Controller for Seagoat in the RoboSub competition

Dependencies:   Servo mbed

Fork of ESC by Matteo Terruzzi

Committer:
gelmes
Date:
Tue Jul 26 17:22:33 2016 +0000
Revision:
5:07bbe020eb65
Parent:
3:5ffe7e9c0bb3
This is a working implementation of the Controller;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
gelmes 3:5ffe7e9c0bb3 1 #ifndef MPU6050_H
gelmes 3:5ffe7e9c0bb3 2 #define MPU6050_H
gelmes 3:5ffe7e9c0bb3 3
gelmes 3:5ffe7e9c0bb3 4 #include "mbed.h"
gelmes 3:5ffe7e9c0bb3 5 #include "math.h"
gelmes 3:5ffe7e9c0bb3 6
gelmes 3:5ffe7e9c0bb3 7 // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
gelmes 3:5ffe7e9c0bb3 8 // Invensense Inc., www.invensense.com
gelmes 3:5ffe7e9c0bb3 9 // See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in
gelmes 3:5ffe7e9c0bb3 10 // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
gelmes 3:5ffe7e9c0bb3 11 //
gelmes 3:5ffe7e9c0bb3 12 #define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
gelmes 3:5ffe7e9c0bb3 13 #define YGOFFS_TC 0x01
gelmes 3:5ffe7e9c0bb3 14 #define ZGOFFS_TC 0x02
gelmes 3:5ffe7e9c0bb3 15 #define X_FINE_GAIN 0x03 // [7:0] fine gain
gelmes 3:5ffe7e9c0bb3 16 #define Y_FINE_GAIN 0x04
gelmes 3:5ffe7e9c0bb3 17 #define Z_FINE_GAIN 0x05
gelmes 3:5ffe7e9c0bb3 18 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
gelmes 3:5ffe7e9c0bb3 19 #define XA_OFFSET_L_TC 0x07
gelmes 3:5ffe7e9c0bb3 20 #define YA_OFFSET_H 0x08
gelmes 3:5ffe7e9c0bb3 21 #define YA_OFFSET_L_TC 0x09
gelmes 3:5ffe7e9c0bb3 22 #define ZA_OFFSET_H 0x0A
gelmes 3:5ffe7e9c0bb3 23 #define ZA_OFFSET_L_TC 0x0B
gelmes 3:5ffe7e9c0bb3 24 #define SELF_TEST_X 0x0D
gelmes 3:5ffe7e9c0bb3 25 #define SELF_TEST_Y 0x0E
gelmes 3:5ffe7e9c0bb3 26 #define SELF_TEST_Z 0x0F
gelmes 3:5ffe7e9c0bb3 27 #define SELF_TEST_A 0x10
gelmes 3:5ffe7e9c0bb3 28 #define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
gelmes 3:5ffe7e9c0bb3 29 #define XG_OFFS_USRL 0x14
gelmes 3:5ffe7e9c0bb3 30 #define YG_OFFS_USRH 0x15
gelmes 3:5ffe7e9c0bb3 31 #define YG_OFFS_USRL 0x16
gelmes 3:5ffe7e9c0bb3 32 #define ZG_OFFS_USRH 0x17
gelmes 3:5ffe7e9c0bb3 33 #define ZG_OFFS_USRL 0x18
gelmes 3:5ffe7e9c0bb3 34 #define SMPLRT_DIV 0x19
gelmes 3:5ffe7e9c0bb3 35 #define CONFIG 0x1A
gelmes 3:5ffe7e9c0bb3 36 #define GYRO_CONFIG 0x1B
gelmes 3:5ffe7e9c0bb3 37 #define ACCEL_CONFIG 0x1C
gelmes 3:5ffe7e9c0bb3 38 #define FF_THR 0x1D // Free-fall
gelmes 3:5ffe7e9c0bb3 39 #define FF_DUR 0x1E // Free-fall
gelmes 3:5ffe7e9c0bb3 40 #define MOT_THR 0x1F // Motion detection threshold bits [7:0]
gelmes 3:5ffe7e9c0bb3 41 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
gelmes 3:5ffe7e9c0bb3 42 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
gelmes 3:5ffe7e9c0bb3 43 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
gelmes 3:5ffe7e9c0bb3 44 #define FIFO_EN 0x23
gelmes 3:5ffe7e9c0bb3 45 #define I2C_MST_CTRL 0x24
gelmes 3:5ffe7e9c0bb3 46 #define I2C_SLV0_ADDR 0x25
gelmes 3:5ffe7e9c0bb3 47 #define I2C_SLV0_REG 0x26
gelmes 3:5ffe7e9c0bb3 48 #define I2C_SLV0_CTRL 0x27
gelmes 3:5ffe7e9c0bb3 49 #define I2C_SLV1_ADDR 0x28
gelmes 3:5ffe7e9c0bb3 50 #define I2C_SLV1_REG 0x29
gelmes 3:5ffe7e9c0bb3 51 #define I2C_SLV1_CTRL 0x2A
gelmes 3:5ffe7e9c0bb3 52 #define I2C_SLV2_ADDR 0x2B
gelmes 3:5ffe7e9c0bb3 53 #define I2C_SLV2_REG 0x2C
gelmes 3:5ffe7e9c0bb3 54 #define I2C_SLV2_CTRL 0x2D
gelmes 3:5ffe7e9c0bb3 55 #define I2C_SLV3_ADDR 0x2E
gelmes 3:5ffe7e9c0bb3 56 #define I2C_SLV3_REG 0x2F
gelmes 3:5ffe7e9c0bb3 57 #define I2C_SLV3_CTRL 0x30
gelmes 3:5ffe7e9c0bb3 58 #define I2C_SLV4_ADDR 0x31
gelmes 3:5ffe7e9c0bb3 59 #define I2C_SLV4_REG 0x32
gelmes 3:5ffe7e9c0bb3 60 #define I2C_SLV4_DO 0x33
gelmes 3:5ffe7e9c0bb3 61 #define I2C_SLV4_CTRL 0x34
gelmes 3:5ffe7e9c0bb3 62 #define I2C_SLV4_DI 0x35
gelmes 3:5ffe7e9c0bb3 63 #define I2C_MST_STATUS 0x36
gelmes 3:5ffe7e9c0bb3 64 #define INT_PIN_CFG 0x37
gelmes 3:5ffe7e9c0bb3 65 #define INT_ENABLE 0x38
gelmes 3:5ffe7e9c0bb3 66 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
gelmes 3:5ffe7e9c0bb3 67 #define INT_STATUS 0x3A
gelmes 3:5ffe7e9c0bb3 68 #define ACCEL_XOUT_H 0x3B
gelmes 3:5ffe7e9c0bb3 69 #define ACCEL_XOUT_L 0x3C
