Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/SVD/JacobiSVD.h@1:3b8049da21b8, 2019-09-24 (annotated)
- Committer:
- jsoh91
- Date:
- Tue Sep 24 00:18:23 2019 +0000
- Revision:
- 1:3b8049da21b8
- Parent:
- 0:13a5d365ba16
ignore and revise some of error parts
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
ykuroda | 0:13a5d365ba16 | 1 | // This file is part of Eigen, a lightweight C++ template library |
ykuroda | 0:13a5d365ba16 | 2 | // for linear algebra. |
ykuroda | 0:13a5d365ba16 | 3 | // |
ykuroda | 0:13a5d365ba16 | 4 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
ykuroda | 0:13a5d365ba16 | 5 | // |
ykuroda | 0:13a5d365ba16 | 6 | // This Source Code Form is subject to the terms of the Mozilla |
ykuroda | 0:13a5d365ba16 | 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
ykuroda | 0:13a5d365ba16 | 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
ykuroda | 0:13a5d365ba16 | 9 | |
ykuroda | 0:13a5d365ba16 | 10 | #ifndef EIGEN_JACOBISVD_H |
ykuroda | 0:13a5d365ba16 | 11 | #define EIGEN_JACOBISVD_H |
ykuroda | 0:13a5d365ba16 | 12 | |
ykuroda | 0:13a5d365ba16 | 13 | namespace Eigen { |
ykuroda | 0:13a5d365ba16 | 14 | |
ykuroda | 0:13a5d365ba16 | 15 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 16 | // forward declaration (needed by ICC) |
ykuroda | 0:13a5d365ba16 | 17 | // the empty body is required by MSVC |
ykuroda | 0:13a5d365ba16 | 18 | template<typename MatrixType, int QRPreconditioner, |
ykuroda | 0:13a5d365ba16 | 19 | bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex> |
ykuroda | 0:13a5d365ba16 | 20 | struct svd_precondition_2x2_block_to_be_real {}; |
ykuroda | 0:13a5d365ba16 | 21 | |
ykuroda | 0:13a5d365ba16 | 22 | /*** QR preconditioners (R-SVD) |
ykuroda | 0:13a5d365ba16 | 23 | *** |
ykuroda | 0:13a5d365ba16 | 24 | *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. |
ykuroda | 0:13a5d365ba16 | 25 | *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for |
ykuroda | 0:13a5d365ba16 | 26 | *** JacobiSVD which by itself is only able to work on square matrices. |
ykuroda | 0:13a5d365ba16 | 27 | ***/ |
ykuroda | 0:13a5d365ba16 | 28 | |
ykuroda | 0:13a5d365ba16 | 29 | enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; |
ykuroda | 0:13a5d365ba16 | 30 | |
ykuroda | 0:13a5d365ba16 | 31 | template<typename MatrixType, int QRPreconditioner, int Case> |
ykuroda | 0:13a5d365ba16 | 32 | struct qr_preconditioner_should_do_anything |
ykuroda | 0:13a5d365ba16 | 33 | { |
ykuroda | 0:13a5d365ba16 | 34 | enum { a = MatrixType::RowsAtCompileTime != Dynamic && |
ykuroda | 0:13a5d365ba16 | 35 | MatrixType::ColsAtCompileTime != Dynamic && |
ykuroda | 0:13a5d365ba16 | 36 | MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 37 | b = MatrixType::RowsAtCompileTime != Dynamic && |
ykuroda | 0:13a5d365ba16 | 38 | MatrixType::ColsAtCompileTime != Dynamic && |
ykuroda | 0:13a5d365ba16 | 39 | MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 40 | ret = !( (QRPreconditioner == NoQRPreconditioner) || |
ykuroda | 0:13a5d365ba16 | 41 | (Case == PreconditionIfMoreColsThanRows && bool(a)) || |
ykuroda | 0:13a5d365ba16 | 42 | (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) |
ykuroda | 0:13a5d365ba16 | 43 | }; |
ykuroda | 0:13a5d365ba16 | 44 | }; |
ykuroda | 0:13a5d365ba16 | 45 | |
ykuroda | 0:13a5d365ba16 | 46 | template<typename MatrixType, int QRPreconditioner, int Case, |
ykuroda | 0:13a5d365ba16 | 47 | bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret |
ykuroda | 0:13a5d365ba16 | 48 | > struct qr_preconditioner_impl {}; |
ykuroda | 0:13a5d365ba16 | 49 | |
ykuroda | 0:13a5d365ba16 | 50 | template<typename MatrixType, int QRPreconditioner, int Case> |
ykuroda | 0:13a5d365ba16 | 51 | class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false> |
ykuroda | 0:13a5d365ba16 | 52 | { |
ykuroda | 0:13a5d365ba16 | 53 | public: |
ykuroda | 0:13a5d365ba16 | 54 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 55 | void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {} |
ykuroda | 0:13a5d365ba16 | 56 | bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&) |
ykuroda | 0:13a5d365ba16 | 57 | { |
ykuroda | 0:13a5d365ba16 | 58 | return false; |
ykuroda | 0:13a5d365ba16 | 59 | } |
ykuroda | 0:13a5d365ba16 | 60 | }; |
ykuroda | 0:13a5d365ba16 | 61 | |
ykuroda | 0:13a5d365ba16 | 62 | /*** preconditioner using FullPivHouseholderQR ***/ |
ykuroda | 0:13a5d365ba16 | 63 | |
ykuroda | 0:13a5d365ba16 | 64 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 65 | class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> |
ykuroda | 0:13a5d365ba16 | 66 | { |
ykuroda | 0:13a5d365ba16 | 67 | public: |
ykuroda | 0:13a5d365ba16 | 68 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 69 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 70 | enum |
ykuroda | 0:13a5d365ba16 | 71 | { |
ykuroda | 0:13a5d365ba16 | 72 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 73 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime |
ykuroda | 0:13a5d365ba16 | 74 | }; |
ykuroda | 0:13a5d365ba16 | 75 | typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType; |
ykuroda | 0:13a5d365ba16 | 76 | |
ykuroda | 0:13a5d365ba16 | 77 | void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) |
ykuroda | 0:13a5d365ba16 | 78 | { |
ykuroda | 0:13a5d365ba16 | 79 | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) |
ykuroda | 0:13a5d365ba16 | 80 | { |
ykuroda | 0:13a5d365ba16 | 81 | m_qr.~QRType(); |
ykuroda | 0:13a5d365ba16 | 82 | ::new (&m_qr) QRType(svd.rows(), svd.cols()); |
ykuroda | 0:13a5d365ba16 | 83 | } |
ykuroda | 0:13a5d365ba16 | 84 | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
ykuroda | 0:13a5d365ba16 | 85 | } |
ykuroda | 0:13a5d365ba16 | 86 | |
ykuroda | 0:13a5d365ba16 | 87 | bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 88 | { |
ykuroda | 0:13a5d365ba16 | 89 | if(matrix.rows() > matrix.cols()) |
ykuroda | 0:13a5d365ba16 | 90 | { |
ykuroda | 0:13a5d365ba16 | 91 | m_qr.compute(matrix); |
ykuroda | 0:13a5d365ba16 | 92 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); |
ykuroda | 0:13a5d365ba16 | 93 | if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); |
ykuroda | 0:13a5d365ba16 | 94 | if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); |
ykuroda | 0:13a5d365ba16 | 95 | return true; |
ykuroda | 0:13a5d365ba16 | 96 | } |
ykuroda | 0:13a5d365ba16 | 97 | return false; |
ykuroda | 0:13a5d365ba16 | 98 | } |
ykuroda | 0:13a5d365ba16 | 99 | private: |
ykuroda | 0:13a5d365ba16 | 100 | typedef FullPivHouseholderQR<MatrixType> QRType; |
ykuroda | 0:13a5d365ba16 | 101 | QRType m_qr; |
ykuroda | 0:13a5d365ba16 | 102 | WorkspaceType m_workspace; |
ykuroda | 0:13a5d365ba16 | 103 | }; |
ykuroda | 0:13a5d365ba16 | 104 | |
ykuroda | 0:13a5d365ba16 | 105 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 106 | class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> |
ykuroda | 0:13a5d365ba16 | 107 | { |
ykuroda | 0:13a5d365ba16 | 108 | public: |
ykuroda | 0:13a5d365ba16 | 109 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 110 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 111 | enum |
ykuroda | 0:13a5d365ba16 | 112 | { |
ykuroda | 0:13a5d365ba16 | 113 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 114 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 115 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 116 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 117 | Options = MatrixType::Options |
ykuroda | 0:13a5d365ba16 | 118 | }; |
ykuroda | 0:13a5d365ba16 | 119 | typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> |
ykuroda | 0:13a5d365ba16 | 120 | TransposeTypeWithSameStorageOrder; |
ykuroda | 0:13a5d365ba16 | 121 | |
ykuroda | 0:13a5d365ba16 | 122 | void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) |
ykuroda | 0:13a5d365ba16 | 123 | { |
