Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/SVD/UpperBidiagonalization.h@1:3b8049da21b8, 2019-09-24 (annotated)
- Committer:
- jsoh91
- Date:
- Tue Sep 24 00:18:23 2019 +0000
- Revision:
- 1:3b8049da21b8
- Parent:
- 0:13a5d365ba16
ignore and revise some of error parts
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
ykuroda | 0:13a5d365ba16 | 1 | // This file is part of Eigen, a lightweight C++ template library |
ykuroda | 0:13a5d365ba16 | 2 | // for linear algebra. |
ykuroda | 0:13a5d365ba16 | 3 | // |
ykuroda | 0:13a5d365ba16 | 4 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
ykuroda | 0:13a5d365ba16 | 5 | // |
ykuroda | 0:13a5d365ba16 | 6 | // This Source Code Form is subject to the terms of the Mozilla |
ykuroda | 0:13a5d365ba16 | 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
ykuroda | 0:13a5d365ba16 | 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
ykuroda | 0:13a5d365ba16 | 9 | |
ykuroda | 0:13a5d365ba16 | 10 | #ifndef EIGEN_BIDIAGONALIZATION_H |
ykuroda | 0:13a5d365ba16 | 11 | #define EIGEN_BIDIAGONALIZATION_H |
ykuroda | 0:13a5d365ba16 | 12 | |
ykuroda | 0:13a5d365ba16 | 13 | namespace Eigen { |
ykuroda | 0:13a5d365ba16 | 14 | |
ykuroda | 0:13a5d365ba16 | 15 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 16 | // UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API. |
ykuroda | 0:13a5d365ba16 | 17 | // At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class. |
ykuroda | 0:13a5d365ba16 | 18 | |
ykuroda | 0:13a5d365ba16 | 19 | template<typename _MatrixType> class UpperBidiagonalization |
ykuroda | 0:13a5d365ba16 | 20 | { |
ykuroda | 0:13a5d365ba16 | 21 | public: |
ykuroda | 0:13a5d365ba16 | 22 | |
ykuroda | 0:13a5d365ba16 | 23 | typedef _MatrixType MatrixType; |
ykuroda | 0:13a5d365ba16 | 24 | enum { |
ykuroda | 0:13a5d365ba16 | 25 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 26 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 27 | ColsAtCompileTimeMinusOne = internal::decrement_size<ColsAtCompileTime>::ret |
ykuroda | 0:13a5d365ba16 | 28 | }; |
ykuroda | 0:13a5d365ba16 | 29 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 30 | typedef typename MatrixType::RealScalar RealScalar; |
ykuroda | 0:13a5d365ba16 | 31 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 32 | typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType; |
ykuroda | 0:13a5d365ba16 | 33 | typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType; |
ykuroda | 0:13a5d365ba16 | 34 | typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0> BidiagonalType; |
ykuroda | 0:13a5d365ba16 | 35 | typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType; |
ykuroda | 0:13a5d365ba16 | 36 | typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType; |
ykuroda | 0:13a5d365ba16 | 37 | typedef HouseholderSequence< |
ykuroda | 0:13a5d365ba16 | 38 | const MatrixType, |
ykuroda | 0:13a5d365ba16 | 39 | CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Diagonal<const MatrixType,0> > |
ykuroda | 0:13a5d365ba16 | 40 | > HouseholderUSequenceType; |
ykuroda | 0:13a5d365ba16 | 41 | typedef HouseholderSequence< |
ykuroda | 0:13a5d365ba16 | 42 | const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type, |
ykuroda | 0:13a5d365ba16 | 43 | Diagonal<const MatrixType,1>, |
