Eigne Matrix Class Library
Dependents: MPC_current_control HydraulicControlBoard_SW AHRS Test_ekf ... more
src/Cholesky/LLT.h@0:13a5d365ba16, 2016-10-13 (annotated)
- Committer:
- ykuroda
- Date:
- Thu Oct 13 04:07:23 2016 +0000
- Revision:
- 0:13a5d365ba16
First commint, Eigne Matrix Class Library
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
ykuroda | 0:13a5d365ba16 | 1 | // This file is part of Eigen, a lightweight C++ template library |
ykuroda | 0:13a5d365ba16 | 2 | // for linear algebra. |
ykuroda | 0:13a5d365ba16 | 3 | // |
ykuroda | 0:13a5d365ba16 | 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
ykuroda | 0:13a5d365ba16 | 5 | // |
ykuroda | 0:13a5d365ba16 | 6 | // This Source Code Form is subject to the terms of the Mozilla |
ykuroda | 0:13a5d365ba16 | 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
ykuroda | 0:13a5d365ba16 | 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
ykuroda | 0:13a5d365ba16 | 9 | |
ykuroda | 0:13a5d365ba16 | 10 | #ifndef EIGEN_LLT_H |
ykuroda | 0:13a5d365ba16 | 11 | #define EIGEN_LLT_H |
ykuroda | 0:13a5d365ba16 | 12 | |
ykuroda | 0:13a5d365ba16 | 13 | namespace Eigen { |
ykuroda | 0:13a5d365ba16 | 14 | |
ykuroda | 0:13a5d365ba16 | 15 | namespace internal{ |
ykuroda | 0:13a5d365ba16 | 16 | template<typename MatrixType, int UpLo> struct LLT_Traits; |
ykuroda | 0:13a5d365ba16 | 17 | } |
ykuroda | 0:13a5d365ba16 | 18 | |
ykuroda | 0:13a5d365ba16 | 19 | /** \ingroup Cholesky_Module |
ykuroda | 0:13a5d365ba16 | 20 | * |
ykuroda | 0:13a5d365ba16 | 21 | * \class LLT |
ykuroda | 0:13a5d365ba16 | 22 | * |
ykuroda | 0:13a5d365ba16 | 23 | * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features |
ykuroda | 0:13a5d365ba16 | 24 | * |
ykuroda | 0:13a5d365ba16 | 25 | * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition |
ykuroda | 0:13a5d365ba16 | 26 | * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. |
ykuroda | 0:13a5d365ba16 | 27 | * The other triangular part won't be read. |
ykuroda | 0:13a5d365ba16 | 28 | * |
ykuroda | 0:13a5d365ba16 | 29 | * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite |
ykuroda | 0:13a5d365ba16 | 30 | * matrix A such that A = LL^* = U^*U, where L is lower triangular. |
ykuroda | 0:13a5d365ba16 | 31 | * |
ykuroda | 0:13a5d365ba16 | 32 | * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, |
ykuroda | 0:13a5d365ba16 | 33 | * for that purpose, we recommend the Cholesky decomposition without square root which is more stable |
ykuroda | 0:13a5d365ba16 | 34 | * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other |
ykuroda | 0:13a5d365ba16 | 35 | * situations like generalised eigen problems with hermitian matrices. |
ykuroda | 0:13a5d365ba16 | 36 | * |
ykuroda | 0:13a5d365ba16 | 37 | * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, |
ykuroda | 0:13a5d365ba16 | 38 | * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations |
ykuroda | 0:13a5d365ba16 | 39 | * has a solution. |
ykuroda | 0:13a5d365ba16 | 40 | * |
ykuroda | 0:13a5d365ba16 | 41 | * Example: \include LLT_example.cpp |
ykuroda | 0:13a5d365ba16 | 42 | * Output: \verbinclude LLT_example.out |
ykuroda | 0:13a5d365ba16 | 43 | * |
ykuroda | 0:13a5d365ba16 | 44 | * \sa MatrixBase::llt(), class LDLT |
ykuroda | 0:13a5d365ba16 | 45 | */ |
ykuroda | 0:13a5d365ba16 | 46 | /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) |
ykuroda | 0:13a5d365ba16 | 47 | * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, |
ykuroda | 0:13a5d365ba16 | 48 | * the strict lower part does not have to store correct values. |
ykuroda | 0:13a5d365ba16 | 49 | */ |
ykuroda | 0:13a5d365ba16 | 50 | template<typename _MatrixType, int _UpLo> class LLT |
ykuroda | 0:13a5d365ba16 | 51 | { |
ykuroda | 0:13a5d365ba16 | 52 | public: |
ykuroda | 0:13a5d365ba16 | 53 | typedef _MatrixType MatrixType; |
ykuroda | 0:13a5d365ba16 | 54 | enum { |