ykuroda | 0:13a5d365ba16 | 124 | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) |
ykuroda | 0:13a5d365ba16 | 125 | { |
ykuroda | 0:13a5d365ba16 | 126 | m_qr.~QRType(); |
ykuroda | 0:13a5d365ba16 | 127 | ::new (&m_qr) QRType(svd.cols(), svd.rows()); |
ykuroda | 0:13a5d365ba16 | 128 | } |
ykuroda | 0:13a5d365ba16 | 129 | m_adjoint.resize(svd.cols(), svd.rows()); |
ykuroda | 0:13a5d365ba16 | 130 | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
ykuroda | 0:13a5d365ba16 | 131 | } |
ykuroda | 0:13a5d365ba16 | 132 | |
ykuroda | 0:13a5d365ba16 | 133 | bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 134 | { |
ykuroda | 0:13a5d365ba16 | 135 | if(matrix.cols() > matrix.rows()) |
ykuroda | 0:13a5d365ba16 | 136 | { |
ykuroda | 0:13a5d365ba16 | 137 | m_adjoint = matrix.adjoint(); |
ykuroda | 0:13a5d365ba16 | 138 | m_qr.compute(m_adjoint); |
ykuroda | 0:13a5d365ba16 | 139 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); |
ykuroda | 0:13a5d365ba16 | 140 | if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); |
ykuroda | 0:13a5d365ba16 | 141 | if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); |
ykuroda | 0:13a5d365ba16 | 142 | return true; |
ykuroda | 0:13a5d365ba16 | 143 | } |
ykuroda | 0:13a5d365ba16 | 144 | else return false; |
ykuroda | 0:13a5d365ba16 | 145 | } |
ykuroda | 0:13a5d365ba16 | 146 | private: |
ykuroda | 0:13a5d365ba16 | 147 | typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
ykuroda | 0:13a5d365ba16 | 148 | QRType m_qr; |
ykuroda | 0:13a5d365ba16 | 149 | TransposeTypeWithSameStorageOrder m_adjoint; |
ykuroda | 0:13a5d365ba16 | 150 | typename internal::plain_row_type<MatrixType>::type m_workspace; |
ykuroda | 0:13a5d365ba16 | 151 | }; |
ykuroda | 0:13a5d365ba16 | 152 | |
ykuroda | 0:13a5d365ba16 | 153 | /*** preconditioner using ColPivHouseholderQR ***/ |
ykuroda | 0:13a5d365ba16 | 154 | |
ykuroda | 0:13a5d365ba16 | 155 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 156 | class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> |
ykuroda | 0:13a5d365ba16 | 157 | { |
ykuroda | 0:13a5d365ba16 | 158 | public: |
ykuroda | 0:13a5d365ba16 | 159 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 160 | |
ykuroda | 0:13a5d365ba16 | 161 | void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) |
ykuroda | 0:13a5d365ba16 | 162 | { |
ykuroda | 0:13a5d365ba16 | 163 | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) |
ykuroda | 0:13a5d365ba16 | 164 | { |
ykuroda | 0:13a5d365ba16 | 165 | m_qr.~QRType(); |
ykuroda | 0:13a5d365ba16 | 166 | ::new (&m_qr) QRType(svd.rows(), svd.cols()); |
ykuroda | 0:13a5d365ba16 | 167 | } |
ykuroda | 0:13a5d365ba16 | 168 | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
ykuroda | 0:13a5d365ba16 | 169 | else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); |
ykuroda | 0:13a5d365ba16 | 170 | } |
ykuroda | 0:13a5d365ba16 | 171 | |
ykuroda | 0:13a5d365ba16 | 172 | bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 173 | { |
ykuroda | 0:13a5d365ba16 | 174 | if(matrix.rows() > matrix.cols()) |
ykuroda | 0:13a5d365ba16 | 175 | { |
ykuroda | 0:13a5d365ba16 | 176 | m_qr.compute(matrix); |
ykuroda | 0:13a5d365ba16 | 177 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); |
ykuroda | 0:13a5d365ba16 | 178 | if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); |
ykuroda | 0:13a5d365ba16 | 179 | else if(svd.m_computeThinU) |
ykuroda | 0:13a5d365ba16 | 180 | { |
ykuroda | 0:13a5d365ba16 | 181 | svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); |
ykuroda | 0:13a5d365ba16 | 182 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); |
ykuroda | 0:13a5d365ba16 | 183 | } |
ykuroda | 0:13a5d365ba16 | 184 | if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); |
ykuroda | 0:13a5d365ba16 | 185 | return true; |
ykuroda | 0:13a5d365ba16 | 186 | } |
ykuroda | 0:13a5d365ba16 | 187 | return false; |
ykuroda | 0:13a5d365ba16 | 188 | } |
ykuroda | 0:13a5d365ba16 | 189 | |
ykuroda | 0:13a5d365ba16 | 190 | private: |
ykuroda | 0:13a5d365ba16 | 191 | typedef ColPivHouseholderQR<MatrixType> QRType; |
ykuroda | 0:13a5d365ba16 | 192 | QRType m_qr; |
ykuroda | 0:13a5d365ba16 | 193 | typename internal::plain_col_type<MatrixType>::type m_workspace; |
ykuroda | 0:13a5d365ba16 | 194 | }; |
ykuroda | 0:13a5d365ba16 | 195 | |
ykuroda | 0:13a5d365ba16 | 196 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 197 | class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> |
ykuroda | 0:13a5d365ba16 | 198 | { |
ykuroda | 0:13a5d365ba16 | 199 | public: |
ykuroda | 0:13a5d365ba16 | 200 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 201 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 202 | enum |
ykuroda | 0:13a5d365ba16 | 203 | { |
ykuroda | 0:13a5d365ba16 | 204 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 205 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 206 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 207 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 208 | Options = MatrixType::Options |
ykuroda | 0:13a5d365ba16 | 209 | }; |
ykuroda | 0:13a5d365ba16 | 210 | |
ykuroda | 0:13a5d365ba16 | 211 | typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> |
ykuroda | 0:13a5d365ba16 | 212 | TransposeTypeWithSameStorageOrder; |
ykuroda | 0:13a5d365ba16 | 213 | |
ykuroda | 0:13a5d365ba16 | 214 | void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) |
ykuroda | 0:13a5d365ba16 | 215 | { |
ykuroda | 0:13a5d365ba16 | 216 | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) |
ykuroda | 0:13a5d365ba16 | 217 | { |
ykuroda | 0:13a5d365ba16 | 218 | m_qr.~QRType(); |
ykuroda | 0:13a5d365ba16 | 219 | ::new (&m_qr) QRType(svd.cols(), svd.rows()); |
ykuroda | 0:13a5d365ba16 | 220 | } |
ykuroda | 0:13a5d365ba16 | 221 | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
ykuroda | 0:13a5d365ba16 | 222 | else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); |
ykuroda | 0:13a5d365ba16 | 223 | m_adjoint.resize(svd.cols(), svd.rows()); |
ykuroda | 0:13a5d365ba16 | 224 | } |
ykuroda | 0:13a5d365ba16 | 225 | |
ykuroda | 0:13a5d365ba16 | 226 | bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 227 | { |
ykuroda | 0:13a5d365ba16 | 228 | if(matrix.cols() > matrix.rows()) |
ykuroda | 0:13a5d365ba16 | 229 | { |
ykuroda | 0:13a5d365ba16 | 230 | m_adjoint = matrix.adjoint(); |
ykuroda | 0:13a5d365ba16 | 231 | m_qr.compute(m_adjoint); |
ykuroda | 0:13a5d365ba16 | 232 | |
ykuroda | 0:13a5d365ba16 | 233 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); |
ykuroda | 0:13a5d365ba16 | 234 | if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); |
ykuroda | 0:13a5d365ba16 | 235 | else if(svd.m_computeThinV) |
ykuroda | 0:13a5d365ba16 | 236 | { |
ykuroda | 0:13a5d365ba16 | 237 | svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); |
ykuroda | 0:13a5d365ba16 | 238 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); |
ykuroda | 0:13a5d365ba16 | 239 | } |
ykuroda | 0:13a5d365ba16 | 240 | if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); |
ykuroda | 0:13a5d365ba16 | 241 | return true; |
ykuroda | 0:13a5d365ba16 | 242 | } |
ykuroda | 0:13a5d365ba16 | 243 | else return false; |
ykuroda | 0:13a5d365ba16 | 244 | } |
ykuroda | 0:13a5d365ba16 | 245 | |
ykuroda | 0:13a5d365ba16 | 246 | private: |
ykuroda | 0:13a5d365ba16 | 247 | typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
ykuroda | 0:13a5d365ba16 | 248 | QRType m_qr; |
ykuroda | 0:13a5d365ba16 | 249 | TransposeTypeWithSameStorageOrder m_adjoint; |
ykuroda | 0:13a5d365ba16 | 250 | typename internal::plain_row_type<MatrixType>::type m_workspace; |
ykuroda | 0:13a5d365ba16 | 251 | }; |
ykuroda | 0:13a5d365ba16 | 252 | |
ykuroda | 0:13a5d365ba16 | 253 | /*** preconditioner using HouseholderQR ***/ |
ykuroda | 0:13a5d365ba16 | 254 | |
