Eigne Matrix Class Library

Dependents:   MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more

Revision:
0:13a5d365ba16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Geometry/OrthoMethods.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,218 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_ORTHOMETHODS_H
+#define EIGEN_ORTHOMETHODS_H
+
+namespace Eigen { 
+
+/** \geometry_module
+  *
+  * \returns the cross product of \c *this and \a other
+  *
+  * Here is a very good explanation of cross-product: http://xkcd.com/199/
+  * \sa MatrixBase::cross3()
+  */
+template<typename Derived>
+template<typename OtherDerived>
+inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
+MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
+{
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3)
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
+
+  // Note that there is no need for an expression here since the compiler
+  // optimize such a small temporary very well (even within a complex expression)
+  typename internal::nested<Derived,2>::type lhs(derived());
+  typename internal::nested<OtherDerived,2>::type rhs(other.derived());
+  return typename cross_product_return_type<OtherDerived>::type(
+    numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
+    numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
+    numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))
+  );
+}
+
+namespace internal {
+
+template< int Arch,typename VectorLhs,typename VectorRhs,
+          typename Scalar = typename VectorLhs::Scalar,
+          bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)>
+struct cross3_impl {
+  static inline typename internal::plain_matrix_type<VectorLhs>::type
+  run(const VectorLhs& lhs, const VectorRhs& rhs)
+  {
+    return typename internal::plain_matrix_type<VectorLhs>::type(
+      numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
+      numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
+      numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)),
+      0
+    );
+  }
+};
+
+}
+
+/** \geometry_module
+  *
+  * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients
+  *
+  * The size of \c *this and \a other must be four. This function is especially useful
+  * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
+  *
+  * \sa MatrixBase::cross()
+  */
+template<typename Derived>
+template<typename OtherDerived>
+inline typename MatrixBase<Derived>::PlainObject
+MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const
+{
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4)
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4)
+
+  typedef typename internal::nested<Derived,2>::type DerivedNested;
+  typedef typename internal::nested<OtherDerived,2>::type OtherDerivedNested;
+  DerivedNested lhs(derived());
+  OtherDerivedNested rhs(other.derived());
+
+  return internal::cross3_impl<Architecture::Target,
+                        typename internal::remove_all<DerivedNested>::type,
+                        typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs);
+}
+
+/** \returns a matrix expression of the cross product of each column or row
+  * of the referenced expression with the \a other vector.
+  *
+  * The referenced matrix must have one dimension equal to 3.
+  * The result matrix has the same dimensions than the referenced one.
+  *
+  * \geometry_module
+  *
+  * \sa MatrixBase::cross() */
+template<typename ExpressionType, int Direction>
+template<typename OtherDerived>
+const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType
+VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const
+{
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
+  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
+    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
+  CrossReturnType res(_expression().rows(),_expression().cols());
+  if(Direction==Vertical)
+  {
+    eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows");
+    res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate();
+    res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate();
+    res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate();
+  }
+  else
+  {
+    eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns");
+    res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate();
+    res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate();
+    res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate();
+  }
+  return res;
+}
+
+namespace internal {
+
+template<typename Derived, int Size = Derived::SizeAtCompileTime>
+struct unitOrthogonal_selector
+{
+  typedef typename plain_matrix_type<Derived>::type VectorType;
+  typedef typename traits<Derived>::Scalar Scalar;
+  typedef typename NumTraits<Scalar>::Real RealScalar;
+  typedef typename Derived::Index Index;
+  typedef Matrix<Scalar,2,1> Vector2;
+  static inline VectorType run(const Derived& src)
+  {
+    VectorType perp = VectorType::Zero(src.size());
+    Index maxi = 0;
+    Index sndi = 0;
+    src.cwiseAbs().maxCoeff(&maxi);
+    if (maxi==0)
+      sndi = 1;
+    RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm();
+    perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm;
+    perp.coeffRef(sndi) =  numext::conj(src.coeff(maxi)) * invnm;
+
+    return perp;
+   }
+};
+
+template<typename Derived>
+struct unitOrthogonal_selector<Derived,3>
+{
+  typedef typename plain_matrix_type<Derived>::type VectorType;
+  typedef typename traits<Derived>::Scalar Scalar;
+  typedef typename NumTraits<Scalar>::Real RealScalar;
+  static inline VectorType run(const Derived& src)
+  {
+    VectorType perp;
+    /* Let us compute the crossed product of *this with a vector
+     * that is not too close to being colinear to *this.
+     */
+
+    /* unless the x and y coords are both close to zero, we can
+     * simply take ( -y, x, 0 ) and normalize it.
+     */
+    if((!isMuchSmallerThan(src.x(), src.z()))
+    || (!isMuchSmallerThan(src.y(), src.z())))
+    {
+      RealScalar invnm = RealScalar(1)/src.template head<2>().norm();
+      perp.coeffRef(0) = -numext::conj(src.y())*invnm;
+      perp.coeffRef(1) = numext::conj(src.x())*invnm;
+      perp.coeffRef(2) = 0;
+    }
+    /* if both x and y are close to zero, then the vector is close
+     * to the z-axis, so it's far from colinear to the x-axis for instance.
+     * So we take the crossed product with (1,0,0) and normalize it.
+     */
+    else
+    {
+      RealScalar invnm = RealScalar(1)/src.template tail<2>().norm();
+      perp.coeffRef(0) = 0;
+      perp.coeffRef(1) = -numext::conj(src.z())*invnm;
+      perp.coeffRef(2) = numext::conj(src.y())*invnm;
+    }
+
+    return perp;
+   }
+};
+
+template<typename Derived>
+struct unitOrthogonal_selector<Derived,2>
+{
+  typedef typename plain_matrix_type<Derived>::type VectorType;
+  static inline VectorType run(const Derived& src)
+  { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); }
+};
+
+} // end namespace internal
+
+/** \returns a unit vector which is orthogonal to \c *this
+  *
+  * The size of \c *this must be at least 2. If the size is exactly 2,
+  * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized().
+  *
+  * \sa cross()
+  */
+template<typename Derived>
+typename MatrixBase<Derived>::PlainObject
+MatrixBase<Derived>::unitOrthogonal() const
+{
+  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
+  return internal::unitOrthogonal_selector<Derived>::run(derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_ORTHOMETHODS_H
\ No newline at end of file