ykuroda | 0:13a5d365ba16 | 55 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 56 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
ykuroda | 0:13a5d365ba16 | 57 | Options = MatrixType::Options, |
ykuroda | 0:13a5d365ba16 | 58 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
ykuroda | 0:13a5d365ba16 | 59 | }; |
ykuroda | 0:13a5d365ba16 | 60 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 61 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
ykuroda | 0:13a5d365ba16 | 62 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 63 | |
ykuroda | 0:13a5d365ba16 | 64 | enum { |
ykuroda | 0:13a5d365ba16 | 65 | PacketSize = internal::packet_traits<Scalar>::size, |
ykuroda | 0:13a5d365ba16 | 66 | AlignmentMask = int(PacketSize)-1, |
ykuroda | 0:13a5d365ba16 | 67 | UpLo = _UpLo |
ykuroda | 0:13a5d365ba16 | 68 | }; |
ykuroda | 0:13a5d365ba16 | 69 | |
ykuroda | 0:13a5d365ba16 | 70 | typedef internal::LLT_Traits<MatrixType,UpLo> Traits; |
ykuroda | 0:13a5d365ba16 | 71 | |
ykuroda | 0:13a5d365ba16 | 72 | /** |
ykuroda | 0:13a5d365ba16 | 73 | * \brief Default Constructor. |
ykuroda | 0:13a5d365ba16 | 74 | * |
ykuroda | 0:13a5d365ba16 | 75 | * The default constructor is useful in cases in which the user intends to |
ykuroda | 0:13a5d365ba16 | 76 | * perform decompositions via LLT::compute(const MatrixType&). |
ykuroda | 0:13a5d365ba16 | 77 | */ |
ykuroda | 0:13a5d365ba16 | 78 | LLT() : m_matrix(), m_isInitialized(false) {} |
ykuroda | 0:13a5d365ba16 | 79 | |
ykuroda | 0:13a5d365ba16 | 80 | /** \brief Default Constructor with memory preallocation |
ykuroda | 0:13a5d365ba16 | 81 | * |
ykuroda | 0:13a5d365ba16 | 82 | * Like the default constructor but with preallocation of the internal data |
ykuroda | 0:13a5d365ba16 | 83 | * according to the specified problem \a size. |
ykuroda | 0:13a5d365ba16 | 84 | * \sa LLT() |
ykuroda | 0:13a5d365ba16 | 85 | */ |
ykuroda | 0:13a5d365ba16 | 86 | LLT(Index size) : m_matrix(size, size), |
ykuroda | 0:13a5d365ba16 | 87 | m_isInitialized(false) {} |
ykuroda | 0:13a5d365ba16 | 88 | |
ykuroda | 0:13a5d365ba16 | 89 | LLT(const MatrixType& matrix) |
ykuroda | 0:13a5d365ba16 | 90 | : m_matrix(matrix.rows(), matrix.cols()), |
ykuroda | 0:13a5d365ba16 | 91 | m_isInitialized(false) |
ykuroda | 0:13a5d365ba16 | 92 | { |
ykuroda | 0:13a5d365ba16 | 93 | compute(matrix); |
ykuroda | 0:13a5d365ba16 | 94 | } |
ykuroda | 0:13a5d365ba16 | 95 | |
ykuroda | 0:13a5d365ba16 | 96 | /** \returns a view of the upper triangular matrix U */ |
ykuroda | 0:13a5d365ba16 | 97 | inline typename Traits::MatrixU matrixU() const |
ykuroda | 0:13a5d365ba16 | 98 | { |
ykuroda | 0:13a5d365ba16 | 99 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
ykuroda | 0:13a5d365ba16 | 100 | return Traits::getU(m_matrix); |
ykuroda | 0:13a5d365ba16 | 101 | } |
ykuroda | 0:13a5d365ba16 | 102 | |
ykuroda | 0:13a5d365ba16 | 103 | /** \returns a view of the lower triangular matrix L */ |
ykuroda | 0:13a5d365ba16 | 104 | inline typename Traits::MatrixL matrixL() const |
ykuroda | 0:13a5d365ba16 | 105 | { |
ykuroda | 0:13a5d365ba16 | 106 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
ykuroda | 0:13a5d365ba16 | 107 | return Traits::getL(m_matrix); |
ykuroda | 0:13a5d365ba16 | 108 | } |
ykuroda | 0:13a5d365ba16 | 109 | |
ykuroda | 0:13a5d365ba16 | 110 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
ykuroda | 0:13a5d365ba16 | 111 | * |
ykuroda | 0:13a5d365ba16 | 112 | * Since this LLT class assumes anyway that the matrix A is invertible, the solution |
ykuroda | 0:13a5d365ba16 | 113 | * theoretically exists and is unique regardless of b. |
ykuroda | 0:13a5d365ba16 | 114 | * |
ykuroda | 0:13a5d365ba16 | 115 | * Example: \include LLT_solve.cpp |
ykuroda | 0:13a5d365ba16 | 116 | * Output: \verbinclude LLT_solve.out |
ykuroda | 0:13a5d365ba16 | 117 | * |
ykuroda | 0:13a5d365ba16 | 118 | * \sa solveInPlace(), MatrixBase::llt() |