ykuroda | 0:13a5d365ba16 | 255 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 256 | class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> |
ykuroda | 0:13a5d365ba16 | 257 | { |
ykuroda | 0:13a5d365ba16 | 258 | public: |
ykuroda | 0:13a5d365ba16 | 259 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 260 | |
ykuroda | 0:13a5d365ba16 | 261 | void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) |
ykuroda | 0:13a5d365ba16 | 262 | { |
ykuroda | 0:13a5d365ba16 | 263 | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) |
ykuroda | 0:13a5d365ba16 | 264 | { |
ykuroda | 0:13a5d365ba16 | 265 | m_qr.~QRType(); |
ykuroda | 0:13a5d365ba16 | 266 | ::new (&m_qr) QRType(svd.rows(), svd.cols()); |
ykuroda | 0:13a5d365ba16 | 267 | } |
ykuroda | 0:13a5d365ba16 | 268 | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
ykuroda | 0:13a5d365ba16 | 269 | else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); |
ykuroda | 0:13a5d365ba16 | 270 | } |
ykuroda | 0:13a5d365ba16 | 271 | |
ykuroda | 0:13a5d365ba16 | 272 | bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 273 | { |
ykuroda | 0:13a5d365ba16 | 274 | if(matrix.rows() > matrix.cols()) |
ykuroda | 0:13a5d365ba16 | 275 | { |
ykuroda | 0:13a5d365ba16 | 276 | m_qr.compute(matrix); |
ykuroda | 0:13a5d365ba16 | 277 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); |
ykuroda | 0:13a5d365ba16 | 278 | if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); |
ykuroda | 0:13a5d365ba16 | 279 | else if(svd.m_computeThinU) |
ykuroda | 0:13a5d365ba16 | 280 | { |
ykuroda | 0:13a5d365ba16 | 281 | svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); |
ykuroda | 0:13a5d365ba16 | 282 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); |
ykuroda | 0:13a5d365ba16 | 283 | } |
ykuroda | 0:13a5d365ba16 | 284 | if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); |
ykuroda | 0:13a5d365ba16 | 285 | return true; |
ykuroda | 0:13a5d365ba16 | 286 | } |
ykuroda | 0:13a5d365ba16 | 287 | return false; |
ykuroda | 0:13a5d365ba16 | 288 | } |
ykuroda | 0:13a5d365ba16 | 289 | private: |
ykuroda | 0:13a5d365ba16 | 290 | typedef HouseholderQR<MatrixType> QRType; |
ykuroda | 0:13a5d365ba16 | 291 | QRType m_qr; |
ykuroda | 0:13a5d365ba16 | 292 | typename internal::plain_col_type<MatrixType>::type m_workspace; |
ykuroda | 0:13a5d365ba16 | 293 | }; |
ykuroda | 0:13a5d365ba16 | 294 | |
ykuroda | 0:13a5d365ba16 | 295 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 296 | class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> |
ykuroda | 0:13a5d365ba16 | 297 | { |
ykuroda | 0:13a5d365ba16 | 298 | public: |
ykuroda | 0:13a5d365ba16 | 299 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 300 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 301 | enum |
ykuroda | 0:13a5d365ba16 | 302 | { |
ykuroda | 0:13a5d365ba16 | 303 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 304 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 305 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 306 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 307 | Options = MatrixType::Options |
ykuroda | 0:13a5d365ba16 | 308 | }; |
ykuroda | 0:13a5d365ba16 | 309 | |
ykuroda | 0:13a5d365ba16 | 310 | typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> |
ykuroda | 0:13a5d365ba16 | 311 | TransposeTypeWithSameStorageOrder; |
ykuroda | 0:13a5d365ba16 | 312 | |
ykuroda | 0:13a5d365ba16 | 313 | void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) |
ykuroda | 0:13a5d365ba16 | 314 | { |
ykuroda | 0:13a5d365ba16 | 315 | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) |
ykuroda | 0:13a5d365ba16 | 316 | { |
ykuroda | 0:13a5d365ba16 | 317 | m_qr.~QRType(); |
ykuroda | 0:13a5d365ba16 | 318 | ::new (&m_qr) QRType(svd.cols(), svd.rows()); |
ykuroda | 0:13a5d365ba16 | 319 | } |
ykuroda | 0:13a5d365ba16 | 320 | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
ykuroda | 0:13a5d365ba16 | 321 | else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); |
ykuroda | 0:13a5d365ba16 | 322 | m_adjoint.resize(svd.cols(), svd.rows()); |
ykuroda | 0:13a5d365ba16 | 323 | } |
ykuroda | 0:13a5d365ba16 | 324 | |
ykuroda | 0:13a5d365ba16 | 325 | bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 326 | { |
ykuroda | 0:13a5d365ba16 | 327 | if(matrix.cols() > matrix.rows()) |
ykuroda | 0:13a5d365ba16 | 328 | { |
ykuroda | 0:13a5d365ba16 | 329 | m_adjoint = matrix.adjoint(); |
ykuroda | 0:13a5d365ba16 | 330 | m_qr.compute(m_adjoint); |
ykuroda | 0:13a5d365ba16 | 331 | |
ykuroda | 0:13a5d365ba16 | 332 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); |
ykuroda | 0:13a5d365ba16 | 333 | if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); |
ykuroda | 0:13a5d365ba16 | 334 | else if(svd.m_computeThinV) |
ykuroda | 0:13a5d365ba16 | 335 | { |
ykuroda | 0:13a5d365ba16 | 336 | svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); |
ykuroda | 0:13a5d365ba16 | 337 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); |
ykuroda | 0:13a5d365ba16 | 338 | } |
ykuroda | 0:13a5d365ba16 | 339 | if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); |
ykuroda | 0:13a5d365ba16 | 340 | return true; |
ykuroda | 0:13a5d365ba16 | 341 | } |
ykuroda | 0:13a5d365ba16 | 342 | else return false; |
ykuroda | 0:13a5d365ba16 | 343 | } |
ykuroda | 0:13a5d365ba16 | 344 | |
ykuroda | 0:13a5d365ba16 | 345 | private: |
ykuroda | 0:13a5d365ba16 | 346 | typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
ykuroda | 0:13a5d365ba16 | 347 | QRType m_qr; |
ykuroda | 0:13a5d365ba16 | 348 | TransposeTypeWithSameStorageOrder m_adjoint; |
ykuroda | 0:13a5d365ba16 | 349 | typename internal::plain_row_type<MatrixType>::type m_workspace; |
ykuroda | 0:13a5d365ba16 | 350 | }; |
ykuroda | 0:13a5d365ba16 | 351 | |
ykuroda | 0:13a5d365ba16 | 352 | /*** 2x2 SVD implementation |
ykuroda | 0:13a5d365ba16 | 353 | *** |
ykuroda | 0:13a5d365ba16 | 354 | *** JacobiSVD consists in performing a series of 2x2 SVD subproblems |
ykuroda | 0:13a5d365ba16 | 355 | ***/ |
ykuroda | 0:13a5d365ba16 | 356 | |
ykuroda | 0:13a5d365ba16 | 357 | template<typename MatrixType, int QRPreconditioner> |
ykuroda | 0:13a5d365ba16 | 358 | struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false> |
ykuroda | 0:13a5d365ba16 | 359 | { |
ykuroda | 0:13a5d365ba16 | 360 | typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; |
ykuroda | 0:13a5d365ba16 | 361 | typedef typename SVD::Index Index; |
ykuroda | 0:13a5d365ba16 | 362 | static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {} |
ykuroda | 0:13a5d365ba16 | 363 | }; |
ykuroda | 0:13a5d365ba16 | 364 | |
ykuroda | 0:13a5d365ba16 | 365 | template<typename MatrixType, int QRPreconditioner> |
ykuroda | 0:13a5d365ba16 | 366 | struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true> |
ykuroda | 0:13a5d365ba16 | 367 | { |
ykuroda | 0:13a5d365ba16 | 368 | typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; |
ykuroda | 0:13a5d365ba16 | 369 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 370 | typedef typename MatrixType::RealScalar RealScalar; |
ykuroda | 0:13a5d365ba16 | 371 | typedef typename SVD::Index Index; |
ykuroda | 0:13a5d365ba16 | 372 | static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q) |
ykuroda | 0:13a5d365ba16 | 373 | { |
ykuroda | 0:13a5d365ba16 | 374 | using std::sqrt; |
ykuroda | 0:13a5d365ba16 | 375 | Scalar z; |
ykuroda | 0:13a5d365ba16 | 376 | JacobiRotation<Scalar> rot; |
ykuroda | 0:13a5d365ba16 | 377 | RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); |
ykuroda | 0:13a5d365ba16 | 378 | |
ykuroda | 0:13a5d365ba16 | 379 | if(n==0) |
ykuroda | 0:13a5d365ba16 | 380 | { |
ykuroda | 0:13a5d365ba16 | 381 | z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); |
ykuroda | 0:13a5d365ba16 | 382 | work_matrix.row(p) *= z; |
ykuroda | 0:13a5d365ba16 | 383 | if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); |
