Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/Core/Dot.h@1:3b8049da21b8, 2019-09-24 (annotated)
- Committer:
- jsoh91
- Date:
- Tue Sep 24 00:18:23 2019 +0000
- Revision:
- 1:3b8049da21b8
- Parent:
- 0:13a5d365ba16
ignore and revise some of error parts
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
ykuroda | 0:13a5d365ba16 | 1 | // This file is part of Eigen, a lightweight C++ template library |
ykuroda | 0:13a5d365ba16 | 2 | // for linear algebra. |
ykuroda | 0:13a5d365ba16 | 3 | // |
ykuroda | 0:13a5d365ba16 | 4 | // Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
ykuroda | 0:13a5d365ba16 | 5 | // |
ykuroda | 0:13a5d365ba16 | 6 | // This Source Code Form is subject to the terms of the Mozilla |
ykuroda | 0:13a5d365ba16 | 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
ykuroda | 0:13a5d365ba16 | 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
ykuroda | 0:13a5d365ba16 | 9 | |
ykuroda | 0:13a5d365ba16 | 10 | #ifndef EIGEN_DOT_H |
ykuroda | 0:13a5d365ba16 | 11 | #define EIGEN_DOT_H |
ykuroda | 0:13a5d365ba16 | 12 | |
ykuroda | 0:13a5d365ba16 | 13 | namespace Eigen { |
ykuroda | 0:13a5d365ba16 | 14 | |
ykuroda | 0:13a5d365ba16 | 15 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 16 | |
ykuroda | 0:13a5d365ba16 | 17 | // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot |
ykuroda | 0:13a5d365ba16 | 18 | // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE |
ykuroda | 0:13a5d365ba16 | 19 | // looking at the static assertions. Thus this is a trick to get better compile errors. |
ykuroda | 0:13a5d365ba16 | 20 | template<typename T, typename U, |
ykuroda | 0:13a5d365ba16 | 21 | // the NeedToTranspose condition here is taken straight from Assign.h |
ykuroda | 0:13a5d365ba16 | 22 | bool NeedToTranspose = T::IsVectorAtCompileTime |
ykuroda | 0:13a5d365ba16 | 23 | && U::IsVectorAtCompileTime |
ykuroda | 0:13a5d365ba16 | 24 | && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) |
ykuroda | 0:13a5d365ba16 | 25 | | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&". |
ykuroda | 0:13a5d365ba16 | 26 | // revert to || as soon as not needed anymore. |
ykuroda | 0:13a5d365ba16 | 27 | (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1)) |
ykuroda | 0:13a5d365ba16 | 28 | > |
ykuroda | 0:13a5d365ba16 | 29 | struct dot_nocheck |
ykuroda | 0:13a5d365ba16 | 30 | { |
ykuroda | 0:13a5d365ba16 | 31 | typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar; |
ykuroda | 0:13a5d365ba16 | 32 | static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) |
ykuroda | 0:13a5d365ba16 | 33 | { |
ykuroda | 0:13a5d365ba16 | 34 | return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum(); |
ykuroda | 0:13a5d365ba16 | 35 | } |
ykuroda | 0:13a5d365ba16 | 36 | }; |
ykuroda | 0:13a5d365ba16 | 37 | |
ykuroda | 0:13a5d365ba16 | 38 | template<typename T, typename U> |
ykuroda | 0:13a5d365ba16 | 39 | struct dot_nocheck<T, U, true> |
ykuroda | 0:13a5d365ba16 | 40 | { |
ykuroda | 0:13a5d365ba16 | 41 | typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar; |
ykuroda | 0:13a5d365ba16 | 42 | static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) |
ykuroda | 0:13a5d365ba16 | 43 | { |
ykuroda | 0:13a5d365ba16 | 44 | return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum(); |
ykuroda | 0:13a5d365ba16 | 45 | } |
ykuroda | 0:13a5d365ba16 | 46 | }; |
ykuroda | 0:13a5d365ba16 | 47 | |