ykuroda | 0:13a5d365ba16 | 119 | */ |
ykuroda | 0:13a5d365ba16 | 120 | template<typename Rhs> |
ykuroda | 0:13a5d365ba16 | 121 | inline const internal::solve_retval<LLT, Rhs> |
ykuroda | 0:13a5d365ba16 | 122 | solve(const MatrixBase<Rhs>& b) const |
ykuroda | 0:13a5d365ba16 | 123 | { |
ykuroda | 0:13a5d365ba16 | 124 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
ykuroda | 0:13a5d365ba16 | 125 | eigen_assert(m_matrix.rows()==b.rows() |
ykuroda | 0:13a5d365ba16 | 126 | && "LLT::solve(): invalid number of rows of the right hand side matrix b"); |
ykuroda | 0:13a5d365ba16 | 127 | return internal::solve_retval<LLT, Rhs>(*this, b.derived()); |
ykuroda | 0:13a5d365ba16 | 128 | } |
ykuroda | 0:13a5d365ba16 | 129 | |
ykuroda | 0:13a5d365ba16 | 130 | #ifdef EIGEN2_SUPPORT |
ykuroda | 0:13a5d365ba16 | 131 | template<typename OtherDerived, typename ResultType> |
ykuroda | 0:13a5d365ba16 | 132 | bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const |
ykuroda | 0:13a5d365ba16 | 133 | { |
ykuroda | 0:13a5d365ba16 | 134 | *result = this->solve(b); |
ykuroda | 0:13a5d365ba16 | 135 | return true; |
ykuroda | 0:13a5d365ba16 | 136 | } |
ykuroda | 0:13a5d365ba16 | 137 | |
ykuroda | 0:13a5d365ba16 | 138 | bool isPositiveDefinite() const { return true; } |
ykuroda | 0:13a5d365ba16 | 139 | #endif |
ykuroda | 0:13a5d365ba16 | 140 | |
ykuroda | 0:13a5d365ba16 | 141 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 142 | void solveInPlace(MatrixBase<Derived> &bAndX) const; |
ykuroda | 0:13a5d365ba16 | 143 | |
ykuroda | 0:13a5d365ba16 | 144 | LLT& compute(const MatrixType& matrix); |
ykuroda | 0:13a5d365ba16 | 145 | |
ykuroda | 0:13a5d365ba16 | 146 | /** \returns the LLT decomposition matrix |
ykuroda | 0:13a5d365ba16 | 147 | * |
ykuroda | 0:13a5d365ba16 | 148 | * TODO: document the storage layout |
ykuroda | 0:13a5d365ba16 | 149 | */ |
ykuroda | 0:13a5d365ba16 | 150 | inline const MatrixType& matrixLLT() const |
ykuroda | 0:13a5d365ba16 | 151 | { |
ykuroda | 0:13a5d365ba16 | 152 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
ykuroda | 0:13a5d365ba16 | 153 | return m_matrix; |
ykuroda | 0:13a5d365ba16 | 154 | } |
ykuroda | 0:13a5d365ba16 | 155 | |
ykuroda | 0:13a5d365ba16 | 156 | MatrixType reconstructedMatrix() const; |
ykuroda | 0:13a5d365ba16 | 157 | |
ykuroda | 0:13a5d365ba16 | 158 | |
ykuroda | 0:13a5d365ba16 | 159 | /** \brief Reports whether previous computation was successful. |
ykuroda | 0:13a5d365ba16 | 160 | * |
ykuroda | 0:13a5d365ba16 | 161 | * \returns \c Success if computation was succesful, |
ykuroda | 0:13a5d365ba16 | 162 | * \c NumericalIssue if the matrix.appears to be negative. |
ykuroda | 0:13a5d365ba16 | 163 | */ |
ykuroda | 0:13a5d365ba16 | 164 | ComputationInfo info() const |
ykuroda | 0:13a5d365ba16 | 165 | { |
ykuroda | 0:13a5d365ba16 | 166 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
ykuroda | 0:13a5d365ba16 | 167 | return m_info; |
ykuroda | 0:13a5d365ba16 | 168 | } |
ykuroda | 0:13a5d365ba16 | 169 | |
ykuroda | 0:13a5d365ba16 | 170 | inline Index rows() const { return m_matrix.rows(); } |
ykuroda | 0:13a5d365ba16 | 171 | inline Index cols() const { return m_matrix.cols(); } |
ykuroda | 0:13a5d365ba16 | 172 | |
ykuroda | 0:13a5d365ba16 | 173 | template<typename VectorType> |
ykuroda | 0:13a5d365ba16 | 174 | LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); |
ykuroda | 0:13a5d365ba16 | 175 | |
ykuroda | 0:13a5d365ba16 | 176 | protected: |
ykuroda | 0:13a5d365ba16 | 177 | |
ykuroda | 0:13a5d365ba16 | 178 | static void check_template_parameters() |
ykuroda | 0:13a5d365ba16 | 179 | { |
ykuroda | 0:13a5d365ba16 | 180 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
ykuroda | 0:13a5d365ba16 | 181 | } |
ykuroda | 0:13a5d365ba16 | 182 | |
ykuroda | 0:13a5d365ba16 | 183 | /** \internal |
ykuroda | 0:13a5d365ba16 | 184 | * Used to compute and store L |