ykuroda | 0:13a5d365ba16 | 384 | if(work_matrix.coeff(q,q)!=Scalar(0)) |
ykuroda | 0:13a5d365ba16 | 385 | { |
ykuroda | 0:13a5d365ba16 | 386 | z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); |
ykuroda | 0:13a5d365ba16 | 387 | work_matrix.row(q) *= z; |
ykuroda | 0:13a5d365ba16 | 388 | if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); |
ykuroda | 0:13a5d365ba16 | 389 | } |
ykuroda | 0:13a5d365ba16 | 390 | // otherwise the second row is already zero, so we have nothing to do. |
ykuroda | 0:13a5d365ba16 | 391 | } |
ykuroda | 0:13a5d365ba16 | 392 | else |
ykuroda | 0:13a5d365ba16 | 393 | { |
ykuroda | 0:13a5d365ba16 | 394 | rot.c() = conj(work_matrix.coeff(p,p)) / n; |
ykuroda | 0:13a5d365ba16 | 395 | rot.s() = work_matrix.coeff(q,p) / n; |
ykuroda | 0:13a5d365ba16 | 396 | work_matrix.applyOnTheLeft(p,q,rot); |
ykuroda | 0:13a5d365ba16 | 397 | if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); |
ykuroda | 0:13a5d365ba16 | 398 | if(work_matrix.coeff(p,q) != Scalar(0)) |
ykuroda | 0:13a5d365ba16 | 399 | { |
ykuroda | 0:13a5d365ba16 | 400 | Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); |
ykuroda | 0:13a5d365ba16 | 401 | work_matrix.col(q) *= z; |
ykuroda | 0:13a5d365ba16 | 402 | if(svd.computeV()) svd.m_matrixV.col(q) *= z; |
ykuroda | 0:13a5d365ba16 | 403 | } |
ykuroda | 0:13a5d365ba16 | 404 | if(work_matrix.coeff(q,q) != Scalar(0)) |
ykuroda | 0:13a5d365ba16 | 405 | { |
ykuroda | 0:13a5d365ba16 | 406 | z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); |
ykuroda | 0:13a5d365ba16 | 407 | work_matrix.row(q) *= z; |
ykuroda | 0:13a5d365ba16 | 408 | if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); |
ykuroda | 0:13a5d365ba16 | 409 | } |
ykuroda | 0:13a5d365ba16 | 410 | } |
ykuroda | 0:13a5d365ba16 | 411 | } |
ykuroda | 0:13a5d365ba16 | 412 | }; |
ykuroda | 0:13a5d365ba16 | 413 | |
ykuroda | 0:13a5d365ba16 | 414 | template<typename MatrixType, typename RealScalar, typename Index> |
ykuroda | 0:13a5d365ba16 | 415 | void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, |
ykuroda | 0:13a5d365ba16 | 416 | JacobiRotation<RealScalar> *j_left, |
ykuroda | 0:13a5d365ba16 | 417 | JacobiRotation<RealScalar> *j_right) |
ykuroda | 0:13a5d365ba16 | 418 | { |
ykuroda | 0:13a5d365ba16 | 419 | using std::sqrt; |
ykuroda | 0:13a5d365ba16 | 420 | using std::abs; |
ykuroda | 0:13a5d365ba16 | 421 | Matrix<RealScalar,2,2> m; |
ykuroda | 0:13a5d365ba16 | 422 | m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), |
ykuroda | 0:13a5d365ba16 | 423 | numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); |
ykuroda | 0:13a5d365ba16 | 424 | JacobiRotation<RealScalar> rot1; |
ykuroda | 0:13a5d365ba16 | 425 | RealScalar t = m.coeff(0,0) + m.coeff(1,1); |
ykuroda | 0:13a5d365ba16 | 426 | RealScalar d = m.coeff(1,0) - m.coeff(0,1); |
ykuroda | 0:13a5d365ba16 | 427 | if(t == RealScalar(0)) |
ykuroda | 0:13a5d365ba16 | 428 | { |
ykuroda | 0:13a5d365ba16 | 429 | rot1.c() = RealScalar(0); |
ykuroda | 0:13a5d365ba16 | 430 | rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1); |
ykuroda | 0:13a5d365ba16 | 431 | } |
ykuroda | 0:13a5d365ba16 | 432 | else |
ykuroda | 0:13a5d365ba16 | 433 | { |
ykuroda | 0:13a5d365ba16 | 434 | RealScalar t2d2 = numext::hypot(t,d); |
ykuroda | 0:13a5d365ba16 | 435 | rot1.c() = abs(t)/t2d2; |
ykuroda | 0:13a5d365ba16 | 436 | rot1.s() = d/t2d2; |
ykuroda | 0:13a5d365ba16 | 437 | if(t<RealScalar(0)) |
ykuroda | 0:13a5d365ba16 | 438 | rot1.s() = -rot1.s(); |
ykuroda | 0:13a5d365ba16 | 439 | } |
ykuroda | 0:13a5d365ba16 | 440 | m.applyOnTheLeft(0,1,rot1); |
ykuroda | 0:13a5d365ba16 | 441 | j_right->makeJacobi(m,0,1); |
ykuroda | 0:13a5d365ba16 | 442 | *j_left = rot1 * j_right->transpose(); |
ykuroda | 0:13a5d365ba16 | 443 | } |
ykuroda | 0:13a5d365ba16 | 444 | |
ykuroda | 0:13a5d365ba16 | 445 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 446 | |
ykuroda | 0:13a5d365ba16 | 447 | /** \ingroup SVD_Module |
ykuroda | 0:13a5d365ba16 | 448 | * |
ykuroda | 0:13a5d365ba16 | 449 | * |
ykuroda | 0:13a5d365ba16 | 450 | * \class JacobiSVD |
ykuroda | 0:13a5d365ba16 | 451 | * |
ykuroda | 0:13a5d365ba16 | 452 | * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix |
ykuroda | 0:13a5d365ba16 | 453 | * |
ykuroda | 0:13a5d365ba16 | 454 | * \param MatrixType the type of the matrix of which we are computing the SVD decomposition |
ykuroda | 0:13a5d365ba16 | 455 | * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally |
ykuroda | 0:13a5d365ba16 | 456 | * for the R-SVD step for non-square matrices. See discussion of possible values below. |
ykuroda | 0:13a5d365ba16 | 457 | * |
ykuroda | 0:13a5d365ba16 | 458 | * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product |
ykuroda | 0:13a5d365ba16 | 459 | * \f[ A = U S V^* \f] |
ykuroda | 0:13a5d365ba16 | 460 | * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; |
ykuroda | 0:13a5d365ba16 | 461 | * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left |
ykuroda | 0:13a5d365ba16 | 462 | * and right \em singular \em vectors of \a A respectively. |
ykuroda | 0:13a5d365ba16 | 463 | * |
ykuroda | 0:13a5d365ba16 | 464 | * Singular values are always sorted in decreasing order. |
ykuroda | 0:13a5d365ba16 | 465 | * |
ykuroda | 0:13a5d365ba16 | 466 | * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. |
ykuroda | 0:13a5d365ba16 | 467 | * |
ykuroda | 0:13a5d365ba16 | 468 | * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the |
ykuroda | 0:13a5d365ba16 | 469 | * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual |
ykuroda | 0:13a5d365ba16 | 470 | * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, |
ykuroda | 0:13a5d365ba16 | 471 | * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. |
ykuroda | 0:13a5d365ba16 | 472 | * |
ykuroda | 0:13a5d365ba16 | 473 | * Here's an example demonstrating basic usage: |
ykuroda | 0:13a5d365ba16 | 474 | * \include JacobiSVD_basic.cpp |
ykuroda | 0:13a5d365ba16 | 475 | * Output: \verbinclude JacobiSVD_basic.out |
ykuroda | 0:13a5d365ba16 | 476 | * |
ykuroda | 0:13a5d365ba16 | 477 | * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than |
ykuroda | 0:13a5d365ba16 | 478 | * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and |
ykuroda | 0:13a5d365ba16 | 479 | * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. |
ykuroda | 0:13a5d365ba16 | 480 | * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. |
ykuroda | 0:13a5d365ba16 | 481 | * |
ykuroda | 0:13a5d365ba16 | 482 | * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to |
ykuroda | 0:13a5d365ba16 | 483 | * terminate in finite (and reasonable) time. |
ykuroda | 0:13a5d365ba16 | 484 | * |
ykuroda | 0:13a5d365ba16 | 485 | * The possible values for QRPreconditioner are: |
ykuroda | 0:13a5d365ba16 | 486 | * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. |
ykuroda | 0:13a5d365ba16 | 487 | * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. |
ykuroda | 0:13a5d365ba16 | 488 | * Contrary to other QRs, it doesn't allow computing thin unitaries. |
ykuroda | 0:13a5d365ba16 | 489 | * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. |
ykuroda | 0:13a5d365ba16 | 490 | * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization |
ykuroda | 0:13a5d365ba16 | 491 | * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive |
ykuroda | 0:13a5d365ba16 | 492 | * process is more reliable than the optimized bidiagonal SVD iterations. |
ykuroda | 0:13a5d365ba16 | 493 | * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing |
ykuroda | 0:13a5d365ba16 | 494 | * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in |
ykuroda | 0:13a5d365ba16 | 495 | * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking |
ykuroda | 0:13a5d365ba16 | 496 | * if QR preconditioning is needed before applying it anyway. |