gelmes 3:5ffe7e9c0bb3 70 #define ACCEL_YOUT_H 0x3D
gelmes 3:5ffe7e9c0bb3 71 #define ACCEL_YOUT_L 0x3E
gelmes 3:5ffe7e9c0bb3 72 #define ACCEL_ZOUT_H 0x3F
gelmes 3:5ffe7e9c0bb3 73 #define ACCEL_ZOUT_L 0x40
gelmes 3:5ffe7e9c0bb3 74 #define TEMP_OUT_H 0x41
gelmes 3:5ffe7e9c0bb3 75 #define TEMP_OUT_L 0x42
gelmes 3:5ffe7e9c0bb3 76 #define GYRO_XOUT_H 0x43
gelmes 3:5ffe7e9c0bb3 77 #define GYRO_XOUT_L 0x44
gelmes 3:5ffe7e9c0bb3 78 #define GYRO_YOUT_H 0x45
gelmes 3:5ffe7e9c0bb3 79 #define GYRO_YOUT_L 0x46
gelmes 3:5ffe7e9c0bb3 80 #define GYRO_ZOUT_H 0x47
gelmes 3:5ffe7e9c0bb3 81 #define GYRO_ZOUT_L 0x48
gelmes 3:5ffe7e9c0bb3 82 #define EXT_SENS_DATA_00 0x49
gelmes 3:5ffe7e9c0bb3 83 #define EXT_SENS_DATA_01 0x4A
gelmes 3:5ffe7e9c0bb3 84 #define EXT_SENS_DATA_02 0x4B
gelmes 3:5ffe7e9c0bb3 85 #define EXT_SENS_DATA_03 0x4C
gelmes 3:5ffe7e9c0bb3 86 #define EXT_SENS_DATA_04 0x4D
gelmes 3:5ffe7e9c0bb3 87 #define EXT_SENS_DATA_05 0x4E
gelmes 3:5ffe7e9c0bb3 88 #define EXT_SENS_DATA_06 0x4F
gelmes 3:5ffe7e9c0bb3 89 #define EXT_SENS_DATA_07 0x50
gelmes 3:5ffe7e9c0bb3 90 #define EXT_SENS_DATA_08 0x51
gelmes 3:5ffe7e9c0bb3 91 #define EXT_SENS_DATA_09 0x52
gelmes 3:5ffe7e9c0bb3 92 #define EXT_SENS_DATA_10 0x53
gelmes 3:5ffe7e9c0bb3 93 #define EXT_SENS_DATA_11 0x54
gelmes 3:5ffe7e9c0bb3 94 #define EXT_SENS_DATA_12 0x55
gelmes 3:5ffe7e9c0bb3 95 #define EXT_SENS_DATA_13 0x56
gelmes 3:5ffe7e9c0bb3 96 #define EXT_SENS_DATA_14 0x57
gelmes 3:5ffe7e9c0bb3 97 #define EXT_SENS_DATA_15 0x58
gelmes 3:5ffe7e9c0bb3 98 #define EXT_SENS_DATA_16 0x59
gelmes 3:5ffe7e9c0bb3 99 #define EXT_SENS_DATA_17 0x5A
gelmes 3:5ffe7e9c0bb3 100 #define EXT_SENS_DATA_18 0x5B
gelmes 3:5ffe7e9c0bb3 101 #define EXT_SENS_DATA_19 0x5C
gelmes 3:5ffe7e9c0bb3 102 #define EXT_SENS_DATA_20 0x5D
gelmes 3:5ffe7e9c0bb3 103 #define EXT_SENS_DATA_21 0x5E
gelmes 3:5ffe7e9c0bb3 104 #define EXT_SENS_DATA_22 0x5F
gelmes 3:5ffe7e9c0bb3 105 #define EXT_SENS_DATA_23 0x60
gelmes 3:5ffe7e9c0bb3 106 #define MOT_DETECT_STATUS 0x61
gelmes 3:5ffe7e9c0bb3 107 #define I2C_SLV0_DO 0x63
gelmes 3:5ffe7e9c0bb3 108 #define I2C_SLV1_DO 0x64
gelmes 3:5ffe7e9c0bb3 109 #define I2C_SLV2_DO 0x65
gelmes 3:5ffe7e9c0bb3 110 #define I2C_SLV3_DO 0x66
gelmes 3:5ffe7e9c0bb3 111 #define I2C_MST_DELAY_CTRL 0x67
gelmes 3:5ffe7e9c0bb3 112 #define SIGNAL_PATH_RESET 0x68
gelmes 3:5ffe7e9c0bb3 113 #define MOT_DETECT_CTRL 0x69
gelmes 3:5ffe7e9c0bb3 114 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
gelmes 3:5ffe7e9c0bb3 115 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
gelmes 3:5ffe7e9c0bb3 116 #define PWR_MGMT_2 0x6C
gelmes 3:5ffe7e9c0bb3 117 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
gelmes 3:5ffe7e9c0bb3 118 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
gelmes 3:5ffe7e9c0bb3 119 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
gelmes 3:5ffe7e9c0bb3 120 #define DMP_REG_1 0x70
gelmes 3:5ffe7e9c0bb3 121 #define DMP_REG_2 0x71
gelmes 3:5ffe7e9c0bb3 122 #define FIFO_COUNTH 0x72
gelmes 3:5ffe7e9c0bb3 123 #define FIFO_COUNTL 0x73
gelmes 3:5ffe7e9c0bb3 124 #define FIFO_R_W 0x74
gelmes 3:5ffe7e9c0bb3 125 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68
gelmes 3:5ffe7e9c0bb3 126
gelmes 3:5ffe7e9c0bb3 127 // Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
gelmes 3:5ffe7e9c0bb3 128 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
gelmes 3:5ffe7e9c0bb3 129 #define ADO 0
gelmes 3:5ffe7e9c0bb3 130 #if ADO
gelmes 3:5ffe7e9c0bb3 131 #define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1
gelmes 3:5ffe7e9c0bb3 132 #else
gelmes 3:5ffe7e9c0bb3 133 #define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0
gelmes 3:5ffe7e9c0bb3 134 #endif
gelmes 3:5ffe7e9c0bb3 135
gelmes 3:5ffe7e9c0bb3 136 // Set initial input parameters
gelmes 3:5ffe7e9c0bb3 137 enum Ascale {
gelmes 3:5ffe7e9c0bb3 138 AFS_2G = 0,
gelmes 3:5ffe7e9c0bb3 139 AFS_4G,
gelmes 3:5ffe7e9c0bb3 140 AFS_8G,
gelmes 3:5ffe7e9c0bb3 141 AFS_16G
gelmes 3:5ffe7e9c0bb3 142 };
gelmes 3:5ffe7e9c0bb3 143
gelmes 3:5ffe7e9c0bb3 144 enum Gscale {
gelmes 3:5ffe7e9c0bb3 145 GFS_250DPS = 0,
gelmes 3:5ffe7e9c0bb3 146 GFS_500DPS,
gelmes 3:5ffe7e9c0bb3 147 GFS_1000DPS,