ykuroda | 0:13a5d365ba16 | 48 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 49 | |
ykuroda | 0:13a5d365ba16 | 50 | /** \returns the dot product of *this with other. |
ykuroda | 0:13a5d365ba16 | 51 | * |
ykuroda | 0:13a5d365ba16 | 52 | * \only_for_vectors |
ykuroda | 0:13a5d365ba16 | 53 | * |
ykuroda | 0:13a5d365ba16 | 54 | * \note If the scalar type is complex numbers, then this function returns the hermitian |
ykuroda | 0:13a5d365ba16 | 55 | * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the |
ykuroda | 0:13a5d365ba16 | 56 | * second variable. |
ykuroda | 0:13a5d365ba16 | 57 | * |
ykuroda | 0:13a5d365ba16 | 58 | * \sa squaredNorm(), norm() |
ykuroda | 0:13a5d365ba16 | 59 | */ |
ykuroda | 0:13a5d365ba16 | 60 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 61 | template<typename OtherDerived> |
ykuroda | 0:13a5d365ba16 | 62 | typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType |
ykuroda | 0:13a5d365ba16 | 63 | MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const |
ykuroda | 0:13a5d365ba16 | 64 | { |
ykuroda | 0:13a5d365ba16 | 65 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
ykuroda | 0:13a5d365ba16 | 66 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
ykuroda | 0:13a5d365ba16 | 67 | EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) |
ykuroda | 0:13a5d365ba16 | 68 | typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func; |
ykuroda | 0:13a5d365ba16 | 69 | EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar); |
ykuroda | 0:13a5d365ba16 | 70 | |
ykuroda | 0:13a5d365ba16 | 71 | eigen_assert(size() == other.size()); |
ykuroda | 0:13a5d365ba16 | 72 | |
ykuroda | 0:13a5d365ba16 | 73 | return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other); |
ykuroda | 0:13a5d365ba16 | 74 | } |
ykuroda | 0:13a5d365ba16 | 75 | |
ykuroda | 0:13a5d365ba16 | 76 | #ifdef EIGEN2_SUPPORT |
ykuroda | 0:13a5d365ba16 | 77 | /** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable |
ykuroda | 0:13a5d365ba16 | 78 | * (conjugating the second variable). Of course this only makes a difference in the complex case. |
ykuroda | 0:13a5d365ba16 | 79 | * |
ykuroda | 0:13a5d365ba16 | 80 | * This method is only available in EIGEN2_SUPPORT mode. |
ykuroda | 0:13a5d365ba16 | 81 | * |
ykuroda | 0:13a5d365ba16 | 82 | * \only_for_vectors |
ykuroda | 0:13a5d365ba16 | 83 | * |
ykuroda | 0:13a5d365ba16 | 84 | * \sa dot() |
ykuroda | 0:13a5d365ba16 | 85 | */ |
ykuroda | 0:13a5d365ba16 | 86 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 87 | template<typename OtherDerived> |
ykuroda | 0:13a5d365ba16 | 88 | typename internal::traits<Derived>::Scalar |
ykuroda | 0:13a5d365ba16 | 89 | MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const |
ykuroda | 0:13a5d365ba16 | 90 | { |
ykuroda | 0:13a5d365ba16 | 91 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
ykuroda | 0:13a5d365ba16 | 92 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
ykuroda | 0:13a5d365ba16 | 93 | EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) |
ykuroda | 0:13a5d365ba16 | 94 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), |
ykuroda | 0:13a5d365ba16 | 95 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
ykuroda | 0:13a5d365ba16 | 96 | |
ykuroda | 0:13a5d365ba16 | 97 | eigen_assert(size() == other.size()); |
ykuroda | 0:13a5d365ba16 | 98 | |