ykuroda | 0:13a5d365ba16 | 497 | * |
ykuroda | 0:13a5d365ba16 | 498 | * \sa MatrixBase::jacobiSvd() |
ykuroda | 0:13a5d365ba16 | 499 | */ |
ykuroda | 0:13a5d365ba16 | 500 | template<typename _MatrixType, int QRPreconditioner> class JacobiSVD |
ykuroda | 0:13a5d365ba16 | 501 | { |
ykuroda | 0:13a5d365ba16 | 502 | public: |
ykuroda | 0:13a5d365ba16 | 503 | |
ykuroda | 0:13a5d365ba16 | 504 | typedef _MatrixType MatrixType; |
ykuroda | 0:13a5d365ba16 | 505 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 506 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
ykuroda | 0:13a5d365ba16 | 507 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 508 | enum { |
ykuroda | 0:13a5d365ba16 | 509 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 510 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 511 | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), |
ykuroda | 0:13a5d365ba16 | 512 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 513 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 514 | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), |
ykuroda | 0:13a5d365ba16 | 515 | MatrixOptions = MatrixType::Options |
ykuroda | 0:13a5d365ba16 | 516 | }; |
ykuroda | 0:13a5d365ba16 | 517 | |
ykuroda | 0:13a5d365ba16 | 518 | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 519 | MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> |
ykuroda | 0:13a5d365ba16 | 520 | MatrixUType; |
ykuroda | 0:13a5d365ba16 | 521 | typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 522 | MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> |
ykuroda | 0:13a5d365ba16 | 523 | MatrixVType; |
ykuroda | 0:13a5d365ba16 | 524 | typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; |
ykuroda | 0:13a5d365ba16 | 525 | typedef typename internal::plain_row_type<MatrixType>::type RowType; |
ykuroda | 0:13a5d365ba16 | 526 | typedef typename internal::plain_col_type<MatrixType>::type ColType; |
ykuroda | 0:13a5d365ba16 | 527 | typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 528 | MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> |
ykuroda | 0:13a5d365ba16 | 529 | WorkMatrixType; |
ykuroda | 0:13a5d365ba16 | 530 | |
ykuroda | 0:13a5d365ba16 | 531 | /** \brief Default Constructor. |
ykuroda | 0:13a5d365ba16 | 532 | * |
ykuroda | 0:13a5d365ba16 | 533 | * The default constructor is useful in cases in which the user intends to |
ykuroda | 0:13a5d365ba16 | 534 | * perform decompositions via JacobiSVD::compute(const MatrixType&). |
ykuroda | 0:13a5d365ba16 | 535 | */ |
ykuroda | 0:13a5d365ba16 | 536 | JacobiSVD() |
ykuroda | 0:13a5d365ba16 | 537 | : m_isInitialized(false), |
ykuroda | 0:13a5d365ba16 | 538 | m_isAllocated(false), |
ykuroda | 0:13a5d365ba16 | 539 | m_usePrescribedThreshold(false), |
ykuroda | 0:13a5d365ba16 | 540 | m_computationOptions(0), |
ykuroda | 0:13a5d365ba16 | 541 | m_rows(-1), m_cols(-1), m_diagSize(0) |
ykuroda | 0:13a5d365ba16 | 542 | {} |
ykuroda | 0:13a5d365ba16 | 543 | |
ykuroda | 0:13a5d365ba16 | 544 | |
ykuroda | 0:13a5d365ba16 | 545 | /** \brief Default Constructor with memory preallocation |
ykuroda | 0:13a5d365ba16 | 546 | * |
ykuroda | 0:13a5d365ba16 | 547 | * Like the default constructor but with preallocation of the internal data |
ykuroda | 0:13a5d365ba16 | 548 | * according to the specified problem size. |
ykuroda | 0:13a5d365ba16 | 549 | * \sa JacobiSVD() |
ykuroda | 0:13a5d365ba16 | 550 | */ |
ykuroda | 0:13a5d365ba16 | 551 | JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) |
ykuroda | 0:13a5d365ba16 | 552 | : m_isInitialized(false), |
ykuroda | 0:13a5d365ba16 | 553 | m_isAllocated(false), |
ykuroda | 0:13a5d365ba16 | 554 | m_usePrescribedThreshold(false), |
ykuroda | 0:13a5d365ba16 | 555 | m_computationOptions(0), |
ykuroda | 0:13a5d365ba16 | 556 | m_rows(-1), m_cols(-1) |
ykuroda | 0:13a5d365ba16 | 557 | { |
ykuroda | 0:13a5d365ba16 | 558 | allocate(rows, cols, computationOptions); |
ykuroda | 0:13a5d365ba16 | 559 | } |
ykuroda | 0:13a5d365ba16 | 560 | |
ykuroda | 0:13a5d365ba16 | 561 | /** \brief Constructor performing the decomposition of given matrix. |
ykuroda | 0:13a5d365ba16 | 562 | * |
ykuroda | 0:13a5d365ba16 | 563 | * \param matrix the matrix to decompose |
ykuroda | 0:13a5d365ba16 | 564 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
ykuroda | 0:13a5d365ba16 | 565 | * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, |
ykuroda | 0:13a5d365ba16 | 566 | * #ComputeFullV, #ComputeThinV. |
ykuroda | 0:13a5d365ba16 | 567 | * |
ykuroda | 0:13a5d365ba16 | 568 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
ykuroda | 0:13a5d365ba16 | 569 | * available with the (non-default) FullPivHouseholderQR preconditioner. |
ykuroda | 0:13a5d365ba16 | 570 | */ |
ykuroda | 0:13a5d365ba16 | 571 | JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) |
ykuroda | 0:13a5d365ba16 | 572 | : m_isInitialized(false), |
ykuroda | 0:13a5d365ba16 | 573 | m_isAllocated(false), |
ykuroda | 0:13a5d365ba16 | 574 | m_usePrescribedThreshold(false), |
ykuroda | 0:13a5d365ba16 | 575 | m_computationOptions(0), |
ykuroda | 0:13a5d365ba16 | 576 | m_rows(-1), m_cols(-1) |
ykuroda | 0:13a5d365ba16 | 577 | { |
ykuroda | 0:13a5d365ba16 | 578 | compute(matrix, computationOptions); |
ykuroda | 0:13a5d365ba16 | 579 | } |
ykuroda | 0:13a5d365ba16 | 580 | |
ykuroda | 0:13a5d365ba16 | 581 | /** \brief Method performing the decomposition of given matrix using custom options. |
ykuroda | 0:13a5d365ba16 | 582 | * |
ykuroda | 0:13a5d365ba16 | 583 | * \param matrix the matrix to decompose |
ykuroda | 0:13a5d365ba16 | 584 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
ykuroda | 0:13a5d365ba16 | 585 | * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, |
ykuroda | 0:13a5d365ba16 | 586 | * #ComputeFullV, #ComputeThinV. |
ykuroda | 0:13a5d365ba16 | 587 | * |
ykuroda | 0:13a5d365ba16 | 588 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
ykuroda | 0:13a5d365ba16 | 589 | * available with the (non-default) FullPivHouseholderQR preconditioner. |
ykuroda | 0:13a5d365ba16 | 590 | */ |
ykuroda | 0:13a5d365ba16 | 591 | JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions); |
ykuroda | 0:13a5d365ba16 | 592 | |
ykuroda | 0:13a5d365ba16 | 593 | /** \brief Method performing the decomposition of given matrix using current options. |
ykuroda | 0:13a5d365ba16 | 594 | * |
ykuroda | 0:13a5d365ba16 | 595 | * \param matrix the matrix to decompose |
ykuroda | 0:13a5d365ba16 | 596 | * |
ykuroda | 0:13a5d365ba16 | 597 | * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). |
ykuroda | 0:13a5d365ba16 | 598 | */ |
ykuroda | 0:13a5d365ba16 | 599 | JacobiSVD& compute(const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 600 | { |
ykuroda | 0:13a5d365ba16 | 601 | return compute(matrix, m_computationOptions); |
ykuroda | 0:13a5d365ba16 | 602 | } |
ykuroda | 0:13a5d365ba16 | 603 | |
ykuroda | 0:13a5d365ba16 | 604 | /** \returns the \a U matrix. |
ykuroda | 0:13a5d365ba16 | 605 | * |
ykuroda | 0:13a5d365ba16 | 606 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
ykuroda | 0:13a5d365ba16 | 607 | * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU. |
ykuroda | 0:13a5d365ba16 | 608 | * |
ykuroda | 0:13a5d365ba16 | 609 | * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. |
ykuroda | 0:13a5d365ba16 | 610 | * |
ykuroda | 0:13a5d365ba16 | 611 | * This method asserts that you asked for \a U to be computed. |
ykuroda | 0:13a5d365ba16 | 612 | */ |
ykuroda | 0:13a5d365ba16 | 613 | const MatrixUType& matrixU() const |
ykuroda | 0:13a5d365ba16 | 614 | { |
ykuroda | 0:13a5d365ba16 | 615 | eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); |
ykuroda | 0:13a5d365ba16 | 616 | eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?"); |
ykuroda | 0:13a5d365ba16 | 617 | return m_matrixU; |
ykuroda | 0:13a5d365ba16 | 618 | } |