gelmes 3:5ffe7e9c0bb3 148 GFS_2000DPS
gelmes 3:5ffe7e9c0bb3 149 };
gelmes 3:5ffe7e9c0bb3 150
gelmes 3:5ffe7e9c0bb3 151 // Specify sensor full scale
gelmes 3:5ffe7e9c0bb3 152 int Gscale = GFS_250DPS;
gelmes 3:5ffe7e9c0bb3 153 int Ascale = AFS_2G;
gelmes 3:5ffe7e9c0bb3 154
gelmes 3:5ffe7e9c0bb3 155 //Set up I2C, (SDA,SCL)
gelmes 3:5ffe7e9c0bb3 156 I2C i2c(I2C_SDA, I2C_SCL);
gelmes 3:5ffe7e9c0bb3 157
gelmes 3:5ffe7e9c0bb3 158 float aRes, gRes; // scale resolutions per LSB for the sensors
gelmes 3:5ffe7e9c0bb3 159
gelmes 3:5ffe7e9c0bb3 160 // Pin definitions
gelmes 3:5ffe7e9c0bb3 161 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
gelmes 3:5ffe7e9c0bb3 162
gelmes 3:5ffe7e9c0bb3 163 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
gelmes 3:5ffe7e9c0bb3 164 float ax, ay, az; // Stores the real accel value in g's
gelmes 3:5ffe7e9c0bb3 165 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
gelmes 3:5ffe7e9c0bb3 166 float gx, gy, gz; // Stores the real gyro value in degrees per seconds
gelmes 3:5ffe7e9c0bb3 167 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
gelmes 3:5ffe7e9c0bb3 168 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
gelmes 3:5ffe7e9c0bb3 169 float temperature;
gelmes 3:5ffe7e9c0bb3 170 float SelfTest[6];
gelmes 3:5ffe7e9c0bb3 171
gelmes 3:5ffe7e9c0bb3 172 int delt_t = 0; // used to control display output rate
gelmes 3:5ffe7e9c0bb3 173 int count = 0; // used to control display output rate
gelmes 3:5ffe7e9c0bb3 174
gelmes 3:5ffe7e9c0bb3 175 // parameters for 6 DoF sensor fusion calculations
gelmes 3:5ffe7e9c0bb3 176 float PI = 3.14159265358979323846f;
gelmes 3:5ffe7e9c0bb3 177 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
gelmes 3:5ffe7e9c0bb3 178 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
gelmes 3:5ffe7e9c0bb3 179 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
gelmes 3:5ffe7e9c0bb3 180 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
gelmes 3:5ffe7e9c0bb3 181 float pitch, yaw, roll;
gelmes 3:5ffe7e9c0bb3 182 float deltat = 0.0f; // integration interval for both filter schemes
gelmes 3:5ffe7e9c0bb3 183 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
gelmes 3:5ffe7e9c0bb3 184 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
gelmes 3:5ffe7e9c0bb3 185
gelmes 3:5ffe7e9c0bb3 186 class MPU6050
gelmes 3:5ffe7e9c0bb3 187 {
gelmes 3:5ffe7e9c0bb3 188
gelmes 3:5ffe7e9c0bb3 189 protected:
gelmes 3:5ffe7e9c0bb3 190
gelmes 3:5ffe7e9c0bb3 191 public:
gelmes 3:5ffe7e9c0bb3 192 //===================================================================================================================
gelmes 3:5ffe7e9c0bb3 193 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
gelmes 3:5ffe7e9c0bb3 194 //===================================================================================================================
gelmes 3:5ffe7e9c0bb3 195
gelmes 3:5ffe7e9c0bb3 196 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {
gelmes 3:5ffe7e9c0bb3 197 char data_write[2];
gelmes 3:5ffe7e9c0bb3 198 data_write[0] = subAddress;
gelmes 3:5ffe7e9c0bb3 199 data_write[1] = data;
gelmes 3:5ffe7e9c0bb3 200 i2c.write(address, data_write, 2, 0);
gelmes 3:5ffe7e9c0bb3 201 }
gelmes 3:5ffe7e9c0bb3 202
gelmes 3:5ffe7e9c0bb3 203 char readByte(uint8_t address, uint8_t subAddress) {
gelmes 3:5ffe7e9c0bb3 204 char data[1]; // `data` will store the register data
gelmes 3:5ffe7e9c0bb3 205 char data_write[1];
gelmes 3:5ffe7e9c0bb3 206 data_write[0] = subAddress;
gelmes 3:5ffe7e9c0bb3 207 i2c.write(address, data_write, 1, 1); // no stop
gelmes 3:5ffe7e9c0bb3 208 i2c.read(address, data, 1, 0);
gelmes 3:5ffe7e9c0bb3 209 return data[0];
gelmes 3:5ffe7e9c0bb3 210 }
gelmes 3:5ffe7e9c0bb3 211
gelmes 3:5ffe7e9c0bb3 212 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) {
gelmes 3:5ffe7e9c0bb3 213 char data[14];
gelmes 3:5ffe7e9c0bb3 214 char data_write[1];
gelmes 3:5ffe7e9c0bb3 215 data_write[0] = subAddress;
gelmes 3:5ffe7e9c0bb3 216 i2c.write(address, data_write, 1, 1); // no stop
gelmes 3:5ffe7e9c0bb3 217 i2c.read(address, data, count, 0);
gelmes 3:5ffe7e9c0bb3 218 for(int ii = 0; ii < count; ii++) {