ykuroda | 0:13a5d365ba16 | 185 | * The strict upper part is not used and even not initialized. |
ykuroda | 0:13a5d365ba16 | 186 | */ |
ykuroda | 0:13a5d365ba16 | 187 | MatrixType m_matrix; |
ykuroda | 0:13a5d365ba16 | 188 | bool m_isInitialized; |
ykuroda | 0:13a5d365ba16 | 189 | ComputationInfo m_info; |
ykuroda | 0:13a5d365ba16 | 190 | }; |
ykuroda | 0:13a5d365ba16 | 191 | |
ykuroda | 0:13a5d365ba16 | 192 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 193 | |
ykuroda | 0:13a5d365ba16 | 194 | template<typename Scalar, int UpLo> struct llt_inplace; |
ykuroda | 0:13a5d365ba16 | 195 | |
ykuroda | 0:13a5d365ba16 | 196 | template<typename MatrixType, typename VectorType> |
ykuroda | 0:13a5d365ba16 | 197 | static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) |
ykuroda | 0:13a5d365ba16 | 198 | { |
ykuroda | 0:13a5d365ba16 | 199 | using std::sqrt; |
ykuroda | 0:13a5d365ba16 | 200 | typedef typename MatrixType::Scalar Scalar; |
ykuroda | 0:13a5d365ba16 | 201 | typedef typename MatrixType::RealScalar RealScalar; |
ykuroda | 0:13a5d365ba16 | 202 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 203 | typedef typename MatrixType::ColXpr ColXpr; |
ykuroda | 0:13a5d365ba16 | 204 | typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; |
ykuroda | 0:13a5d365ba16 | 205 | typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; |
ykuroda | 0:13a5d365ba16 | 206 | typedef Matrix<Scalar,Dynamic,1> TempVectorType; |
ykuroda | 0:13a5d365ba16 | 207 | typedef typename TempVectorType::SegmentReturnType TempVecSegment; |
ykuroda | 0:13a5d365ba16 | 208 | |
ykuroda | 0:13a5d365ba16 | 209 | Index n = mat.cols(); |
ykuroda | 0:13a5d365ba16 | 210 | eigen_assert(mat.rows()==n && vec.size()==n); |
ykuroda | 0:13a5d365ba16 | 211 | |
ykuroda | 0:13a5d365ba16 | 212 | TempVectorType temp; |
ykuroda | 0:13a5d365ba16 | 213 | |
ykuroda | 0:13a5d365ba16 | 214 | if(sigma>0) |
ykuroda | 0:13a5d365ba16 | 215 | { |
ykuroda | 0:13a5d365ba16 | 216 | // This version is based on Givens rotations. |
ykuroda | 0:13a5d365ba16 | 217 | // It is faster than the other one below, but only works for updates, |
ykuroda | 0:13a5d365ba16 | 218 | // i.e., for sigma > 0 |
ykuroda | 0:13a5d365ba16 | 219 | temp = sqrt(sigma) * vec; |
ykuroda | 0:13a5d365ba16 | 220 | |
ykuroda | 0:13a5d365ba16 | 221 | for(Index i=0; i<n; ++i) |
ykuroda | 0:13a5d365ba16 | 222 | { |
ykuroda | 0:13a5d365ba16 | 223 | JacobiRotation<Scalar> g; |
ykuroda | 0:13a5d365ba16 | 224 | g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); |
ykuroda | 0:13a5d365ba16 | 225 | |
ykuroda | 0:13a5d365ba16 | 226 | Index rs = n-i-1; |
ykuroda | 0:13a5d365ba16 | 227 | if(rs>0) |
ykuroda | 0:13a5d365ba16 | 228 | { |
ykuroda | 0:13a5d365ba16 | 229 | ColXprSegment x(mat.col(i).tail(rs)); |
ykuroda | 0:13a5d365ba16 | 230 | TempVecSegment y(temp.tail(rs)); |
ykuroda | 0:13a5d365ba16 | 231 | apply_rotation_in_the_plane(x, y, g); |
ykuroda | 0:13a5d365ba16 | 232 | } |
ykuroda | 0:13a5d365ba16 | 233 | } |
ykuroda | 0:13a5d365ba16 | 234 | } |
ykuroda | 0:13a5d365ba16 | 235 | else |
ykuroda | 0:13a5d365ba16 | 236 | { |
ykuroda | 0:13a5d365ba16 | 237 | temp = vec; |
ykuroda | 0:13a5d365ba16 | 238 | RealScalar beta = 1; |
ykuroda | 0:13a5d365ba16 | 239 | for(Index j=0; j<n; ++j) |
ykuroda | 0:13a5d365ba16 | 240 | { |
ykuroda | 0:13a5d365ba16 | 241 | RealScalar Ljj = numext::real(mat.coeff(j,j)); |
ykuroda | 0:13a5d365ba16 | 242 | RealScalar dj = numext::abs2(Ljj); |
ykuroda | 0:13a5d365ba16 | 243 | Scalar wj = temp.coeff(j); |
ykuroda | 0:13a5d365ba16 | 244 | RealScalar swj2 = sigma*numext::abs2(wj); |
ykuroda | 0:13a5d365ba16 | 245 | RealScalar gamma = dj*beta + swj2; |
ykuroda | 0:13a5d365ba16 | 246 | |
ykuroda | 0:13a5d365ba16 | 247 | RealScalar x = dj + swj2/beta; |
ykuroda | 0:13a5d365ba16 | 248 | if (x<=RealScalar(0)) |