ykuroda | 0:13a5d365ba16 | 44 | OnTheRight |
ykuroda | 0:13a5d365ba16 | 45 | > HouseholderVSequenceType; |
ykuroda | 0:13a5d365ba16 | 46 | |
ykuroda | 0:13a5d365ba16 | 47 | /** |
ykuroda | 0:13a5d365ba16 | 48 | * \brief Default Constructor. |
ykuroda | 0:13a5d365ba16 | 49 | * |
ykuroda | 0:13a5d365ba16 | 50 | * The default constructor is useful in cases in which the user intends to |
ykuroda | 0:13a5d365ba16 | 51 | * perform decompositions via Bidiagonalization::compute(const MatrixType&). |
ykuroda | 0:13a5d365ba16 | 52 | */ |
ykuroda | 0:13a5d365ba16 | 53 | UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {} |
ykuroda | 0:13a5d365ba16 | 54 | |
ykuroda | 0:13a5d365ba16 | 55 | UpperBidiagonalization(const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 56 | : m_householder(matrix.rows(), matrix.cols()), |
ykuroda | 0:13a5d365ba16 | 57 | m_bidiagonal(matrix.cols(), matrix.cols()), |
ykuroda | 0:13a5d365ba16 | 58 | m_isInitialized(false) |
ykuroda | 0:13a5d365ba16 | 59 | { |
ykuroda | 0:13a5d365ba16 | 60 | compute(matrix); |
ykuroda | 0:13a5d365ba16 | 61 | } |
ykuroda | 0:13a5d365ba16 | 62 | |
ykuroda | 0:13a5d365ba16 | 63 | UpperBidiagonalization& compute(const MatrixType& matrix); |
ykuroda | 0:13a5d365ba16 | 64 | |
ykuroda | 0:13a5d365ba16 | 65 | const MatrixType& householder() const { return m_householder; } |
ykuroda | 0:13a5d365ba16 | 66 | const BidiagonalType& bidiagonal() const { return m_bidiagonal; } |
ykuroda | 0:13a5d365ba16 | 67 | |
ykuroda | 0:13a5d365ba16 | 68 | const HouseholderUSequenceType householderU() const |
ykuroda | 0:13a5d365ba16 | 69 | { |
ykuroda | 0:13a5d365ba16 | 70 | eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); |
ykuroda | 0:13a5d365ba16 | 71 | return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate()); |
ykuroda | 0:13a5d365ba16 | 72 | } |
ykuroda | 0:13a5d365ba16 | 73 | |
ykuroda | 0:13a5d365ba16 | 74 | const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy |
ykuroda | 0:13a5d365ba16 | 75 | { |
ykuroda | 0:13a5d365ba16 | 76 | eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); |
ykuroda | 0:13a5d365ba16 | 77 | return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>()) |
ykuroda | 0:13a5d365ba16 | 78 | .setLength(m_householder.cols()-1) |
ykuroda | 0:13a5d365ba16 | 79 | .setShift(1); |
ykuroda | 0:13a5d365ba16 | 80 | } |
ykuroda | 0:13a5d365ba16 | 81 | |
ykuroda | 0:13a5d365ba16 | 82 | protected: |
ykuroda | 0:13a5d365ba16 | 83 | MatrixType m_householder; |
ykuroda | 0:13a5d365ba16 | 84 | BidiagonalType m_bidiagonal; |
ykuroda | 0:13a5d365ba16 | 85 | bool m_isInitialized; |
ykuroda | 0:13a5d365ba16 | 86 | }; |
ykuroda | 0:13a5d365ba16 | 87 | |
ykuroda | 0:13a5d365ba16 | 88 | template<typename _MatrixType> |
ykuroda | 0:13a5d365ba16 | 89 | UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 90 | { |
ykuroda | 0:13a5d365ba16 | 91 | Index rows = matrix.rows(); |
ykuroda | 0:13a5d365ba16 | 92 | Index cols = matrix.cols(); |
ykuroda | 0:13a5d365ba16 | 93 | |
ykuroda | 0:13a5d365ba16 | 94 | eigen_assert(rows >= cols && "UpperBidiagonalization is only for matrices satisfying rows>=cols."); |
ykuroda | 0:13a5d365ba16 | 95 | |
ykuroda | 0:13a5d365ba16 | 96 | m_householder = matrix; |
ykuroda | 0:13a5d365ba16 | 97 | |
ykuroda | 0:13a5d365ba16 | 98 | ColVectorType temp(rows); |