gelmes 3:5ffe7e9c0bb3 219 dest[ii] = data[ii];
gelmes 3:5ffe7e9c0bb3 220 }
gelmes 3:5ffe7e9c0bb3 221 }
gelmes 3:5ffe7e9c0bb3 222
gelmes 3:5ffe7e9c0bb3 223
gelmes 3:5ffe7e9c0bb3 224 void getGres() {
gelmes 3:5ffe7e9c0bb3 225 switch (Gscale) {
gelmes 3:5ffe7e9c0bb3 226 // Possible gyro scales (and their register bit settings) are:
gelmes 3:5ffe7e9c0bb3 227 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
gelmes 3:5ffe7e9c0bb3 228 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
gelmes 3:5ffe7e9c0bb3 229 case GFS_250DPS:
gelmes 3:5ffe7e9c0bb3 230 gRes = 250.0/32768.0;
gelmes 3:5ffe7e9c0bb3 231 break;
gelmes 3:5ffe7e9c0bb3 232 case GFS_500DPS:
gelmes 3:5ffe7e9c0bb3 233 gRes = 500.0/32768.0;
gelmes 3:5ffe7e9c0bb3 234 break;
gelmes 3:5ffe7e9c0bb3 235 case GFS_1000DPS:
gelmes 3:5ffe7e9c0bb3 236 gRes = 1000.0/32768.0;
gelmes 3:5ffe7e9c0bb3 237 break;
gelmes 3:5ffe7e9c0bb3 238 case GFS_2000DPS:
gelmes 3:5ffe7e9c0bb3 239 gRes = 2000.0/32768.0;
gelmes 3:5ffe7e9c0bb3 240 break;
gelmes 3:5ffe7e9c0bb3 241 }
gelmes 3:5ffe7e9c0bb3 242 }
gelmes 3:5ffe7e9c0bb3 243
gelmes 3:5ffe7e9c0bb3 244 void getAres() {
gelmes 3:5ffe7e9c0bb3 245 switch (Ascale) {
gelmes 3:5ffe7e9c0bb3 246 // Possible accelerometer scales (and their register bit settings) are:
gelmes 3:5ffe7e9c0bb3 247 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
gelmes 3:5ffe7e9c0bb3 248 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
gelmes 3:5ffe7e9c0bb3 249 case AFS_2G:
gelmes 3:5ffe7e9c0bb3 250 aRes = 2.0/32768.0;
gelmes 3:5ffe7e9c0bb3 251 break;
gelmes 3:5ffe7e9c0bb3 252 case AFS_4G:
gelmes 3:5ffe7e9c0bb3 253 aRes = 4.0/32768.0;
gelmes 3:5ffe7e9c0bb3 254 break;
gelmes 3:5ffe7e9c0bb3 255 case AFS_8G:
gelmes 3:5ffe7e9c0bb3 256 aRes = 8.0/32768.0;
gelmes 3:5ffe7e9c0bb3 257 break;
gelmes 3:5ffe7e9c0bb3 258 case AFS_16G:
gelmes 3:5ffe7e9c0bb3 259 aRes = 16.0/32768.0;
gelmes 3:5ffe7e9c0bb3 260 break;
gelmes 3:5ffe7e9c0bb3 261 }
gelmes 3:5ffe7e9c0bb3 262 }
gelmes 3:5ffe7e9c0bb3 263
gelmes 3:5ffe7e9c0bb3 264
gelmes 3:5ffe7e9c0bb3 265 void readAccelData(int16_t * destination) {
gelmes 3:5ffe7e9c0bb3 266 uint8_t rawData[6]; // x/y/z accel register data stored here
gelmes 3:5ffe7e9c0bb3 267 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
gelmes 3:5ffe7e9c0bb3 268 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gelmes 3:5ffe7e9c0bb3 269 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gelmes 3:5ffe7e9c0bb3 270 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
gelmes 3:5ffe7e9c0bb3 271 }
gelmes 3:5ffe7e9c0bb3 272
gelmes 3:5ffe7e9c0bb3 273 void readGyroData(int16_t * destination) {
gelmes 3:5ffe7e9c0bb3 274 uint8_t rawData[6]; // x/y/z gyro register data stored here
gelmes 3:5ffe7e9c0bb3 275 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gelmes 3:5ffe7e9c0bb3 276 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gelmes 3:5ffe7e9c0bb3 277 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gelmes 3:5ffe7e9c0bb3 278 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
gelmes 3:5ffe7e9c0bb3 279 }
gelmes 3:5ffe7e9c0bb3 280
gelmes 3:5ffe7e9c0bb3 281 int16_t readTempData() {
gelmes 3:5ffe7e9c0bb3 282 uint8_t rawData[2]; // x/y/z gyro register data stored here
gelmes 3:5ffe7e9c0bb3 283 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
gelmes 3:5ffe7e9c0bb3 284 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
gelmes 3:5ffe7e9c0bb3 285 }
gelmes 3:5ffe7e9c0bb3 286
gelmes 3:5ffe7e9c0bb3 287
gelmes 3:5ffe7e9c0bb3 288
gelmes 3:5ffe7e9c0bb3 289 // Configure the motion detection control for low power accelerometer mode
gelmes 3:5ffe7e9c0bb3 290 void LowPowerAccelOnly() {
gelmes 3:5ffe7e9c0bb3 291
gelmes 3:5ffe7e9c0bb3 292 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
gelmes 3:5ffe7e9c0bb3 293 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
gelmes 3:5ffe7e9c0bb3 294 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
gelmes 3:5ffe7e9c0bb3 295 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
gelmes 3:5ffe7e9c0bb3 296 // consideration for these threshold evaluations; otherwise, the flags would be set all the time!