ykuroda | 0:13a5d365ba16 | 249 | return j; |
ykuroda | 0:13a5d365ba16 | 250 | RealScalar nLjj = sqrt(x); |
ykuroda | 0:13a5d365ba16 | 251 | mat.coeffRef(j,j) = nLjj; |
ykuroda | 0:13a5d365ba16 | 252 | beta += swj2/dj; |
ykuroda | 0:13a5d365ba16 | 253 | |
ykuroda | 0:13a5d365ba16 | 254 | // Update the terms of L |
ykuroda | 0:13a5d365ba16 | 255 | Index rs = n-j-1; |
ykuroda | 0:13a5d365ba16 | 256 | if(rs) |
ykuroda | 0:13a5d365ba16 | 257 | { |
ykuroda | 0:13a5d365ba16 | 258 | temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); |
ykuroda | 0:13a5d365ba16 | 259 | if(gamma != 0) |
ykuroda | 0:13a5d365ba16 | 260 | mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); |
ykuroda | 0:13a5d365ba16 | 261 | } |
ykuroda | 0:13a5d365ba16 | 262 | } |
ykuroda | 0:13a5d365ba16 | 263 | } |
ykuroda | 0:13a5d365ba16 | 264 | return -1; |
ykuroda | 0:13a5d365ba16 | 265 | } |
ykuroda | 0:13a5d365ba16 | 266 | |
ykuroda | 0:13a5d365ba16 | 267 | template<typename Scalar> struct llt_inplace<Scalar, Lower> |
ykuroda | 0:13a5d365ba16 | 268 | { |
ykuroda | 0:13a5d365ba16 | 269 | typedef typename NumTraits<Scalar>::Real RealScalar; |
ykuroda | 0:13a5d365ba16 | 270 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 271 | static typename MatrixType::Index unblocked(MatrixType& mat) |
ykuroda | 0:13a5d365ba16 | 272 | { |
ykuroda | 0:13a5d365ba16 | 273 | using std::sqrt; |
ykuroda | 0:13a5d365ba16 | 274 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 275 | |
ykuroda | 0:13a5d365ba16 | 276 | eigen_assert(mat.rows()==mat.cols()); |
ykuroda | 0:13a5d365ba16 | 277 | const Index size = mat.rows(); |
ykuroda | 0:13a5d365ba16 | 278 | for(Index k = 0; k < size; ++k) |
ykuroda | 0:13a5d365ba16 | 279 | { |
ykuroda | 0:13a5d365ba16 | 280 | Index rs = size-k-1; // remaining size |
ykuroda | 0:13a5d365ba16 | 281 | |
ykuroda | 0:13a5d365ba16 | 282 | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
ykuroda | 0:13a5d365ba16 | 283 | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
ykuroda | 0:13a5d365ba16 | 284 | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
ykuroda | 0:13a5d365ba16 | 285 | |
ykuroda | 0:13a5d365ba16 | 286 | RealScalar x = numext::real(mat.coeff(k,k)); |
ykuroda | 0:13a5d365ba16 | 287 | if (k>0) x -= A10.squaredNorm(); |
ykuroda | 0:13a5d365ba16 | 288 | if (x<=RealScalar(0)) |
ykuroda | 0:13a5d365ba16 | 289 | return k; |
ykuroda | 0:13a5d365ba16 | 290 | mat.coeffRef(k,k) = x = sqrt(x); |
ykuroda | 0:13a5d365ba16 | 291 | if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); |
ykuroda | 0:13a5d365ba16 | 292 | if (rs>0) A21 /= x; |
ykuroda | 0:13a5d365ba16 | 293 | } |
ykuroda | 0:13a5d365ba16 | 294 | return -1; |
ykuroda | 0:13a5d365ba16 | 295 | } |
ykuroda | 0:13a5d365ba16 | 296 | |
ykuroda | 0:13a5d365ba16 | 297 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 298 | static typename MatrixType::Index blocked(MatrixType& m) |
ykuroda | 0:13a5d365ba16 | 299 | { |
ykuroda | 0:13a5d365ba16 | 300 | typedef typename MatrixType::Index Index; |
ykuroda | 0:13a5d365ba16 | 301 | eigen_assert(m.rows()==m.cols()); |
ykuroda | 0:13a5d365ba16 | 302 | Index size = m.rows(); |
ykuroda | 0:13a5d365ba16 | 303 | if(size<32) |
ykuroda | 0:13a5d365ba16 | 304 | return unblocked(m); |
ykuroda | 0:13a5d365ba16 | 305 | |
ykuroda | 0:13a5d365ba16 | 306 | Index blockSize = size/8; |
ykuroda | 0:13a5d365ba16 | 307 | blockSize = (blockSize/16)*16; |
ykuroda | 0:13a5d365ba16 | 308 | blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); |
ykuroda | 0:13a5d365ba16 | 309 | |
ykuroda | 0:13a5d365ba16 | 310 | for (Index k=0; k<size; k+=blockSize) |
ykuroda | 0:13a5d365ba16 | 311 | { |
ykuroda | 0:13a5d365ba16 | 312 | // partition the matrix: |
ykuroda | 0:13a5d365ba16 | 313 | // A00 | - | - |
ykuroda | 0:13a5d365ba16 | 314 | // lu = A10 | A11 | - |
ykuroda | 0:13a5d365ba16 | 315 | // A20 | A21 | A22 |
