Eigne Matrix Class Library

Dependents:   MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more

Revision:
0:13a5d365ba16
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Core/DenseBase.h	Thu Oct 13 04:07:23 2016 +0000
@@ -0,0 +1,521 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_DENSEBASE_H
+#define EIGEN_DENSEBASE_H
+
+namespace Eigen {
+
+namespace internal {
+  
+// The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type.
+// This dummy function simply aims at checking that at compile time.
+static inline void check_DenseIndex_is_signed() {
+  EIGEN_STATIC_ASSERT(NumTraits<DenseIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); 
+}
+
+} // end namespace internal
+  
+/** \class DenseBase
+  * \ingroup Core_Module
+  *
+  * \brief Base class for all dense matrices, vectors, and arrays
+  *
+  * This class is the base that is inherited by all dense objects (matrix, vector, arrays,
+  * and related expression types). The common Eigen API for dense objects is contained in this class.
+  *
+  * \tparam Derived is the derived type, e.g., a matrix type or an expression.
+  *
+  * This class can be extended with the help of the plugin mechanism described on the page
+  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN.
+  *
+  * \sa \ref TopicClassHierarchy
+  */
+template<typename Derived> class DenseBase
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+  : public internal::special_scalar_op_base<Derived, typename internal::traits<Derived>::Scalar,
+                                            typename NumTraits<typename internal::traits<Derived>::Scalar>::Real,
+                                            DenseCoeffsBase<Derived> >
+#else
+  : public DenseCoeffsBase<Derived>
+#endif // not EIGEN_PARSED_BY_DOXYGEN
+{
+  public:
+
+    class InnerIterator;
+
+    typedef typename internal::traits<Derived>::StorageKind StorageKind;
+
+    /** \brief The type of indices 
+      * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
+      * \sa \ref TopicPreprocessorDirectives.
+      */
+    typedef typename internal::traits<Derived>::Index Index; 
+
+    typedef typename internal::traits<Derived>::Scalar Scalar;
+    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
+    typedef typename NumTraits<Scalar>::Real RealScalar;
+    typedef internal::special_scalar_op_base<Derived,Scalar,RealScalar, DenseCoeffsBase<Derived> > Base;
+
+    using Base::operator*;
+    using Base::derived;
+    using Base::const_cast_derived;
+    using Base::rows;
+    using Base::cols;
+    using Base::size;
+    using Base::rowIndexByOuterInner;
+    using Base::colIndexByOuterInner;
+    using Base::coeff;
+    using Base::coeffByOuterInner;
+    using Base::packet;
+    using Base::packetByOuterInner;
+    using Base::writePacket;
+    using Base::writePacketByOuterInner;
+    using Base::coeffRef;
+    using Base::coeffRefByOuterInner;
+    using Base::copyCoeff;
+    using Base::copyCoeffByOuterInner;
+    using Base::copyPacket;
+    using Base::copyPacketByOuterInner;
+    using Base::operator();
+    using Base::operator[];
+    using Base::x;
+    using Base::y;
+    using Base::z;
+    using Base::w;
+    using Base::stride;
+    using Base::innerStride;
+    using Base::outerStride;
+    using Base::rowStride;
+    using Base::colStride;
+    typedef typename Base::CoeffReturnType CoeffReturnType;
+
+    enum {
+
+      RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
+        /**< The number of rows at compile-time. This is just a copy of the value provided
+          * by the \a Derived type. If a value is not known at compile-time,
+          * it is set to the \a Dynamic constant.
+          * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
+
+      ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
+        /**< The number of columns at compile-time. This is just a copy of the value provided
+          * by the \a Derived type. If a value is not known at compile-time,
+          * it is set to the \a Dynamic constant.
+          * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
+
+
+      SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
+                                                   internal::traits<Derived>::ColsAtCompileTime>::ret),
+        /**< This is equal to the number of coefficients, i.e. the number of
+          * rows times the number of columns, or to \a Dynamic if this is not
+          * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
+
+      MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
+        /**< This value is equal to the maximum possible number of rows that this expression
+          * might have. If this expression might have an arbitrarily high number of rows,
+          * this value is set to \a Dynamic.
+          *
+          * This value is useful to know when evaluating an expression, in order to determine
+          * whether it is possible to avoid doing a dynamic memory allocation.