ykuroda | 0:13a5d365ba16 | 619 | |
ykuroda | 0:13a5d365ba16 | 620 | /** \returns the \a V matrix. |
ykuroda | 0:13a5d365ba16 | 621 | * |
ykuroda | 0:13a5d365ba16 | 622 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
ykuroda | 0:13a5d365ba16 | 623 | * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV. |
ykuroda | 0:13a5d365ba16 | 624 | * |
ykuroda | 0:13a5d365ba16 | 625 | * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. |
ykuroda | 0:13a5d365ba16 | 626 | * |
ykuroda | 0:13a5d365ba16 | 627 | * This method asserts that you asked for \a V to be computed. |
ykuroda | 0:13a5d365ba16 | 628 | */ |
ykuroda | 0:13a5d365ba16 | 629 | const MatrixVType& matrixV() const |
ykuroda | 0:13a5d365ba16 | 630 | { |
ykuroda | 0:13a5d365ba16 | 631 | eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); |
ykuroda | 0:13a5d365ba16 | 632 | eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?"); |
ykuroda | 0:13a5d365ba16 | 633 | return m_matrixV; |
ykuroda | 0:13a5d365ba16 | 634 | } |
ykuroda | 0:13a5d365ba16 | 635 | |
ykuroda | 0:13a5d365ba16 | 636 | /** \returns the vector of singular values. |
ykuroda | 0:13a5d365ba16 | 637 | * |
ykuroda | 0:13a5d365ba16 | 638 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the |
ykuroda | 0:13a5d365ba16 | 639 | * returned vector has size \a m. Singular values are always sorted in decreasing order. |
ykuroda | 0:13a5d365ba16 | 640 | */ |
ykuroda | 0:13a5d365ba16 | 641 | const SingularValuesType& singularValues() const |
ykuroda | 0:13a5d365ba16 | 642 | { |
ykuroda | 0:13a5d365ba16 | 643 | eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); |
ykuroda | 0:13a5d365ba16 | 644 | return m_singularValues; |
ykuroda | 0:13a5d365ba16 | 645 | } |
ykuroda | 0:13a5d365ba16 | 646 | |
ykuroda | 0:13a5d365ba16 | 647 | /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ |
ykuroda | 0:13a5d365ba16 | 648 | inline bool computeU() const { return m_computeFullU || m_computeThinU; } |
ykuroda | 0:13a5d365ba16 | 649 | /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ |
ykuroda | 0:13a5d365ba16 | 650 | inline bool computeV() const { return m_computeFullV || m_computeThinV; } |
ykuroda | 0:13a5d365ba16 | 651 | |
ykuroda | 0:13a5d365ba16 | 652 | /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. |
ykuroda | 0:13a5d365ba16 | 653 | * |
ykuroda | 0:13a5d365ba16 | 654 | * \param b the right-hand-side of the equation to solve. |
ykuroda | 0:13a5d365ba16 | 655 | * |
ykuroda | 0:13a5d365ba16 | 656 | * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. |
ykuroda | 0:13a5d365ba16 | 657 | * |
ykuroda | 0:13a5d365ba16 | 658 | * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. |
ykuroda | 0:13a5d365ba16 | 659 | * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. |
ykuroda | 0:13a5d365ba16 | 660 | */ |
ykuroda | 0:13a5d365ba16 | 661 | template<typename Rhs> |
ykuroda | 0:13a5d365ba16 | 662 | inline const internal::solve_retval<JacobiSVD, Rhs> |
ykuroda | 0:13a5d365ba16 | 663 | solve(const MatrixBase<Rhs>& b) const |
ykuroda | 0:13a5d365ba16 | 664 | { |
ykuroda | 0:13a5d365ba16 | 665 | eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); |
ykuroda | 0:13a5d365ba16 | 666 | eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); |
ykuroda | 0:13a5d365ba16 | 667 | return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived()); |
ykuroda | 0:13a5d365ba16 | 668 | } |
ykuroda | 0:13a5d365ba16 | 669 | |
ykuroda | 0:13a5d365ba16 | 670 | /** \returns the number of singular values that are not exactly 0 */ |
ykuroda | 0:13a5d365ba16 | 671 | Index nonzeroSingularValues() const |
ykuroda | 0:13a5d365ba16 | 672 | { |
ykuroda | 0:13a5d365ba16 | 673 | eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); |
ykuroda | 0:13a5d365ba16 | 674 | return m_nonzeroSingularValues; |
ykuroda | 0:13a5d365ba16 | 675 | } |
ykuroda | 0:13a5d365ba16 | 676 | |
ykuroda | 0:13a5d365ba16 | 677 | /** \returns the rank of the matrix of which \c *this is the SVD. |
ykuroda | 0:13a5d365ba16 | 678 | * |
ykuroda | 0:13a5d365ba16 | 679 | * \note This method has to determine which singular values should be considered nonzero. |
ykuroda | 0:13a5d365ba16 | 680 | * For that, it uses the threshold value that you can control by calling |
ykuroda | 0:13a5d365ba16 | 681 | * setThreshold(const RealScalar&). |
ykuroda | 0:13a5d365ba16 | 682 | */ |
ykuroda | 0:13a5d365ba16 | 683 | inline Index rank() const |
ykuroda | 0:13a5d365ba16 | 684 | { |
ykuroda | 0:13a5d365ba16 | 685 | using std::abs; |
ykuroda | 0:13a5d365ba16 | 686 | eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); |
ykuroda | 0:13a5d365ba16 | 687 | if(m_singularValues.size()==0) return 0; |
ykuroda | 0:13a5d365ba16 | 688 | RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold(); |
ykuroda | 0:13a5d365ba16 | 689 | Index i = m_nonzeroSingularValues-1; |
ykuroda | 0:13a5d365ba16 | 690 | while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; |
ykuroda | 0:13a5d365ba16 | 691 | return i+1; |
ykuroda | 0:13a5d365ba16 | 692 | } |
ykuroda | 0:13a5d365ba16 | 693 | |
ykuroda | 0:13a5d365ba16 | 694 | /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), |
ykuroda | 0:13a5d365ba16 | 695 | * which need to determine when singular values are to be considered nonzero. |
ykuroda | 0:13a5d365ba16 | 696 | * This is not used for the SVD decomposition itself. |
ykuroda | 0:13a5d365ba16 | 697 | * |
ykuroda | 0:13a5d365ba16 | 698 | * When it needs to get the threshold value, Eigen calls threshold(). |
ykuroda | 0:13a5d365ba16 | 699 | * The default is \c NumTraits<Scalar>::epsilon() |
ykuroda | 0:13a5d365ba16 | 700 | * |
ykuroda | 0:13a5d365ba16 | 701 | * \param threshold The new value to use as the threshold. |
ykuroda | 0:13a5d365ba16 | 702 | * |
ykuroda | 0:13a5d365ba16 | 703 | * A singular value will be considered nonzero if its value is strictly greater than |
ykuroda | 0:13a5d365ba16 | 704 | * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. |
ykuroda | 0:13a5d365ba16 | 705 | * |
ykuroda | 0:13a5d365ba16 | 706 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
ykuroda | 0:13a5d365ba16 | 707 | */ |
ykuroda | 0:13a5d365ba16 | 708 | JacobiSVD& setThreshold(const RealScalar& threshold) |
ykuroda | 0:13a5d365ba16 | 709 | { |
ykuroda | 0:13a5d365ba16 | 710 | m_usePrescribedThreshold = true; |
ykuroda | 0:13a5d365ba16 | 711 | m_prescribedThreshold = threshold; |
ykuroda | 0:13a5d365ba16 | 712 | return *this; |
ykuroda | 0:13a5d365ba16 | 713 | } |
ykuroda | 0:13a5d365ba16 | 714 | |
ykuroda | 0:13a5d365ba16 | 715 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
ykuroda | 0:13a5d365ba16 | 716 | * determining the threshold. |
ykuroda | 0:13a5d365ba16 | 717 | * |
ykuroda | 0:13a5d365ba16 | 718 | * You should pass the special object Eigen::Default as parameter here. |
ykuroda | 0:13a5d365ba16 | 719 | * \code svd.setThreshold(Eigen::Default); \endcode |
ykuroda | 0:13a5d365ba16 | 720 | * |
ykuroda | 0:13a5d365ba16 | 721 | * See the documentation of setThreshold(const RealScalar&). |
ykuroda | 0:13a5d365ba16 | 722 | */ |
ykuroda | 0:13a5d365ba16 | 723 | JacobiSVD& setThreshold(Default_t) |
ykuroda | 0:13a5d365ba16 | 724 | { |
ykuroda | 0:13a5d365ba16 | 725 | m_usePrescribedThreshold = false; |
ykuroda | 0:13a5d365ba16 | 726 | return *this; |
ykuroda | 0:13a5d365ba16 | 727 | } |
ykuroda | 0:13a5d365ba16 | 728 | |
ykuroda | 0:13a5d365ba16 | 729 | /** Returns the threshold that will be used by certain methods such as rank(). |
ykuroda | 0:13a5d365ba16 | 730 | * |
ykuroda | 0:13a5d365ba16 | 731 | * See the documentation of setThreshold(const RealScalar&). |
ykuroda | 0:13a5d365ba16 | 732 | */ |
ykuroda | 0:13a5d365ba16 | 733 | RealScalar threshold() const |
ykuroda | 0:13a5d365ba16 | 734 | { |
ykuroda | 0:13a5d365ba16 | 735 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
