  inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
+  { return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
+
+  /** Copy constructor with scalar type conversion */
+  template<typename OtherScalarType>
+  inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
+  { m_coeffs = other.vector().template cast<Scalar>(); }
+
+  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+    * determined by \a prec.
+    *
+    * \sa MatrixBase::isApprox() */
+  bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+  { return m_coeffs.isApprox(other.m_coeffs, prec); }
+
+};
+
+/** \addtogroup Geometry_Module */
+//@{
+typedef Translation<float, 2> Translation2f;
+typedef Translation<double,2> Translation2d;
+typedef Translation<float, 3> Translation3f;
+typedef Translation<double,3> Translation3d;
+//@}
+
+template<typename Scalar, int Dim>
+inline typename Translation<Scalar,Dim>::AffineTransformType
+Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const
+{
+  AffineTransformType res;
+  res.matrix().setZero();
+  res.linear().diagonal().fill(other.factor());
+  res.translation() = m_coeffs;
+  res(Dim,Dim) = Scalar(1);
+  return res;
+}
+
+template<typename Scalar, int Dim>
+template<typename OtherDerived>
+inline typename Translation<Scalar,Dim>::AffineTransformType
+Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const
+{
+  AffineTransformType res;
+  res.matrix().setZero();
+  res.linear() = linear.derived();
+  res.translation() = m_coeffs;
+  res.matrix().row(Dim).setZero();
+  res(Dim,Dim) = Scalar(1);
+  return res;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_TRANSLATION_H
\ No newline at end of file