+          *
+          * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
+          */
+
+      MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
+        /**< This value is equal to the maximum possible number of columns that this expression
+          * might have. If this expression might have an arbitrarily high number of columns,
+          * this value is set to \a Dynamic.
+          *
+          * This value is useful to know when evaluating an expression, in order to determine
+          * whether it is possible to avoid doing a dynamic memory allocation.
+          *
+          * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
+          */
+
+      MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
+                                                      internal::traits<Derived>::MaxColsAtCompileTime>::ret),
+        /**< This value is equal to the maximum possible number of coefficients that this expression
+          * might have. If this expression might have an arbitrarily high number of coefficients,
+          * this value is set to \a Dynamic.
+          *
+          * This value is useful to know when evaluating an expression, in order to determine
+          * whether it is possible to avoid doing a dynamic memory allocation.
+          *
+          * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
+          */
+
+      IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
+                           || internal::traits<Derived>::MaxColsAtCompileTime == 1,
+        /**< This is set to true if either the number of rows or the number of
+          * columns is known at compile-time to be equal to 1. Indeed, in that case,
+          * we are dealing with a column-vector (if there is only one column) or with
+          * a row-vector (if there is only one row). */
+
+      Flags = internal::traits<Derived>::Flags,
+        /**< This stores expression \ref flags flags which may or may not be inherited by new expressions
+          * constructed from this one. See the \ref flags "list of flags".
+          */
+
+      IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */
+
+      InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
+                             : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
+
+      CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
+        /**< This is a rough measure of how expensive it is to read one coefficient from
+          * this expression.
+          */
+
+      InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
+      OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
+    };
+
+    enum { ThisConstantIsPrivateInPlainObjectBase };
+
+    /** \returns the number of nonzero coefficients which is in practice the number
+      * of stored coefficients. */
+    inline Index nonZeros() const { return size(); }
+
+    /** \returns the outer size.
+      *
+      * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension
+      * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a
+      * column-major matrix, and the number of rows for a row-major matrix. */
+    Index outerSize() const
+    {
+      return IsVectorAtCompileTime ? 1
+           : int(IsRowMajor) ? this->rows() : this->cols();
+    }
+
+    /** \returns the inner size.
+      *
+      * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension
+      * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a 
+      * column-major matrix, and the number of columns for a row-major matrix. */
+    Index innerSize() const
+    {
+      return IsVectorAtCompileTime ? this->size()
+           : int(IsRowMajor) ? this->cols() : this->rows();
+    }
+
+    /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
+      * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
+      * nothing else.
+      */
+    void resize(Index newSize)
+    {
+      EIGEN_ONLY_USED_FOR_DEBUG(newSize);
+      eigen_assert(newSize == this->size()
+                && "DenseBase::resize() does not actually allow to resize.");
+    }
+    /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
+      * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
+      * nothing else.
+      */
+    void resize(Index nbRows, Index nbCols)
+    {
+      EIGEN_ONLY_USED_FOR_DEBUG(nbRows);
+      EIGEN_ONLY_USED_FOR_DEBUG(nbCols);
+      eigen_assert(nbRows == this->rows() && nbCols == this->cols()
+                && "DenseBase::resize() does not actually allow to resize.");
+    }
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+    /** \internal Represents a matrix with all coefficients equal to one another*/
+    typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
+    /** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
+    typedef CwiseNullaryOp<internal::linspaced_op<Scalar,false>,Derived> SequentialLinSpacedReturnType;
+    /** \internal Represents a vector with linearly spaced coefficients that allows random access. */
+    typedef CwiseNullaryOp<internal::linspaced_op<Scalar,true>,Derived> RandomAccessLinSpacedReturnType;
+    /** \internal the return type of MatrixBase::eigenvalues() */
+    typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
+
+#endif // not EIGEN_PARSED_BY_DOXYGEN
+
+    /** Copies \a other into *this. \returns a reference to *this. */
+    template<typename OtherDerived>
+    Derived& operator=(const DenseBase<OtherDerived>& other);
+