ykuroda | 0:13a5d365ba16 | 736 | return m_usePrescribedThreshold ? m_prescribedThreshold |
ykuroda | 0:13a5d365ba16 | 737 | : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon(); |
ykuroda | 0:13a5d365ba16 | 738 | } |
ykuroda | 0:13a5d365ba16 | 739 | |
ykuroda | 0:13a5d365ba16 | 740 | inline Index rows() const { return m_rows; } |
ykuroda | 0:13a5d365ba16 | 741 | inline Index cols() const { return m_cols; } |
ykuroda | 0:13a5d365ba16 | 742 | |
ykuroda | 0:13a5d365ba16 | 743 | private: |
ykuroda | 0:13a5d365ba16 | 744 | void allocate(Index rows, Index cols, unsigned int computationOptions); |
ykuroda | 0:13a5d365ba16 | 745 | |
ykuroda | 0:13a5d365ba16 | 746 | static void check_template_parameters() |
ykuroda | 0:13a5d365ba16 | 747 | { |
ykuroda | 0:13a5d365ba16 | 748 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
ykuroda | 0:13a5d365ba16 | 749 | } |
ykuroda | 0:13a5d365ba16 | 750 | |
ykuroda | 0:13a5d365ba16 | 751 | protected: |
ykuroda | 0:13a5d365ba16 | 752 | MatrixUType m_matrixU; |
ykuroda | 0:13a5d365ba16 | 753 | MatrixVType m_matrixV; |
ykuroda | 0:13a5d365ba16 | 754 | SingularValuesType m_singularValues; |
ykuroda | 0:13a5d365ba16 | 755 | WorkMatrixType m_workMatrix; |
ykuroda | 0:13a5d365ba16 | 756 | bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; |
ykuroda | 0:13a5d365ba16 | 757 | bool m_computeFullU, m_computeThinU; |
ykuroda | 0:13a5d365ba16 | 758 | bool m_computeFullV, m_computeThinV; |
ykuroda | 0:13a5d365ba16 | 759 | unsigned int m_computationOptions; |
ykuroda | 0:13a5d365ba16 | 760 | Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; |
ykuroda | 0:13a5d365ba16 | 761 | RealScalar m_prescribedThreshold; |
ykuroda | 0:13a5d365ba16 | 762 | |
ykuroda | 0:13a5d365ba16 | 763 | template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex> |
ykuroda | 0:13a5d365ba16 | 764 | friend struct internal::svd_precondition_2x2_block_to_be_real; |
ykuroda | 0:13a5d365ba16 | 765 | template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything> |
ykuroda | 0:13a5d365ba16 | 766 | friend struct internal::qr_preconditioner_impl; |
ykuroda | 0:13a5d365ba16 | 767 | |
ykuroda | 0:13a5d365ba16 | 768 | internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols; |
ykuroda | 0:13a5d365ba16 | 769 | internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows; |
ykuroda | 0:13a5d365ba16 | 770 | MatrixType m_scaledMatrix; |
ykuroda | 0:13a5d365ba16 | 771 | }; |
ykuroda | 0:13a5d365ba16 | 772 | |
ykuroda | 0:13a5d365ba16 | 773 | template<typename MatrixType, int QRPreconditioner> |
ykuroda | 0:13a5d365ba16 | 774 | void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions) |
ykuroda | 0:13a5d365ba16 | 775 | { |
ykuroda | 0:13a5d365ba16 | 776 | eigen_assert(rows >= 0 && cols >= 0); |
ykuroda | 0:13a5d365ba16 | 777 | |
ykuroda | 0:13a5d365ba16 | 778 | if (m_isAllocated && |
ykuroda | 0:13a5d365ba16 | 779 | rows == m_rows && |
ykuroda | 0:13a5d365ba16 | 780 | cols == m_cols && |
ykuroda | 0:13a5d365ba16 | 781 | computationOptions == m_computationOptions) |
ykuroda | 0:13a5d365ba16 | 782 | { |
ykuroda | 0:13a5d365ba16 | 783 | return; |
ykuroda | 0:13a5d365ba16 | 784 | } |
ykuroda | 0:13a5d365ba16 | 785 | |
ykuroda | 0:13a5d365ba16 | 786 | m_rows = rows; |
ykuroda | 0:13a5d365ba16 | 787 | m_cols = cols; |
ykuroda | 0:13a5d365ba16 | 788 | m_isInitialized = false; |
ykuroda | 0:13a5d365ba16 | 789 | m_isAllocated = true; |
ykuroda | 0:13a5d365ba16 | 790 | m_computationOptions = computationOptions; |
ykuroda | 0:13a5d365ba16 | 791 | m_computeFullU = (computationOptions & ComputeFullU) != 0; |
ykuroda | 0:13a5d365ba16 | 792 | m_computeThinU = (computationOptions & ComputeThinU) != 0; |
ykuroda | 0:13a5d365ba16 | 793 | m_computeFullV = (computationOptions & ComputeFullV) != 0; |
ykuroda | 0:13a5d365ba16 | 794 | m_computeThinV = (computationOptions & ComputeThinV) != 0; |
ykuroda | 0:13a5d365ba16 | 795 | eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U"); |
ykuroda | 0:13a5d365ba16 | 796 | eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V"); |
ykuroda | 0:13a5d365ba16 | 797 | eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && |
ykuroda | 0:13a5d365ba16 | 798 | "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns."); |
ykuroda | 0:13a5d365ba16 | 799 | if (QRPreconditioner == FullPivHouseholderQRPreconditioner) |
ykuroda | 0:13a5d365ba16 | 800 | { |
ykuroda | 0:13a5d365ba16 | 801 | eigen_assert(!(m_computeThinU || m_computeThinV) && |
ykuroda | 0:13a5d365ba16 | 802 | "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " |
ykuroda | 0:13a5d365ba16 | 803 | "Use the ColPivHouseholderQR preconditioner instead."); |
ykuroda | 0:13a5d365ba16 | 804 | } |
ykuroda | 0:13a5d365ba16 | 805 | m_diagSize = (std::min)(m_rows, m_cols); |
ykuroda | 0:13a5d365ba16 | 806 | m_singularValues.resize(m_diagSize); |
ykuroda | 0:13a5d365ba16 | 807 | if(RowsAtCompileTime==Dynamic) |
ykuroda | 0:13a5d365ba16 | 808 | m_matrixU.resize(m_rows, m_computeFullU ? m_rows |
ykuroda | 0:13a5d365ba16 | 809 | : m_computeThinU ? m_diagSize |
ykuroda | 0:13a5d365ba16 | 810 | : 0); |
ykuroda | 0:13a5d365ba16 | 811 | if(ColsAtCompileTime==Dynamic) |
ykuroda | 0:13a5d365ba16 | 812 | m_matrixV.resize(m_cols, m_computeFullV ? m_cols |
ykuroda | 0:13a5d365ba16 | 813 | : m_computeThinV ? m_diagSize |
ykuroda | 0:13a5d365ba16 | 814 | : 0); |
ykuroda | 0:13a5d365ba16 | 815 | m_workMatrix.resize(m_diagSize, m_diagSize); |
ykuroda | 0:13a5d365ba16 | 816 | |
ykuroda | 0:13a5d365ba16 | 817 | if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this); |
ykuroda | 0:13a5d365ba16 | 818 | if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this); |
ykuroda | 0:13a5d365ba16 | 819 | if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols); |
ykuroda | 0:13a5d365ba16 | 820 | } |
ykuroda | 0:13a5d365ba16 | 821 | |
ykuroda | 0:13a5d365ba16 | 822 | template<typename MatrixType, int QRPreconditioner> |
ykuroda | 0:13a5d365ba16 | 823 | JacobiSVD<MatrixType, QRPreconditioner>& |
ykuroda | 0:13a5d365ba16 | 824 | JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) |
ykuroda | 0:13a5d365ba16 | 825 | { |
ykuroda | 0:13a5d365ba16 | 826 | check_template_parameters(); |
ykuroda | 0:13a5d365ba16 | 827 | |
ykuroda | 0:13a5d365ba16 | 828 | using std::abs; |
ykuroda | 0:13a5d365ba16 | 829 | allocate(matrix.rows(), matrix.cols(), computationOptions); |
ykuroda | 0:13a5d365ba16 | 830 | |
ykuroda | 0:13a5d365ba16 | 831 | // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, |
ykuroda | 0:13a5d365ba16 | 832 | // only worsening the precision of U and V as we accumulate more rotations |
ykuroda | 0:13a5d365ba16 | 833 | const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); |
ykuroda | 0:13a5d365ba16 | 834 | |
ykuroda | 0:13a5d365ba16 | 835 | // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) |
ykuroda | 0:13a5d365ba16 | 836 | const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min(); |
ykuroda | 0:13a5d365ba16 | 837 | |
ykuroda | 0:13a5d365ba16 | 838 | // Scaling factor to reduce over/under-flows |
ykuroda | 0:13a5d365ba16 | 839 | RealScalar scale = matrix.cwiseAbs().maxCoeff(); |
ykuroda | 0:13a5d365ba16 | 840 | if(scale==RealScalar(0)) scale = RealScalar(1); |
ykuroda | 0:13a5d365ba16 | 841 | |
ykuroda | 0:13a5d365ba16 | 842 | /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ |
ykuroda | 0:13a5d365ba16 | 843 | |
ykuroda | 0:13a5d365ba16 | 844 | if(m_rows!=m_cols) |
ykuroda | 0:13a5d365ba16 | 845 | { |
ykuroda | 0:13a5d365ba16 | 846 | m_scaledMatrix = matrix / scale; |
ykuroda | 0:13a5d365ba16 | 847 | m_qr_precond_morecols.run(*this, m_scaledMatrix); |
ykuroda | 0:13a5d365ba16 | 848 | m_qr_precond_morerows.run(*this, m_scaledMatrix); |
ykuroda | 0:13a5d365ba16 | 849 | } |
ykuroda | 0:13a5d365ba16 | 850 | else |
ykuroda | 0:13a5d365ba16 | 851 | { |