gelmes 3:5ffe7e9c0bb3 297
gelmes 3:5ffe7e9c0bb3 298 uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
gelmes 3:5ffe7e9c0bb3 299 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
gelmes 3:5ffe7e9c0bb3 300 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
gelmes 3:5ffe7e9c0bb3 301
gelmes 3:5ffe7e9c0bb3 302 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
gelmes 3:5ffe7e9c0bb3 303 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
gelmes 3:5ffe7e9c0bb3 304 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
gelmes 3:5ffe7e9c0bb3 305
gelmes 3:5ffe7e9c0bb3 306 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
gelmes 3:5ffe7e9c0bb3 307 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
gelmes 3:5ffe7e9c0bb3 308 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
gelmes 3:5ffe7e9c0bb3 309 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
gelmes 3:5ffe7e9c0bb3 310
gelmes 3:5ffe7e9c0bb3 311 c = readByte(MPU6050_ADDRESS, CONFIG);
gelmes 3:5ffe7e9c0bb3 312 writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
gelmes 3:5ffe7e9c0bb3 313 writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
gelmes 3:5ffe7e9c0bb3 314
gelmes 3:5ffe7e9c0bb3 315 c = readByte(MPU6050_ADDRESS, INT_ENABLE);
gelmes 3:5ffe7e9c0bb3 316 writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
gelmes 3:5ffe7e9c0bb3 317 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
gelmes 3:5ffe7e9c0bb3 318
gelmes 3:5ffe7e9c0bb3 319 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
gelmes 3:5ffe7e9c0bb3 320 // for at least the counter duration
gelmes 3:5ffe7e9c0bb3 321 writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
gelmes 3:5ffe7e9c0bb3 322 writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
gelmes 3:5ffe7e9c0bb3 323
gelmes 3:5ffe7e9c0bb3 324 wait(0.1); // Add delay for accumulation of samples
gelmes 3:5ffe7e9c0bb3 325
gelmes 3:5ffe7e9c0bb3 326 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
gelmes 3:5ffe7e9c0bb3 327 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
gelmes 3:5ffe7e9c0bb3 328 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
gelmes 3:5ffe7e9c0bb3 329
gelmes 3:5ffe7e9c0bb3 330 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
gelmes 3:5ffe7e9c0bb3 331 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
gelmes 3:5ffe7e9c0bb3 332 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
gelmes 3:5ffe7e9c0bb3 333
gelmes 3:5ffe7e9c0bb3 334 c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
gelmes 3:5ffe7e9c0bb3 335 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
gelmes 3:5ffe7e9c0bb3 336 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
gelmes 3:5ffe7e9c0bb3 337
gelmes 3:5ffe7e9c0bb3 338 }
gelmes 3:5ffe7e9c0bb3 339
gelmes 3:5ffe7e9c0bb3 340
gelmes 3:5ffe7e9c0bb3 341 void resetMPU6050() {
gelmes 3:5ffe7e9c0bb3 342 // reset device
gelmes 3:5ffe7e9c0bb3 343 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
gelmes 3:5ffe7e9c0bb3 344 wait(0.1);
gelmes 3:5ffe7e9c0bb3 345 }
gelmes 3:5ffe7e9c0bb3 346
gelmes 3:5ffe7e9c0bb3 347
gelmes 3:5ffe7e9c0bb3 348 void initMPU6050() {
gelmes 3:5ffe7e9c0bb3 349 // Initialize MPU6050 device
gelmes 3:5ffe7e9c0bb3 350 // wake up device
gelmes 3:5ffe7e9c0bb3 351 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
gelmes 3:5ffe7e9c0bb3 352 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
gelmes 3:5ffe7e9c0bb3 353
gelmes 3:5ffe7e9c0bb3 354 // get stable time source
gelmes 3:5ffe7e9c0bb3 355 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
gelmes 3:5ffe7e9c0bb3 356
gelmes 3:5ffe7e9c0bb3 357 // Configure Gyro and Accelerometer
gelmes 3:5ffe7e9c0bb3 358 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
gelmes 3:5ffe7e9c0bb3 359 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
gelmes 3:5ffe7e9c0bb3 360 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
gelmes 3:5ffe7e9c0bb3 361 writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
gelmes 3:5ffe7e9c0bb3 362
gelmes 3:5ffe7e9c0bb3 363 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
gelmes 3:5ffe7e9c0bb3 364 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
gelmes 3:5ffe7e9c0bb3 365
gelmes 3:5ffe7e9c0bb3 366 // Set gyroscope full scale range
gelmes 3:5ffe7e9c0bb3 367 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
gelmes 3:5ffe7e9c0bb3 368 uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
gelmes 3:5ffe7e9c0bb3 369 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
gelmes 3:5ffe7e9c0bb3 370 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
gelmes 3:5ffe7e9c0bb3 371 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
gelmes 3:5ffe7e9c0bb3 372
gelmes 3:5ffe7e9c0bb3 373 // Set accelerometer configuration
gelmes 3:5ffe7e9c0bb3 374 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
gelmes 3:5ffe7e9c0bb3 375 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
gelmes 3:5ffe7e9c0bb3 376 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
gelmes 3:5ffe7e9c0bb3 377 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
gelmes 3:5ffe7e9c0bb3 378
gelmes 3:5ffe7e9c0bb3 379 // Configure Interrupts and Bypass Enable
gelmes 3:5ffe7e9c0bb3 380 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
gelmes 3:5ffe7e9c0bb3 381 // can join the I2C bus and all can be controlled by the Arduino as master