ykuroda | 0:13a5d365ba16 | 316 | Index bs = (std::min)(blockSize, size-k); |
ykuroda | 0:13a5d365ba16 | 317 | Index rs = size - k - bs; |
ykuroda | 0:13a5d365ba16 | 318 | Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); |
ykuroda | 0:13a5d365ba16 | 319 | Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); |
ykuroda | 0:13a5d365ba16 | 320 | Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); |
ykuroda | 0:13a5d365ba16 | 321 | |
ykuroda | 0:13a5d365ba16 | 322 | Index ret; |
ykuroda | 0:13a5d365ba16 | 323 | if((ret=unblocked(A11))>=0) return k+ret; |
ykuroda | 0:13a5d365ba16 | 324 | if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); |
ykuroda | 0:13a5d365ba16 | 325 | if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck |
ykuroda | 0:13a5d365ba16 | 326 | } |
ykuroda | 0:13a5d365ba16 | 327 | return -1; |
ykuroda | 0:13a5d365ba16 | 328 | } |
ykuroda | 0:13a5d365ba16 | 329 | |
ykuroda | 0:13a5d365ba16 | 330 | template<typename MatrixType, typename VectorType> |
ykuroda | 0:13a5d365ba16 | 331 | static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
ykuroda | 0:13a5d365ba16 | 332 | { |
ykuroda | 0:13a5d365ba16 | 333 | return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); |
ykuroda | 0:13a5d365ba16 | 334 | } |
ykuroda | 0:13a5d365ba16 | 335 | }; |
ykuroda | 0:13a5d365ba16 | 336 | |
ykuroda | 0:13a5d365ba16 | 337 | template<typename Scalar> struct llt_inplace<Scalar, Upper> |
ykuroda | 0:13a5d365ba16 | 338 | { |
ykuroda | 0:13a5d365ba16 | 339 | typedef typename NumTraits<Scalar>::Real RealScalar; |
ykuroda | 0:13a5d365ba16 | 340 | |
ykuroda | 0:13a5d365ba16 | 341 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 342 | static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat) |
ykuroda | 0:13a5d365ba16 | 343 | { |
ykuroda | 0:13a5d365ba16 | 344 | Transpose<MatrixType> matt(mat); |
ykuroda | 0:13a5d365ba16 | 345 | return llt_inplace<Scalar, Lower>::unblocked(matt); |
ykuroda | 0:13a5d365ba16 | 346 | } |
ykuroda | 0:13a5d365ba16 | 347 | template<typename MatrixType> |
ykuroda | 0:13a5d365ba16 | 348 | static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat) |
ykuroda | 0:13a5d365ba16 | 349 | { |
ykuroda | 0:13a5d365ba16 | 350 | Transpose<MatrixType> matt(mat); |
ykuroda | 0:13a5d365ba16 | 351 | return llt_inplace<Scalar, Lower>::blocked(matt); |
ykuroda | 0:13a5d365ba16 | 352 | } |
ykuroda | 0:13a5d365ba16 | 353 | template<typename MatrixType, typename VectorType> |
ykuroda | 0:13a5d365ba16 | 354 | static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
ykuroda | 0:13a5d365ba16 | 355 | { |
ykuroda | 0:13a5d365ba16 | 356 | Transpose<MatrixType> matt(mat); |
ykuroda | 0:13a5d365ba16 | 357 | return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); |
ykuroda | 0:13a5d365ba16 | 358 | } |
ykuroda | 0:13a5d365ba16 | 359 | }; |
ykuroda | 0:13a5d365ba16 | 360 | |
ykuroda | 0:13a5d365ba16 | 361 | template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> |
ykuroda | 0:13a5d365ba16 | 362 | { |
ykuroda | 0:13a5d365ba16 | 363 | typedef const TriangularView<const MatrixType, Lower> MatrixL; |
ykuroda | 0:13a5d365ba16 | 364 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; |
ykuroda | 0:13a5d365ba16 | 365 | static inline MatrixL getL(const MatrixType& m) { return m; } |
ykuroda | 0:13a5d365ba16 | 366 | static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
ykuroda | 0:13a5d365ba16 | 367 | static bool inplace_decomposition(MatrixType& m) |
ykuroda | 0:13a5d365ba16 | 368 | { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } |
ykuroda | 0:13a5d365ba16 | 369 | }; |
ykuroda | 0:13a5d365ba16 | 370 | |
ykuroda | 0:13a5d365ba16 | 371 | template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> |
ykuroda | 0:13a5d365ba16 | 372 | { |
ykuroda | 0:13a5d365ba16 | 373 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; |
ykuroda | 0:13a5d365ba16 | 374 | typedef const TriangularView<const MatrixType, Upper> MatrixU; |