ykuroda | 0:13a5d365ba16 | 852 | m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale; |
ykuroda | 0:13a5d365ba16 | 853 | if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows); |
ykuroda | 0:13a5d365ba16 | 854 | if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize); |
ykuroda | 0:13a5d365ba16 | 855 | if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols); |
ykuroda | 0:13a5d365ba16 | 856 | if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize); |
ykuroda | 0:13a5d365ba16 | 857 | } |
ykuroda | 0:13a5d365ba16 | 858 | |
ykuroda | 0:13a5d365ba16 | 859 | /*** step 2. The main Jacobi SVD iteration. ***/ |
ykuroda | 0:13a5d365ba16 | 860 | |
ykuroda | 0:13a5d365ba16 | 861 | bool finished = false; |
ykuroda | 0:13a5d365ba16 | 862 | while(!finished) |
ykuroda | 0:13a5d365ba16 | 863 | { |
ykuroda | 0:13a5d365ba16 | 864 | finished = true; |
ykuroda | 0:13a5d365ba16 | 865 | |
ykuroda | 0:13a5d365ba16 | 866 | // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix |
ykuroda | 0:13a5d365ba16 | 867 | |
ykuroda | 0:13a5d365ba16 | 868 | for(Index p = 1; p < m_diagSize; ++p) |
ykuroda | 0:13a5d365ba16 | 869 | { |
ykuroda | 0:13a5d365ba16 | 870 | for(Index q = 0; q < p; ++q) |
ykuroda | 0:13a5d365ba16 | 871 | { |
ykuroda | 0:13a5d365ba16 | 872 | // if this 2x2 sub-matrix is not diagonal already... |
ykuroda | 0:13a5d365ba16 | 873 | // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't |
ykuroda | 0:13a5d365ba16 | 874 | // keep us iterating forever. Similarly, small denormal numbers are considered zero. |
ykuroda | 0:13a5d365ba16 | 875 | using std::max; |
ykuroda | 0:13a5d365ba16 | 876 | RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)), |
ykuroda | 0:13a5d365ba16 | 877 | abs(m_workMatrix.coeff(q,q)))); |
ykuroda | 0:13a5d365ba16 | 878 | // We compare both values to threshold instead of calling max to be robust to NaN (See bug 791) |
ykuroda | 0:13a5d365ba16 | 879 | if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold) |
ykuroda | 0:13a5d365ba16 | 880 | { |
ykuroda | 0:13a5d365ba16 | 881 | finished = false; |
ykuroda | 0:13a5d365ba16 | 882 | |
ykuroda | 0:13a5d365ba16 | 883 | // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal |
ykuroda | 0:13a5d365ba16 | 884 | internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q); |
ykuroda | 0:13a5d365ba16 | 885 | JacobiRotation<RealScalar> j_left, j_right; |
ykuroda | 0:13a5d365ba16 | 886 | internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); |
ykuroda | 0:13a5d365ba16 | 887 | |
ykuroda | 0:13a5d365ba16 | 888 | // accumulate resulting Jacobi rotations |
ykuroda | 0:13a5d365ba16 | 889 | m_workMatrix.applyOnTheLeft(p,q,j_left); |
ykuroda | 0:13a5d365ba16 | 890 | if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose()); |
ykuroda | 0:13a5d365ba16 | 891 | |
ykuroda | 0:13a5d365ba16 | 892 | m_workMatrix.applyOnTheRight(p,q,j_right); |
ykuroda | 0:13a5d365ba16 | 893 | if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right); |
ykuroda | 0:13a5d365ba16 | 894 | } |
ykuroda | 0:13a5d365ba16 | 895 | } |
ykuroda | 0:13a5d365ba16 | 896 | } |
ykuroda | 0:13a5d365ba16 | 897 | } |
ykuroda | 0:13a5d365ba16 | 898 | |
ykuroda | 0:13a5d365ba16 | 899 | /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ |
ykuroda | 0:13a5d365ba16 | 900 | |
ykuroda | 0:13a5d365ba16 | 901 | for(Index i = 0; i < m_diagSize; ++i) |
ykuroda | 0:13a5d365ba16 | 902 | { |
ykuroda | 0:13a5d365ba16 | 903 | RealScalar a = abs(m_workMatrix.coeff(i,i)); |
ykuroda | 0:13a5d365ba16 | 904 | m_singularValues.coeffRef(i) = a; |
ykuroda | 0:13a5d365ba16 | 905 | if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; |
ykuroda | 0:13a5d365ba16 | 906 | } |
ykuroda | 0:13a5d365ba16 | 907 | |
ykuroda | 0:13a5d365ba16 | 908 | /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ |
ykuroda | 0:13a5d365ba16 | 909 | |
ykuroda | 0:13a5d365ba16 | 910 | m_nonzeroSingularValues = m_diagSize; |
ykuroda | 0:13a5d365ba16 | 911 | for(Index i = 0; i < m_diagSize; i++) |
ykuroda | 0:13a5d365ba16 | 912 | { |
ykuroda | 0:13a5d365ba16 | 913 | Index pos; |
ykuroda | 0:13a5d365ba16 | 914 | RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos); |
ykuroda | 0:13a5d365ba16 | 915 | if(maxRemainingSingularValue == RealScalar(0)) |
ykuroda | 0:13a5d365ba16 | 916 | { |
ykuroda | 0:13a5d365ba16 | 917 | m_nonzeroSingularValues = i; |
ykuroda | 0:13a5d365ba16 | 918 | break; |
ykuroda | 0:13a5d365ba16 | 919 | } |
ykuroda | 0:13a5d365ba16 | 920 | if(pos) |
ykuroda | 0:13a5d365ba16 | 921 | { |
ykuroda | 0:13a5d365ba16 | 922 | pos += i; |
ykuroda | 0:13a5d365ba16 | 923 | std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos)); |
ykuroda | 0:13a5d365ba16 | 924 | if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i)); |
ykuroda | 0:13a5d365ba16 | 925 | if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i)); |
ykuroda | 0:13a5d365ba16 | 926 | } |
ykuroda | 0:13a5d365ba16 | 927 | } |
ykuroda | 0:13a5d365ba16 | 928 | |
ykuroda | 0:13a5d365ba16 | 929 | m_singularValues *= scale; |
ykuroda | 0:13a5d365ba16 | 930 | |
ykuroda | 0:13a5d365ba16 | 931 | m_isInitialized = true; |
ykuroda | 0:13a5d365ba16 | 932 | return *this; |
ykuroda | 0:13a5d365ba16 | 933 | } |
ykuroda | 0:13a5d365ba16 | 934 | |
ykuroda | 0:13a5d365ba16 | 935 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 936 | template<typename _MatrixType, int QRPreconditioner, typename Rhs> |
ykuroda | 0:13a5d365ba16 | 937 | struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> |
ykuroda | 0:13a5d365ba16 | 938 | : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> |
ykuroda | 0:13a5d365ba16 | 939 | { |
ykuroda | 0:13a5d365ba16 | 940 | typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType; |
ykuroda | 0:13a5d365ba16 | 941 | EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs) |
ykuroda | 0:13a5d365ba16 | 942 | |
ykuroda | 0:13a5d365ba16 | 943 | template<typename Dest> void evalTo(Dest& dst) const |
ykuroda | 0:13a5d365ba16 | 944 | { |
ykuroda | 0:13a5d365ba16 | 945 | eigen_assert(rhs().rows() == dec().rows()); |
ykuroda | 0:13a5d365ba16 | 946 | |
ykuroda | 0:13a5d365ba16 | 947 | // A = U S V^* |
ykuroda | 0:13a5d365ba16 | 948 | // So A^{-1} = V S^{-1} U^* |
ykuroda | 0:13a5d365ba16 | 949 | |
ykuroda | 0:13a5d365ba16 | 950 | Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp; |
ykuroda | 0:13a5d365ba16 | 951 | Index rank = dec().rank(); |
ykuroda | 0:13a5d365ba16 | 952 | |
ykuroda | 0:13a5d365ba16 | 953 | tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs(); |
ykuroda | 0:13a5d365ba16 | 954 | tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp; |
ykuroda | 0:13a5d365ba16 | 955 | dst = dec().matrixV().leftCols(rank) * tmp; |
ykuroda | 0:13a5d365ba16 | 956 | } |
ykuroda | 0:13a5d365ba16 | 957 | }; |
ykuroda | 0:13a5d365ba16 | 958 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 959 | |
ykuroda | 0:13a5d365ba16 | 960 | /** \svd_module |
ykuroda | 0:13a5d365ba16 | 961 | * |
ykuroda | 0:13a5d365ba16 | 962 | * \return the singular value decomposition of \c *this computed by two-sided |
ykuroda | 0:13a5d365ba16 | 963 | * Jacobi transformations. |
ykuroda | 0:13a5d365ba16 | 964 | * |
ykuroda | 0:13a5d365ba16 | 965 | * \sa class JacobiSVD |
ykuroda | 0:13a5d365ba16 | 966 | */ |
ykuroda | 0:13a5d365ba16 | 967 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 968 | JacobiSVD<typename MatrixBase<Derived>::PlainObject> |
ykuroda | 0:13a5d365ba16 | 969 | MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const |
ykuroda | 0:13a5d365ba16 | 970 | { |
ykuroda | 0:13a5d365ba16 | 971 | return JacobiSVD<PlainObject>(*this, computationOptions); |
ykuroda | 0:13a5d365ba16 | 972 | } |
ykuroda | 0:13a5d365ba16 | 973 | |
ykuroda | 0:13a5d365ba16 | 974 | } // end namespace Eigen |
ykuroda | 0:13a5d365ba16 | 975 | |
ykuroda | 0:13a5d365ba16 | 976 | #endif // EIGEN_JACOBISVD_H |