gelmes 3:5ffe7e9c0bb3 382 writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
gelmes 3:5ffe7e9c0bb3 383 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
gelmes 3:5ffe7e9c0bb3 384 }
gelmes 3:5ffe7e9c0bb3 385
gelmes 3:5ffe7e9c0bb3 386 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
gelmes 3:5ffe7e9c0bb3 387 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
gelmes 3:5ffe7e9c0bb3 388 void calibrateMPU6050(float * dest1, float * dest2) {
gelmes 3:5ffe7e9c0bb3 389 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
gelmes 3:5ffe7e9c0bb3 390 uint16_t ii, packet_count, fifo_count;
gelmes 3:5ffe7e9c0bb3 391 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
gelmes 3:5ffe7e9c0bb3 392
gelmes 3:5ffe7e9c0bb3 393 // reset device, reset all registers, clear gyro and accelerometer bias registers
gelmes 3:5ffe7e9c0bb3 394 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
gelmes 3:5ffe7e9c0bb3 395 wait(0.1);
gelmes 3:5ffe7e9c0bb3 396
gelmes 3:5ffe7e9c0bb3 397 // get stable time source
gelmes 3:5ffe7e9c0bb3 398 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
gelmes 3:5ffe7e9c0bb3 399 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
gelmes 3:5ffe7e9c0bb3 400 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
gelmes 3:5ffe7e9c0bb3 401 wait(0.2);
gelmes 3:5ffe7e9c0bb3 402
gelmes 3:5ffe7e9c0bb3 403 // Configure device for bias calculation
gelmes 3:5ffe7e9c0bb3 404 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
gelmes 3:5ffe7e9c0bb3 405 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
gelmes 3:5ffe7e9c0bb3 406 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
gelmes 3:5ffe7e9c0bb3 407 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
gelmes 3:5ffe7e9c0bb3 408 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
gelmes 3:5ffe7e9c0bb3 409 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
gelmes 3:5ffe7e9c0bb3 410 wait(0.015);
gelmes 3:5ffe7e9c0bb3 411
gelmes 3:5ffe7e9c0bb3 412 // Configure MPU6050 gyro and accelerometer for bias calculation
gelmes 3:5ffe7e9c0bb3 413 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
gelmes 3:5ffe7e9c0bb3 414 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
gelmes 3:5ffe7e9c0bb3 415 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
gelmes 3:5ffe7e9c0bb3 416 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
gelmes 3:5ffe7e9c0bb3 417
gelmes 3:5ffe7e9c0bb3 418 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
gelmes 3:5ffe7e9c0bb3 419 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
gelmes 3:5ffe7e9c0bb3 420
gelmes 3:5ffe7e9c0bb3 421 // Configure FIFO to capture accelerometer and gyro data for bias calculation
gelmes 3:5ffe7e9c0bb3 422 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
gelmes 3:5ffe7e9c0bb3 423 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
gelmes 3:5ffe7e9c0bb3 424 wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
gelmes 3:5ffe7e9c0bb3 425
gelmes 3:5ffe7e9c0bb3 426 // At end of sample accumulation, turn off FIFO sensor read
gelmes 3:5ffe7e9c0bb3 427 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
gelmes 3:5ffe7e9c0bb3 428 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
gelmes 3:5ffe7e9c0bb3 429 fifo_count = ((uint16_t)data[0] << 8) | data[1];
gelmes 3:5ffe7e9c0bb3 430 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
gelmes 3:5ffe7e9c0bb3 431
gelmes 3:5ffe7e9c0bb3 432 for (ii = 0; ii < packet_count; ii++) {
gelmes 3:5ffe7e9c0bb3 433 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
gelmes 3:5ffe7e9c0bb3 434 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
gelmes 3:5ffe7e9c0bb3 435 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
gelmes 3:5ffe7e9c0bb3 436 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
gelmes 3:5ffe7e9c0bb3 437 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gelmes 3:5ffe7e9c0bb3 438 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gelmes 3:5ffe7e9c0bb3 439 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gelmes 3:5ffe7e9c0bb3 440 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
gelmes 3:5ffe7e9c0bb3 441
gelmes 3:5ffe7e9c0bb3 442 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
gelmes 3:5ffe7e9c0bb3 443 accel_bias[1] += (int32_t) accel_temp[1];
gelmes 3:5ffe7e9c0bb3 444 accel_bias[2] += (int32_t) accel_temp[2];
gelmes 3:5ffe7e9c0bb3 445 gyro_bias[0] += (int32_t) gyro_temp[0];
gelmes 3:5ffe7e9c0bb3 446 gyro_bias[1] += (int32_t) gyro_temp[1];
gelmes 3:5ffe7e9c0bb3 447 gyro_bias[2] += (int32_t) gyro_temp[2];
gelmes 3:5ffe7e9c0bb3 448
gelmes 3:5ffe7e9c0bb3 449 }
gelmes 3:5ffe7e9c0bb3 450 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
gelmes 3:5ffe7e9c0bb3 451 accel_bias[1] /= (int32_t) packet_count;
gelmes 3:5ffe7e9c0bb3 452 accel_bias[2] /= (int32_t) packet_count;
gelmes 3:5ffe7e9c0bb3 453 gyro_bias[0] /= (int32_t) packet_count;
gelmes 3:5ffe7e9c0bb3 454 gyro_bias[1] /= (int32_t) packet_count;
gelmes 3:5ffe7e9c0bb3 455 gyro_bias[2] /= (int32_t) packet_count;
gelmes 3:5ffe7e9c0bb3 456
gelmes 3:5ffe7e9c0bb3 457 if(accel_bias[2] > 0L) {
gelmes 3:5ffe7e9c0bb3 458 accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation
gelmes 3:5ffe7e9c0bb3 459 } else {
gelmes 3:5ffe7e9c0bb3 460 accel_bias[2] += (int32_t) accelsensitivity;
gelmes 3:5ffe7e9c0bb3 461 }
gelmes 3:5ffe7e9c0bb3 462
gelmes 3:5ffe7e9c0bb3 463 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