+    /** Special case of the template operator=, in order to prevent the compiler
+      * from generating a default operator= (issue hit with g++ 4.1)
+      */
+    Derived& operator=(const DenseBase& other);
+
+    template<typename OtherDerived>
+    Derived& operator=(const EigenBase<OtherDerived> &other);
+
+    template<typename OtherDerived>
+    Derived& operator+=(const EigenBase<OtherDerived> &other);
+
+    template<typename OtherDerived>
+    Derived& operator-=(const EigenBase<OtherDerived> &other);
+
+    template<typename OtherDerived>
+    Derived& operator=(const ReturnByValue<OtherDerived>& func);
+
+    /** \internal Copies \a other into *this without evaluating other. \returns a reference to *this. */
+    template<typename OtherDerived>
+    Derived& lazyAssign(const DenseBase<OtherDerived>& other);
+
+    /** \internal Evaluates \a other into *this. \returns a reference to *this. */
+    template<typename OtherDerived>
+    Derived& lazyAssign(const ReturnByValue<OtherDerived>& other);
+
+    CommaInitializer<Derived> operator<< (const Scalar& s);
+
+    template<unsigned int Added,unsigned int Removed>
+    const Flagged<Derived, Added, Removed> flagged() const;
+
+    template<typename OtherDerived>
+    CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);
+
+    Eigen::Transpose<Derived> transpose();
+    typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
+    ConstTransposeReturnType transpose() const;
+    void transposeInPlace();
+#ifndef EIGEN_NO_DEBUG
+  protected:
+    template<typename OtherDerived>
+    void checkTransposeAliasing(const OtherDerived& other) const;
+  public:
+#endif
+
+
+    static const ConstantReturnType
+    Constant(Index rows, Index cols, const Scalar& value);
+    static const ConstantReturnType
+    Constant(Index size, const Scalar& value);
+    static const ConstantReturnType
+    Constant(const Scalar& value);
+
+    static const SequentialLinSpacedReturnType
+    LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high);
+    static const RandomAccessLinSpacedReturnType
+    LinSpaced(Index size, const Scalar& low, const Scalar& high);
+    static const SequentialLinSpacedReturnType
+    LinSpaced(Sequential_t, const Scalar& low, const Scalar& high);
+    static const RandomAccessLinSpacedReturnType
+    LinSpaced(const Scalar& low, const Scalar& high);
+
+    template<typename CustomNullaryOp>
+    static const CwiseNullaryOp<CustomNullaryOp, Derived>
+    NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
+    template<typename CustomNullaryOp>
+    static const CwiseNullaryOp<CustomNullaryOp, Derived>
+    NullaryExpr(Index size, const CustomNullaryOp& func);
+    template<typename CustomNullaryOp>
+    static const CwiseNullaryOp<CustomNullaryOp, Derived>
+    NullaryExpr(const CustomNullaryOp& func);
+
+    static const ConstantReturnType Zero(Index rows, Index cols);
+    static const ConstantReturnType Zero(Index size);
+    static const ConstantReturnType Zero();
+    static const ConstantReturnType Ones(Index rows, Index cols);
+    static const ConstantReturnType Ones(Index size);
+    static const ConstantReturnType Ones();
+
+    void fill(const Scalar& value);
+    Derived& setConstant(const Scalar& value);
+    Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
+    Derived& setLinSpaced(const Scalar& low, const Scalar& high);
+    Derived& setZero();
+    Derived& setOnes();
+    Derived& setRandom();
+
+    template<typename OtherDerived>
+    bool isApprox(const DenseBase<OtherDerived>& other,
+                  const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
+    bool isMuchSmallerThan(const RealScalar& other,
+                           const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
+    template<typename OtherDerived>
+    bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
+                           const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
+
+    bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
+    bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
+    bool isZero(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
+    bool isOnes(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
+    
+    inline bool hasNaN() const;
+    inline bool allFinite() const;
+
+    inline Derived& operator*=(const Scalar& other);
+    inline Derived& operator/=(const Scalar& other);
+
+    typedef typename internal::add_const_on_value_type<typename internal::eval<Derived>::type>::type EvalReturnType;
+    /** \returns the matrix or vector obtained by evaluating this expression.
+      *
+      * Notice that in the case of a plain matrix or vector (not an expression) this function just returns
+      * a const reference, in order to avoid a useless copy.
+      */
+    EIGEN_STRONG_INLINE EvalReturnType eval() const
+    {
+      // Even though MSVC does not honor strong inlining when the return type
+      // is a dynamic matrix, we desperately need strong inlining for fixed
+      // size types on MSVC.
+      return typename internal::eval<Derived>::type(derived());
+    }
+
+    /** swaps *this with the expression \a other.
+      *
+      */
+    template<typename OtherDerived>
+    void swap(const DenseBase<OtherDerived>& other,
+              int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
+    {
+      SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
+    }
+
+    /** swaps *this with the matrix or array \a other.
