Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
Diff: src/Core/util/Meta.h
- Revision:
- 0:13a5d365ba16
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Core/util/Meta.h Thu Oct 13 04:07:23 2016 +0000 @@ -0,0 +1,243 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_META_H +#define EIGEN_META_H + +namespace Eigen { + +namespace internal { + +/** \internal + * \file Meta.h + * This file contains generic metaprogramming classes which are not specifically related to Eigen. + * \note In case you wonder, yes we're aware that Boost already provides all these features, + * we however don't want to add a dependency to Boost. + */ + +struct true_type { enum { value = 1 }; }; +struct false_type { enum { value = 0 }; }; + +template<bool Condition, typename Then, typename Else> +struct conditional { typedef Then type; }; + +template<typename Then, typename Else> +struct conditional <false, Then, Else> { typedef Else type; }; + +template<typename T, typename U> struct is_same { enum { value = 0 }; }; +template<typename T> struct is_same<T,T> { enum { value = 1 }; }; + +template<typename T> struct remove_reference { typedef T type; }; +template<typename T> struct remove_reference<T&> { typedef T type; }; + +template<typename T> struct remove_pointer { typedef T type; }; +template<typename T> struct remove_pointer<T*> { typedef T type; }; +template<typename T> struct remove_pointer<T*const> { typedef T type; }; + +template <class T> struct remove_const { typedef T type; }; +template <class T> struct remove_const<const T> { typedef T type; }; +template <class T> struct remove_const<const T[]> { typedef T type[]; }; +template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; }; + +template<typename T> struct remove_all { typedef T type; }; +template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; }; +template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; }; +template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; }; +template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; }; +template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; }; + +template<typename T> struct is_arithmetic { enum { value = false }; }; +template<> struct is_arithmetic<float> { enum { value = true }; }; +template<> struct is_arithmetic<double> { enum { value = true }; }; +template<> struct is_arithmetic<long double> { enum { value = true }; }; +template<> struct is_arithmetic<bool> { enum { value = true }; }; +template<> struct is_arithmetic<char> { enum { value = true }; }; +template<> struct is_arithmetic<signed char> { enum { value = true }; }; +template<> struct is_arithmetic<unsigned char> { enum { value = true }; }; +template<> struct is_arithmetic<signed short> { enum { value = true }; }; +template<> struct is_arithmetic<unsigned short>{ enum { value = true }; }; +template<> struct is_arithmetic<signed int> { enum { value = true }; }; +template<> struct is_arithmetic<unsigned int> { enum { value = true }; }; +template<> struct is_arithmetic<signed long> { enum { value = true }; }; +template<> struct is_arithmetic<unsigned long> { enum { value = true }; }; + +template <typename T> struct add_const { typedef const T type; }; +template <typename T> struct add_const<T&> { typedef T& type; }; + +template <typename T> struct is_const { enum { value = 0 }; }; +template <typename T> struct is_const<T const> { enum { value = 1 }; }; + +template<typename T> struct add_const_on_value_type { typedef const T type; }; +template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; }; +template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; }; +template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; }; +template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; }; + +/** \internal Allows to enable/disable an overload + * according to a compile time condition. + */ +template<bool Condition, typename T> struct enable_if; + +template<typename T> struct enable_if<true,T> +{ typedef T type; }; + + + +/** \internal + * A base class do disable default copy ctor and copy assignement operator. + */ +class noncopyable +{ + noncopyable(const noncopyable&); + const noncopyable& operator=(const noncopyable&); +protected: + noncopyable() {} + ~noncopyable() {} +}; + + +/** \internal + * Convenient struct to get the result type of a unary or binary functor. + * + * It supports both the current STL mechanism (using the result_type member) as well as + * upcoming next STL generation (using a templated result member). + * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack. + */ +template<typename T> struct result_of {}; + +struct has_none {int a[1];}; +struct has_std_result_type {int a[2];}; +struct has_tr1_result {int a[3];}; + +template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)> +struct unary_result_of_select {typedef ArgType type;}; + +template<typename Func, typename ArgType> +struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;}; + +template<typename Func, typename ArgType> +struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;}; + +template<typename Func, typename ArgType> +struct result_of<Func(ArgType)> { + template<typename T> + static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); + template<typename T> + static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0); + static has_none testFunctor(...); + + // note that the following indirection is needed for gcc-3.3 + enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; + typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type; +}; + +template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)> +struct binary_result_of_select {typedef ArgType0 type;}; + +template<typename Func, typename ArgType0, typename ArgType1> +struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)> +{typedef typename Func::result_type type;}; + +template<typename Func, typename ArgType0, typename ArgType1> +struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)> +{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;}; + +template<typename Func, typename ArgType0, typename ArgType1> +struct result_of<Func(ArgType0,ArgType1)> { + template<typename T> + static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); + template<typename T> + static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0); + static has_none testFunctor(...); + + // note that the following indirection is needed for gcc-3.3 + enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; + typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type; +}; + +/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. + * Usage example: \code meta_sqrt<1023>::ret \endcode + */ +template<int Y, + int InfX = 0, + int SupX = ((Y==1) ? 1 : Y/2), + bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) > + // use ?: instead of || just to shut up a stupid gcc 4.3 warning +class meta_sqrt +{ + enum { + MidX = (InfX+SupX)/2, + TakeInf = MidX*MidX > Y ? 1 : 0, + NewInf = int(TakeInf) ? InfX : int(MidX), + NewSup = int(TakeInf) ? int(MidX) : SupX + }; + public: + enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret }; +}; + +template<int Y, int InfX, int SupX> +class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; + +/** \internal determines whether the product of two numeric types is allowed and what the return type is */ +template<typename T, typename U> struct scalar_product_traits +{ + enum { Defined = 0 }; +}; + +template<typename T> struct scalar_product_traits<T,T> +{ + enum { + // Cost = NumTraits<T>::MulCost, + Defined = 1 + }; + typedef T ReturnType; +}; + +template<typename T> struct scalar_product_traits<T,std::complex<T> > +{ + enum { + // Cost = 2*NumTraits<T>::MulCost, + Defined = 1 + }; + typedef std::complex<T> ReturnType; +}; + +template<typename T> struct scalar_product_traits<std::complex<T>, T> +{ + enum { + // Cost = 2*NumTraits<T>::MulCost, + Defined = 1 + }; + typedef std::complex<T> ReturnType; +}; + +// FIXME quick workaround around current limitation of result_of +// template<typename Scalar, typename ArgType0, typename ArgType1> +// struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> { +// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type; +// }; + +template<typename T> struct is_diagonal +{ enum { ret = false }; }; + +template<typename T> struct is_diagonal<DiagonalBase<T> > +{ enum { ret = true }; }; + +template<typename T> struct is_diagonal<DiagonalWrapper<T> > +{ enum { ret = true }; }; + +template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> > +{ enum { ret = true }; }; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_META_H \ No newline at end of file