gelmes 3:5ffe7e9c0bb3 464 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
gelmes 3:5ffe7e9c0bb3 465 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
gelmes 3:5ffe7e9c0bb3 466 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
gelmes 3:5ffe7e9c0bb3 467 data[3] = (-gyro_bias[1]/4) & 0xFF;
gelmes 3:5ffe7e9c0bb3 468 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
gelmes 3:5ffe7e9c0bb3 469 data[5] = (-gyro_bias[2]/4) & 0xFF;
gelmes 3:5ffe7e9c0bb3 470
gelmes 3:5ffe7e9c0bb3 471 // Push gyro biases to hardware registers
gelmes 3:5ffe7e9c0bb3 472 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
gelmes 3:5ffe7e9c0bb3 473 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
gelmes 3:5ffe7e9c0bb3 474 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
gelmes 3:5ffe7e9c0bb3 475 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
gelmes 3:5ffe7e9c0bb3 476 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
gelmes 3:5ffe7e9c0bb3 477 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
gelmes 3:5ffe7e9c0bb3 478
gelmes 3:5ffe7e9c0bb3 479 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
gelmes 3:5ffe7e9c0bb3 480 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
gelmes 3:5ffe7e9c0bb3 481 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
gelmes 3:5ffe7e9c0bb3 482
gelmes 3:5ffe7e9c0bb3 483 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
gelmes 3:5ffe7e9c0bb3 484 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
gelmes 3:5ffe7e9c0bb3 485 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
gelmes 3:5ffe7e9c0bb3 486 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
gelmes 3:5ffe7e9c0bb3 487 // the accelerometer biases calculated above must be divided by 8.
gelmes 3:5ffe7e9c0bb3 488
gelmes 3:5ffe7e9c0bb3 489 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
gelmes 3:5ffe7e9c0bb3 490 readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
gelmes 3:5ffe7e9c0bb3 491 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
gelmes 3:5ffe7e9c0bb3 492 readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
gelmes 3:5ffe7e9c0bb3 493 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
gelmes 3:5ffe7e9c0bb3 494 readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
gelmes 3:5ffe7e9c0bb3 495 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
gelmes 3:5ffe7e9c0bb3 496
gelmes 3:5ffe7e9c0bb3 497 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
gelmes 3:5ffe7e9c0bb3 498 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
gelmes 3:5ffe7e9c0bb3 499
gelmes 3:5ffe7e9c0bb3 500 for(ii = 0; ii < 3; ii++) {
gelmes 3:5ffe7e9c0bb3 501 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
gelmes 3:5ffe7e9c0bb3 502 }
gelmes 3:5ffe7e9c0bb3 503
gelmes 3:5ffe7e9c0bb3 504 // Construct total accelerometer bias, including calculated average accelerometer bias from above
gelmes 3:5ffe7e9c0bb3 505 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
gelmes 3:5ffe7e9c0bb3 506 accel_bias_reg[1] -= (accel_bias[1]/8);
gelmes 3:5ffe7e9c0bb3 507 accel_bias_reg[2] -= (accel_bias[2]/8);
gelmes 3:5ffe7e9c0bb3 508
gelmes 3:5ffe7e9c0bb3 509 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
gelmes 3:5ffe7e9c0bb3 510 data[1] = (accel_bias_reg[0]) & 0xFF;
gelmes 3:5ffe7e9c0bb3 511 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
gelmes 3:5ffe7e9c0bb3 512 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
gelmes 3:5ffe7e9c0bb3 513 data[3] = (accel_bias_reg[1]) & 0xFF;
gelmes 3:5ffe7e9c0bb3 514 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
gelmes 3:5ffe7e9c0bb3 515 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
gelmes 3:5ffe7e9c0bb3 516 data[5] = (accel_bias_reg[2]) & 0xFF;
gelmes 3:5ffe7e9c0bb3 517 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
gelmes 3:5ffe7e9c0bb3 518
gelmes 3:5ffe7e9c0bb3 519 // Push accelerometer biases to hardware registers
gelmes 3:5ffe7e9c0bb3 520 // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
gelmes 3:5ffe7e9c0bb3 521 // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
gelmes 3:5ffe7e9c0bb3 522 // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
gelmes 3:5ffe7e9c0bb3 523 // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
gelmes 3:5ffe7e9c0bb3 524 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
gelmes 3:5ffe7e9c0bb3 525 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
gelmes 3:5ffe7e9c0bb3 526
gelmes 3:5ffe7e9c0bb3 527 // Output scaled accelerometer biases for manual subtraction in the main program
gelmes 3:5ffe7e9c0bb3 528 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
gelmes 3:5ffe7e9c0bb3 529 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
gelmes 3:5ffe7e9c0bb3 530 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
gelmes 3:5ffe7e9c0bb3 531 }
gelmes 3:5ffe7e9c0bb3 532
gelmes 3:5ffe7e9c0bb3 533
gelmes 3:5ffe7e9c0bb3 534 // Accelerometer and gyroscope self test; check calibration wrt factory settings
gelmes 3:5ffe7e9c0bb3 535 void MPU6050SelfTest(float * destination) { // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
gelmes 3:5ffe7e9c0bb3 536 uint8_t rawData[4] = {0, 0, 0, 0};
gelmes 3:5ffe7e9c0bb3 537 uint8_t selfTest[6];
gelmes 3:5ffe7e9c0bb3 538 float factoryTrim[6];
gelmes 3:5ffe7e9c0bb3 539
gelmes 3:5ffe7e9c0bb3 540 // Configure the accelerometer for self-test