ykuroda | 0:13a5d365ba16 | 99 | return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this); |
ykuroda | 0:13a5d365ba16 | 100 | } |
ykuroda | 0:13a5d365ba16 | 101 | #endif |
ykuroda | 0:13a5d365ba16 | 102 | |
ykuroda | 0:13a5d365ba16 | 103 | |
ykuroda | 0:13a5d365ba16 | 104 | //---------- implementation of L2 norm and related functions ---------- |
ykuroda | 0:13a5d365ba16 | 105 | |
ykuroda | 0:13a5d365ba16 | 106 | /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. |
ykuroda | 0:13a5d365ba16 | 107 | * In both cases, it consists in the sum of the square of all the matrix entries. |
ykuroda | 0:13a5d365ba16 | 108 | * For vectors, this is also equals to the dot product of \c *this with itself. |
ykuroda | 0:13a5d365ba16 | 109 | * |
ykuroda | 0:13a5d365ba16 | 110 | * \sa dot(), norm() |
ykuroda | 0:13a5d365ba16 | 111 | */ |
ykuroda | 0:13a5d365ba16 | 112 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 113 | EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const |
ykuroda | 0:13a5d365ba16 | 114 | { |
ykuroda | 0:13a5d365ba16 | 115 | return numext::real((*this).cwiseAbs2().sum()); |
ykuroda | 0:13a5d365ba16 | 116 | } |
ykuroda | 0:13a5d365ba16 | 117 | |
ykuroda | 0:13a5d365ba16 | 118 | /** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. |
ykuroda | 0:13a5d365ba16 | 119 | * In both cases, it consists in the square root of the sum of the square of all the matrix entries. |
ykuroda | 0:13a5d365ba16 | 120 | * For vectors, this is also equals to the square root of the dot product of \c *this with itself. |
ykuroda | 0:13a5d365ba16 | 121 | * |
ykuroda | 0:13a5d365ba16 | 122 | * \sa dot(), squaredNorm() |
ykuroda | 0:13a5d365ba16 | 123 | */ |
ykuroda | 0:13a5d365ba16 | 124 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 125 | inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const |
ykuroda | 0:13a5d365ba16 | 126 | { |
ykuroda | 0:13a5d365ba16 | 127 | using std::sqrt; |
ykuroda | 0:13a5d365ba16 | 128 | return sqrt(squaredNorm()); |
ykuroda | 0:13a5d365ba16 | 129 | } |
ykuroda | 0:13a5d365ba16 | 130 | |
ykuroda | 0:13a5d365ba16 | 131 | /** \returns an expression of the quotient of *this by its own norm. |
ykuroda | 0:13a5d365ba16 | 132 | * |
ykuroda | 0:13a5d365ba16 | 133 | * \only_for_vectors |
ykuroda | 0:13a5d365ba16 | 134 | * |
ykuroda | 0:13a5d365ba16 | 135 | * \sa norm(), normalize() |
ykuroda | 0:13a5d365ba16 | 136 | */ |
ykuroda | 0:13a5d365ba16 | 137 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 138 | inline const typename MatrixBase<Derived>::PlainObject |
ykuroda | 0:13a5d365ba16 | 139 | MatrixBase<Derived>::normalized() const |
ykuroda | 0:13a5d365ba16 | 140 | { |
ykuroda | 0:13a5d365ba16 | 141 | typedef typename internal::nested<Derived>::type Nested; |
ykuroda | 0:13a5d365ba16 | 142 | typedef typename internal::remove_reference<Nested>::type _Nested; |
ykuroda | 0:13a5d365ba16 | 143 | _Nested n(derived()); |
ykuroda | 0:13a5d365ba16 | 144 | return n / n.norm(); |
ykuroda | 0:13a5d365ba16 | 145 | } |
ykuroda | 0:13a5d365ba16 | 146 | |
ykuroda | 0:13a5d365ba16 | 147 | /** Normalizes the vector, i.e. divides it by its own norm. |
ykuroda | 0:13a5d365ba16 | 148 | * |
ykuroda | 0:13a5d365ba16 | 149 | * \only_for_vectors |
ykuroda | 0:13a5d365ba16 | 150 | * |
ykuroda | 0:13a5d365ba16 | 151 | * \sa norm(), normalized() |
ykuroda | 0:13a5d365ba16 | 152 | */ |