ykuroda | 0:13a5d365ba16 | 375 | static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } |
ykuroda | 0:13a5d365ba16 | 376 | static inline MatrixU getU(const MatrixType& m) { return m; } |
ykuroda | 0:13a5d365ba16 | 377 | static bool inplace_decomposition(MatrixType& m) |
ykuroda | 0:13a5d365ba16 | 378 | { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } |
ykuroda | 0:13a5d365ba16 | 379 | }; |
ykuroda | 0:13a5d365ba16 | 380 | |
ykuroda | 0:13a5d365ba16 | 381 | } // end namespace internal |
ykuroda | 0:13a5d365ba16 | 382 | |
ykuroda | 0:13a5d365ba16 | 383 | /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix |
ykuroda | 0:13a5d365ba16 | 384 | * |
ykuroda | 0:13a5d365ba16 | 385 | * \returns a reference to *this |
ykuroda | 0:13a5d365ba16 | 386 | * |
ykuroda | 0:13a5d365ba16 | 387 | * Example: \include TutorialLinAlgComputeTwice.cpp |
ykuroda | 0:13a5d365ba16 | 388 | * Output: \verbinclude TutorialLinAlgComputeTwice.out |
ykuroda | 0:13a5d365ba16 | 389 | */ |
ykuroda | 0:13a5d365ba16 | 390 | template<typename MatrixType, int _UpLo> |
ykuroda | 0:13a5d365ba16 | 391 | LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a) |
ykuroda | 0:13a5d365ba16 | 392 | { |
ykuroda | 0:13a5d365ba16 | 393 | check_template_parameters(); |
ykuroda | 0:13a5d365ba16 | 394 | |
ykuroda | 0:13a5d365ba16 | 395 | eigen_assert(a.rows()==a.cols()); |
ykuroda | 0:13a5d365ba16 | 396 | const Index size = a.rows(); |
ykuroda | 0:13a5d365ba16 | 397 | m_matrix.resize(size, size); |
ykuroda | 0:13a5d365ba16 | 398 | m_matrix = a; |
ykuroda | 0:13a5d365ba16 | 399 | |
ykuroda | 0:13a5d365ba16 | 400 | m_isInitialized = true; |
ykuroda | 0:13a5d365ba16 | 401 | bool ok = Traits::inplace_decomposition(m_matrix); |
ykuroda | 0:13a5d365ba16 | 402 | m_info = ok ? Success : NumericalIssue; |
ykuroda | 0:13a5d365ba16 | 403 | |
ykuroda | 0:13a5d365ba16 | 404 | return *this; |
ykuroda | 0:13a5d365ba16 | 405 | } |
ykuroda | 0:13a5d365ba16 | 406 | |
ykuroda | 0:13a5d365ba16 | 407 | /** Performs a rank one update (or dowdate) of the current decomposition. |
ykuroda | 0:13a5d365ba16 | 408 | * If A = LL^* before the rank one update, |
ykuroda | 0:13a5d365ba16 | 409 | * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector |
ykuroda | 0:13a5d365ba16 | 410 | * of same dimension. |
ykuroda | 0:13a5d365ba16 | 411 | */ |
ykuroda | 0:13a5d365ba16 | 412 | template<typename _MatrixType, int _UpLo> |
ykuroda | 0:13a5d365ba16 | 413 | template<typename VectorType> |
ykuroda | 0:13a5d365ba16 | 414 | LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) |
ykuroda | 0:13a5d365ba16 | 415 | { |
ykuroda | 0:13a5d365ba16 | 416 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); |
ykuroda | 0:13a5d365ba16 | 417 | eigen_assert(v.size()==m_matrix.cols()); |
ykuroda | 0:13a5d365ba16 | 418 | eigen_assert(m_isInitialized); |
ykuroda | 0:13a5d365ba16 | 419 | if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) |
ykuroda | 0:13a5d365ba16 | 420 | m_info = NumericalIssue; |
ykuroda | 0:13a5d365ba16 | 421 | else |
ykuroda | 0:13a5d365ba16 | 422 | m_info = Success; |
ykuroda | 0:13a5d365ba16 | 423 | |
ykuroda | 0:13a5d365ba16 | 424 | return *this; |
ykuroda | 0:13a5d365ba16 | 425 | } |
ykuroda | 0:13a5d365ba16 | 426 | |
ykuroda | 0:13a5d365ba16 | 427 | namespace internal { |
ykuroda | 0:13a5d365ba16 | 428 | template<typename _MatrixType, int UpLo, typename Rhs> |
ykuroda | 0:13a5d365ba16 | 429 | struct solve_retval<LLT<_MatrixType, UpLo>, Rhs> |
ykuroda | 0:13a5d365ba16 | 430 | : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs> |
ykuroda | 0:13a5d365ba16 | 431 | { |
ykuroda | 0:13a5d365ba16 | 432 | typedef LLT<_MatrixType,UpLo> LLTType; |
ykuroda | 0:13a5d365ba16 | 433 | EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs) |
ykuroda | 0:13a5d365ba16 | 434 | |