ykuroda | 0:13a5d365ba16 | 99 | |
ykuroda | 0:13a5d365ba16 | 100 | for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k) |
ykuroda | 0:13a5d365ba16 | 101 | { |
ykuroda | 0:13a5d365ba16 | 102 | Index remainingRows = rows - k; |
ykuroda | 0:13a5d365ba16 | 103 | Index remainingCols = cols - k - 1; |
ykuroda | 0:13a5d365ba16 | 104 | |
ykuroda | 0:13a5d365ba16 | 105 | // construct left householder transform in-place in m_householder |
ykuroda | 0:13a5d365ba16 | 106 | m_householder.col(k).tail(remainingRows) |
ykuroda | 0:13a5d365ba16 | 107 | .makeHouseholderInPlace(m_householder.coeffRef(k,k), |
ykuroda | 0:13a5d365ba16 | 108 | m_bidiagonal.template diagonal<0>().coeffRef(k)); |
ykuroda | 0:13a5d365ba16 | 109 | // apply householder transform to remaining part of m_householder on the left |
ykuroda | 0:13a5d365ba16 | 110 | m_householder.bottomRightCorner(remainingRows, remainingCols) |
ykuroda | 0:13a5d365ba16 | 111 | .applyHouseholderOnTheLeft(m_householder.col(k).tail(remainingRows-1), |
ykuroda | 0:13a5d365ba16 | 112 | m_householder.coeff(k,k), |
ykuroda | 0:13a5d365ba16 | 113 | temp.data()); |
ykuroda | 0:13a5d365ba16 | 114 | |
ykuroda | 0:13a5d365ba16 | 115 | if(k == cols-1) break; |
ykuroda | 0:13a5d365ba16 | 116 | |
ykuroda | 0:13a5d365ba16 | 117 | // construct right householder transform in-place in m_householder |
ykuroda | 0:13a5d365ba16 | 118 | m_householder.row(k).tail(remainingCols) |
ykuroda | 0:13a5d365ba16 | 119 | .makeHouseholderInPlace(m_householder.coeffRef(k,k+1), |
ykuroda | 0:13a5d365ba16 | 120 | m_bidiagonal.template diagonal<1>().coeffRef(k)); |
ykuroda | 0:13a5d365ba16 | 121 | // apply householder transform to remaining part of m_householder on the left |
ykuroda | 0:13a5d365ba16 | 122 | m_householder.bottomRightCorner(remainingRows-1, remainingCols) |
ykuroda | 0:13a5d365ba16 | 123 | .applyHouseholderOnTheRight(m_householder.row(k).tail(remainingCols-1).transpose(), |
ykuroda | 0:13a5d365ba16 | 124 | m_householder.coeff(k,k+1), |
ykuroda | 0:13a5d365ba16 | 125 | temp.data()); |
ykuroda | 0:13a5d365ba16 | 126 | } |
ykuroda | 0:13a5d365ba16 | 127 | m_isInitialized = true; |
ykuroda | 0:13a5d365ba16 | 128 | return *this; |
ykuroda | 0:13a5d365ba16 | 129 | } |
ykuroda | 0:13a5d365ba16 | 130 | |
ykuroda | 0:13a5d365ba16 | 131 | #if 0 |
ykuroda | 0:13a5d365ba16 | 132 | /** \return the Householder QR decomposition of \c *this. |
ykuroda | 0:13a5d365ba16 | 133 | * |
ykuroda | 0:13a5d365ba16 | 134 | * \sa class Bidiagonalization |
ykuroda | 0:13a5d365ba16 | 135 | */ |
ykuroda | 0:13a5d365ba16 | 136 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 137 | const UpperBidiagonalization<typename MatrixBase<Derived>::PlainObject> |
ykuroda | 0:13a5d365ba16 | 138 | MatrixBase<Derived>::bidiagonalization() const |
ykuroda | 0:13a5d365ba16 | 139 | { |
ykuroda | 0:13a5d365ba16 | 140 | return UpperBidiagonalization<PlainObject>(eval()); |
ykuroda | 0:13a5d365ba16 | 141 | } |
ykuroda | 0:13a5d365ba16 | 142 | #endif |
ykuroda | 0:13a5d365ba16 | 143 | |
ykuroda | 0:13a5d365ba16 | 144 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 145 | |
ykuroda | 0:13a5d365ba16 | 146 | } // end namespace Eigen |
ykuroda | 0:13a5d365ba16 | 147 | |
ykuroda | 0:13a5d365ba16 | 148 | #endif // EIGEN_BIDIAGONALIZATION_H |