ykuroda | 0:13a5d365ba16 | 153 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 154 | inline void MatrixBase<Derived>::normalize() |
ykuroda | 0:13a5d365ba16 | 155 | { |
ykuroda | 0:13a5d365ba16 | 156 | *this /= norm(); |
ykuroda | 0:13a5d365ba16 | 157 | } |
ykuroda | 0:13a5d365ba16 | 158 | |
ykuroda | 0:13a5d365ba16 | 159 | //---------- implementation of other norms ---------- |
ykuroda | 0:13a5d365ba16 | 160 | |
ykuroda | 0:13a5d365ba16 | 161 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 162 | |
ykuroda | 0:13a5d365ba16 | 163 | template<typename Derived, int p> |
ykuroda | 0:13a5d365ba16 | 164 | struct lpNorm_selector |
ykuroda | 0:13a5d365ba16 | 165 | { |
ykuroda | 0:13a5d365ba16 | 166 | typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; |
ykuroda | 0:13a5d365ba16 | 167 | static inline RealScalar run(const MatrixBase<Derived>& m) |
ykuroda | 0:13a5d365ba16 | 168 | { |
ykuroda | 0:13a5d365ba16 | 169 | using std::pow; |
ykuroda | 0:13a5d365ba16 | 170 | return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); |
ykuroda | 0:13a5d365ba16 | 171 | } |
ykuroda | 0:13a5d365ba16 | 172 | }; |
ykuroda | 0:13a5d365ba16 | 173 | |
ykuroda | 0:13a5d365ba16 | 174 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 175 | struct lpNorm_selector<Derived, 1> |
ykuroda | 0:13a5d365ba16 | 176 | { |
ykuroda | 0:13a5d365ba16 | 177 | static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) |
ykuroda | 0:13a5d365ba16 | 178 | { |
ykuroda | 0:13a5d365ba16 | 179 | return m.cwiseAbs().sum(); |
ykuroda | 0:13a5d365ba16 | 180 | } |
ykuroda | 0:13a5d365ba16 | 181 | }; |
ykuroda | 0:13a5d365ba16 | 182 | |
ykuroda | 0:13a5d365ba16 | 183 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 184 | struct lpNorm_selector<Derived, 2> |
ykuroda | 0:13a5d365ba16 | 185 | { |
ykuroda | 0:13a5d365ba16 | 186 | static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) |
ykuroda | 0:13a5d365ba16 | 187 | { |
ykuroda | 0:13a5d365ba16 | 188 | return m.norm(); |
ykuroda | 0:13a5d365ba16 | 189 | } |
ykuroda | 0:13a5d365ba16 | 190 | }; |
ykuroda | 0:13a5d365ba16 | 191 | |
ykuroda | 0:13a5d365ba16 | 192 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 193 | struct lpNorm_selector<Derived, Infinity> |
ykuroda | 0:13a5d365ba16 | 194 | { |
ykuroda | 0:13a5d365ba16 | 195 | static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) |
ykuroda | 0:13a5d365ba16 | 196 | { |
ykuroda | 0:13a5d365ba16 | 197 | return m.cwiseAbs().maxCoeff(); |
ykuroda | 0:13a5d365ba16 | 198 | } |
ykuroda | 0:13a5d365ba16 | 199 | }; |
ykuroda | 0:13a5d365ba16 | 200 | |
ykuroda | 0:13a5d365ba16 | 201 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 202 | |
ykuroda | 0:13a5d365ba16 | 203 | /** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values |
ykuroda | 0:13a5d365ba16 | 204 | * of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ |
ykuroda | 0:13a5d365ba16 | 205 | * norm, that is the maximum of the absolute values of the coefficients of *this. |
ykuroda | 0:13a5d365ba16 | 206 | * |
ykuroda | 0:13a5d365ba16 | 207 | * \sa norm() |
ykuroda | 0:13a5d365ba16 | 208 | */ |
ykuroda | 0:13a5d365ba16 | 209 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 210 | template<int p> |
ykuroda | 0:13a5d365ba16 | 211 | inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real |
ykuroda | 0:13a5d365ba16 | 212 | MatrixBase<Derived>::lpNorm() const |