+      *
+      */
+    template<typename OtherDerived>
+    void swap(PlainObjectBase<OtherDerived>& other)
+    {
+      SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
+    }
+
+
+    inline const NestByValue<Derived> nestByValue() const;
+    inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
+    inline ForceAlignedAccess<Derived> forceAlignedAccess();
+    template<bool Enable> inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
+    template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
+
+    Scalar sum() const;
+    Scalar mean() const;
+    Scalar trace() const;
+
+    Scalar prod() const;
+
+    typename internal::traits<Derived>::Scalar minCoeff() const;
+    typename internal::traits<Derived>::Scalar maxCoeff() const;
+
+    template<typename IndexType>
+    typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const;
+    template<typename IndexType>
+    typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const;
+    template<typename IndexType>
+    typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const;
+    template<typename IndexType>
+    typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const;
+
+    template<typename BinaryOp>
+    typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
+    redux(const BinaryOp& func) const;
+
+    template<typename Visitor>
+    void visit(Visitor& func) const;
+
+    inline const WithFormat<Derived> format(const IOFormat& fmt) const;
+
+    /** \returns the unique coefficient of a 1x1 expression */
+    CoeffReturnType value() const
+    {
+      EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
+      eigen_assert(this->rows() == 1 && this->cols() == 1);
+      return derived().coeff(0,0);
+    }
+
+    bool all(void) const;
+    bool any(void) const;
+    Index count() const;
+
+    typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
+    typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
+    typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType;
+    typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType;
+
+    ConstRowwiseReturnType rowwise() const;
+    RowwiseReturnType rowwise();
+    ConstColwiseReturnType colwise() const;
+    ColwiseReturnType colwise();
+
+    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index rows, Index cols);
+    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(Index size);
+    static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();
+
+    template<typename ThenDerived,typename ElseDerived>
+    const Select<Derived,ThenDerived,ElseDerived>
+    select(const DenseBase<ThenDerived>& thenMatrix,
+           const DenseBase<ElseDerived>& elseMatrix) const;
+
+    template<typename ThenDerived>
+    inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
+    select(const DenseBase<ThenDerived>& thenMatrix, const typename ThenDerived::Scalar& elseScalar) const;
+
+    template<typename ElseDerived>
+    inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
+    select(const typename ElseDerived::Scalar& thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;
+
+    template<int p> RealScalar lpNorm() const;
+
+    template<int RowFactor, int ColFactor>
+    inline const Replicate<Derived,RowFactor,ColFactor> replicate() const;
+    
+    typedef Replicate<Derived,Dynamic,Dynamic> ReplicateReturnType;
+    inline const ReplicateReturnType replicate(Index rowFacor,Index colFactor) const;
+
+    typedef Reverse<Derived, BothDirections> ReverseReturnType;
+    typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
+    ReverseReturnType reverse();
+    ConstReverseReturnType reverse() const;
+    void reverseInPlace();
+
+#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
+#   include "../plugins/BlockMethods.h"
+#   ifdef EIGEN_DENSEBASE_PLUGIN
+#     include EIGEN_DENSEBASE_PLUGIN
+#   endif
+#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
+
+#ifdef EIGEN2_SUPPORT
+
+    Block<Derived> corner(CornerType type, Index cRows, Index cCols);
+    const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const;
+    template<int CRows, int CCols>
+    Block<Derived, CRows, CCols> corner(CornerType type);
+    template<int CRows, int CCols>
+    const Block<Derived, CRows, CCols> corner(CornerType type) const;
+
+#endif // EIGEN2_SUPPORT
+
+
+    // disable the use of evalTo for dense objects with a nice compilation error
+    template<typename Dest> inline void evalTo(Dest& ) const
+    {
+      EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
+    }
+
+  protected:
+    /** Default constructor. Do nothing. */
+    DenseBase()
+    {
+      /* Just checks for self-consistency of the flags.
+       * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
+       */
+#ifdef EIGEN_INTERNAL_DEBUGGING
+      EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
+                        && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
+                          INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
+#endif
+    }
+
+  private:
+    explicit DenseBase(int);
+    DenseBase(int,int);
+    template<typename OtherDerived> explicit DenseBase(const DenseBase<OtherDerived>&);
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_DENSEBASE_H
\ No newline at end of file