ykuroda | 0:13a5d365ba16 | 435 | template<typename Dest> void evalTo(Dest& dst) const |
ykuroda | 0:13a5d365ba16 | 436 | { |
ykuroda | 0:13a5d365ba16 | 437 | dst = rhs(); |
ykuroda | 0:13a5d365ba16 | 438 | dec().solveInPlace(dst); |
ykuroda | 0:13a5d365ba16 | 439 | } |
ykuroda | 0:13a5d365ba16 | 440 | }; |
ykuroda | 0:13a5d365ba16 | 441 | } |
ykuroda | 0:13a5d365ba16 | 442 | |
ykuroda | 0:13a5d365ba16 | 443 | /** \internal use x = llt_object.solve(x); |
ykuroda | 0:13a5d365ba16 | 444 | * |
ykuroda | 0:13a5d365ba16 | 445 | * This is the \em in-place version of solve(). |
ykuroda | 0:13a5d365ba16 | 446 | * |
ykuroda | 0:13a5d365ba16 | 447 | * \param bAndX represents both the right-hand side matrix b and result x. |
ykuroda | 0:13a5d365ba16 | 448 | * |
ykuroda | 0:13a5d365ba16 | 449 | * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
ykuroda | 0:13a5d365ba16 | 450 | * |
ykuroda | 0:13a5d365ba16 | 451 | * This version avoids a copy when the right hand side matrix b is not |
ykuroda | 0:13a5d365ba16 | 452 | * needed anymore. |
ykuroda | 0:13a5d365ba16 | 453 | * |
ykuroda | 0:13a5d365ba16 | 454 | * \sa LLT::solve(), MatrixBase::llt() |
ykuroda | 0:13a5d365ba16 | 455 | */ |
ykuroda | 0:13a5d365ba16 | 456 | template<typename MatrixType, int _UpLo> |
ykuroda | 0:13a5d365ba16 | 457 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 458 | void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const |
ykuroda | 0:13a5d365ba16 | 459 | { |
ykuroda | 0:13a5d365ba16 | 460 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
ykuroda | 0:13a5d365ba16 | 461 | eigen_assert(m_matrix.rows()==bAndX.rows()); |
ykuroda | 0:13a5d365ba16 | 462 | matrixL().solveInPlace(bAndX); |
ykuroda | 0:13a5d365ba16 | 463 | matrixU().solveInPlace(bAndX); |
ykuroda | 0:13a5d365ba16 | 464 | } |
ykuroda | 0:13a5d365ba16 | 465 | |
ykuroda | 0:13a5d365ba16 | 466 | /** \returns the matrix represented by the decomposition, |
ykuroda | 0:13a5d365ba16 | 467 | * i.e., it returns the product: L L^*. |
ykuroda | 0:13a5d365ba16 | 468 | * This function is provided for debug purpose. */ |
ykuroda | 0:13a5d365ba16 | 469 | template<typename MatrixType, int _UpLo> |
ykuroda | 0:13a5d365ba16 | 470 | MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const |
ykuroda | 0:13a5d365ba16 | 471 | { |
ykuroda | 0:13a5d365ba16 | 472 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
ykuroda | 0:13a5d365ba16 | 473 | return matrixL() * matrixL().adjoint().toDenseMatrix(); |
ykuroda | 0:13a5d365ba16 | 474 | } |
ykuroda | 0:13a5d365ba16 | 475 | |
ykuroda | 0:13a5d365ba16 | 476 | /** \cholesky_module |
ykuroda | 0:13a5d365ba16 | 477 | * \returns the LLT decomposition of \c *this |
ykuroda | 0:13a5d365ba16 | 478 | */ |
ykuroda | 0:13a5d365ba16 | 479 | template<typename Derived> |
ykuroda | 0:13a5d365ba16 | 480 | inline const LLT<typename MatrixBase<Derived>::PlainObject> |
ykuroda | 0:13a5d365ba16 | 481 | MatrixBase<Derived>::llt() const |
ykuroda | 0:13a5d365ba16 | 482 | { |
ykuroda | 0:13a5d365ba16 | 483 | return LLT<PlainObject>(derived()); |
ykuroda | 0:13a5d365ba16 | 484 | } |
ykuroda | 0:13a5d365ba16 | 485 | |
ykuroda | 0:13a5d365ba16 | 486 | /** \cholesky_module |
ykuroda | 0:13a5d365ba16 | 487 | * \returns the LLT decomposition of \c *this |
ykuroda | 0:13a5d365ba16 | 488 | */ |
ykuroda | 0:13a5d365ba16 | 489 | template<typename MatrixType, unsigned int UpLo> |
ykuroda | 0:13a5d365ba16 | 490 | inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
ykuroda | 0:13a5d365ba16 | 491 | SelfAdjointView<MatrixType, UpLo>::llt() const |
ykuroda | 0:13a5d365ba16 | 492 | { |
ykuroda | 0:13a5d365ba16 | 493 | return LLT<PlainObject,UpLo>(m_matrix); |
ykuroda | 0:13a5d365ba16 | 494 | } |
ykuroda | 0:13a5d365ba16 | 495 | |
ykuroda | 0:13a5d365ba16 | 496 | } // end namespace Eigen |
ykuroda | 0:13a5d365ba16 | 497 | |
ykuroda | 0:13a5d365ba16 | 498 | #endif // EIGEN_LLT_H |