ykuroda | 0:13a5d365ba16 | 213 | { |
ykuroda | 0:13a5d365ba16 | 214 | return internal::lpNorm_selector<Derived, p>::run(*this); |
ykuroda | 0:13a5d365ba16 | 215 | } |
ykuroda | 0:13a5d365ba16 | 216 | |
ykuroda | 0:13a5d365ba16 | 217 | //---------- implementation of isOrthogonal / isUnitary ---------- |
ykuroda | 0:13a5d365ba16 | 218 | |
ykuroda | 0:13a5d365ba16 | 219 | /** \returns true if *this is approximately orthogonal to \a other, |
ykuroda | 0:13a5d365ba16 | 220 | * within the precision given by \a prec. |
ykuroda | 0:13a5d365ba16 | 221 | * |
ykuroda | 0:13a5d365ba16 | 222 | * Example: \include MatrixBase_isOrthogonal.cpp |
ykuroda | 0:13a5d365ba16 | 223 | * Output: \verbinclude MatrixBase_isOrthogonal.out |
ykuroda | 0:13a5d365ba16 | 224 | */ |
ykuroda | 0:13a5d365ba16 | 225 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 226 | template<typename OtherDerived> |
ykuroda | 0:13a5d365ba16 | 227 | bool MatrixBase<Derived>::isOrthogonal |
ykuroda | 0:13a5d365ba16 | 228 | (const MatrixBase<OtherDerived>& other, const RealScalar& prec) const |
ykuroda | 0:13a5d365ba16 | 229 | { |
ykuroda | 0:13a5d365ba16 | 230 | typename internal::nested<Derived,2>::type nested(derived()); |
ykuroda | 0:13a5d365ba16 | 231 | typename internal::nested<OtherDerived,2>::type otherNested(other.derived()); |
ykuroda | 0:13a5d365ba16 | 232 | return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); |
ykuroda | 0:13a5d365ba16 | 233 | } |
ykuroda | 0:13a5d365ba16 | 234 | |
ykuroda | 0:13a5d365ba16 | 235 | /** \returns true if *this is approximately an unitary matrix, |
ykuroda | 0:13a5d365ba16 | 236 | * within the precision given by \a prec. In the case where the \a Scalar |
ykuroda | 0:13a5d365ba16 | 237 | * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. |
ykuroda | 0:13a5d365ba16 | 238 | * |
ykuroda | 0:13a5d365ba16 | 239 | * \note This can be used to check whether a family of vectors forms an orthonormal basis. |
ykuroda | 0:13a5d365ba16 | 240 | * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an |
ykuroda | 0:13a5d365ba16 | 241 | * orthonormal basis. |
ykuroda | 0:13a5d365ba16 | 242 | * |
ykuroda | 0:13a5d365ba16 | 243 | * Example: \include MatrixBase_isUnitary.cpp |
ykuroda | 0:13a5d365ba16 | 244 | * Output: \verbinclude MatrixBase_isUnitary.out |
ykuroda | 0:13a5d365ba16 | 245 | */ |
ykuroda | 0:13a5d365ba16 | 246 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 247 | bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const |
ykuroda | 0:13a5d365ba16 | 248 | { |
ykuroda | 0:13a5d365ba16 | 249 | typename Derived::Nested nested(derived()); |
ykuroda | 0:13a5d365ba16 | 250 | for(Index i = 0; i < cols(); ++i) |
ykuroda | 0:13a5d365ba16 | 251 | { |
ykuroda | 0:13a5d365ba16 | 252 | if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec)) |
ykuroda | 0:13a5d365ba16 | 253 | return false; |
ykuroda | 0:13a5d365ba16 | 254 | for(Index j = 0; j < i; ++j) |
ykuroda | 0:13a5d365ba16 | 255 | if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec)) |
ykuroda | 0:13a5d365ba16 | 256 | return false; |
ykuroda | 0:13a5d365ba16 | 257 | } |
ykuroda | 0:13a5d365ba16 | 258 | return true; |
ykuroda | 0:13a5d365ba16 | 259 | } |
ykuroda | 0:13a5d365ba16 | 260 | |
ykuroda | 0:13a5d365ba16 | 261 | } // end namespace Eigen |
ykuroda | 0:13a5d365ba16 | 262 | |
ykuroda | 0:13a5d365ba16 | 263 | #endif // EIGEN_DOT_H |