gelmes 3:5ffe7e9c0bb3 541 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
gelmes 3:5ffe7e9c0bb3 542 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
gelmes 3:5ffe7e9c0bb3 543 wait(0.25); // Delay a while to let the device execute the self-test
gelmes 3:5ffe7e9c0bb3 544 rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
gelmes 3:5ffe7e9c0bb3 545 rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
gelmes 3:5ffe7e9c0bb3 546 rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
gelmes 3:5ffe7e9c0bb3 547 rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
gelmes 3:5ffe7e9c0bb3 548 // Extract the acceleration test results first
gelmes 3:5ffe7e9c0bb3 549 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
gelmes 3:5ffe7e9c0bb3 550 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
gelmes 3:5ffe7e9c0bb3 551 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
gelmes 3:5ffe7e9c0bb3 552 // Extract the gyration test results first
gelmes 3:5ffe7e9c0bb3 553 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
gelmes 3:5ffe7e9c0bb3 554 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
gelmes 3:5ffe7e9c0bb3 555 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
gelmes 3:5ffe7e9c0bb3 556 // Process results to allow final comparison with factory set values
gelmes 3:5ffe7e9c0bb3 557 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
gelmes 3:5ffe7e9c0bb3 558 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
gelmes 3:5ffe7e9c0bb3 559 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
gelmes 3:5ffe7e9c0bb3 560 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
gelmes 3:5ffe7e9c0bb3 561 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
gelmes 3:5ffe7e9c0bb3 562 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
gelmes 3:5ffe7e9c0bb3 563
gelmes 3:5ffe7e9c0bb3 564 // Output self-test results and factory trim calculation if desired
gelmes 3:5ffe7e9c0bb3 565 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
gelmes 3:5ffe7e9c0bb3 566 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
gelmes 3:5ffe7e9c0bb3 567 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
gelmes 3:5ffe7e9c0bb3 568 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
gelmes 3:5ffe7e9c0bb3 569
gelmes 3:5ffe7e9c0bb3 570 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
gelmes 3:5ffe7e9c0bb3 571 // To get to percent, must multiply by 100 and subtract result from 100
gelmes 3:5ffe7e9c0bb3 572 for (int i = 0; i < 6; i++) {
gelmes 3:5ffe7e9c0bb3 573 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
gelmes 3:5ffe7e9c0bb3 574 }
gelmes 3:5ffe7e9c0bb3 575
gelmes 3:5ffe7e9c0bb3 576 }
gelmes 3:5ffe7e9c0bb3 577
gelmes 3:5ffe7e9c0bb3 578
gelmes 3:5ffe7e9c0bb3 579 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
gelmes 3:5ffe7e9c0bb3 580 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
gelmes 3:5ffe7e9c0bb3 581 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
gelmes 3:5ffe7e9c0bb3 582 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
gelmes 3:5ffe7e9c0bb3 583 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
gelmes 3:5ffe7e9c0bb3 584 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
gelmes 3:5ffe7e9c0bb3 585 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz) {
gelmes 3:5ffe7e9c0bb3 586 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
gelmes 3:5ffe7e9c0bb3 587 float norm; // vector norm
gelmes 3:5ffe7e9c0bb3 588 float f1, f2, f3; // objective funcyion elements
gelmes 3:5ffe7e9c0bb3 589 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
gelmes 3:5ffe7e9c0bb3 590 float qDot1, qDot2, qDot3, qDot4;
gelmes 3:5ffe7e9c0bb3 591 float hatDot1, hatDot2, hatDot3, hatDot4;
gelmes 3:5ffe7e9c0bb3 592 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
gelmes 3:5ffe7e9c0bb3 593
gelmes 3:5ffe7e9c0bb3 594 // Auxiliary variables to avoid repeated arithmetic
gelmes 3:5ffe7e9c0bb3 595 float _halfq1 = 0.5f * q1;
gelmes 3:5ffe7e9c0bb3 596 float _halfq2 = 0.5f * q2;
gelmes 3:5ffe7e9c0bb3 597 float _halfq3 = 0.5f * q3;
gelmes 3:5ffe7e9c0bb3 598 float _halfq4 = 0.5f * q4;
gelmes 3:5ffe7e9c0bb3 599 float _2q1 = 2.0f * q1;
gelmes 3:5ffe7e9c0bb3 600 float _2q2 = 2.0f * q2;
gelmes 3:5ffe7e9c0bb3 601 float _2q3 = 2.0f * q3;
gelmes 3:5ffe7e9c0bb3 602 float _2q4 = 2.0f * q4;
gelmes 3:5ffe7e9c0bb3 603 // float _2q1q3 = 2.0f * q1 * q3;
gelmes 3:5ffe7e9c0bb3 604 // float _2q3q4 = 2.0f * q3 * q4;
gelmes 3:5ffe7e9c0bb3 605
gelmes 3:5ffe7e9c0bb3 606 // Normalise accelerometer measurement
gelmes 3:5ffe7e9c0bb3 607 norm = sqrt(ax * ax + ay * ay + az * az);
gelmes 3:5ffe7e9c0bb3 608 if (norm == 0.0f) return; // handle NaN
gelmes 3:5ffe7e9c0bb3 609 norm = 1.0f/norm;
gelmes 3:5ffe7e9c0bb3 610 ax *= norm;
gelmes 3:5ffe7e9c0bb3 611 ay *= norm;
gelmes 3:5ffe7e9c0bb3 612 az *= norm;
gelmes 3:5ffe7e9c0bb3 613
gelmes 3:5ffe7e9c0bb3 614 // Compute the objective function and Jacobian
gelmes 3:5ffe7e9c0bb3 615 f1 = _2q2 * q4 - _2q1 * q3 - ax;
gelmes 3:5ffe7e9c0bb3 616 f2 = _2q1 * q2 + _2q3 * q4 - ay;
gelmes 3:5ffe7e9c0bb3 617 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
gelmes 3:5ffe7e9c0bb3 618 J_11or24 = _2q3;
gelmes 3:5ffe7e9c0bb3 619 J_12or23 = _2q4;
gelmes 3:5ffe7e9c0bb3 620 J_13or22 = _2q1;
gelmes 3:5ffe7e9c0bb3 621 J_14or21 = _2q2;
gelmes 3:5ffe7e9c0bb3 622 J_32 = 2.0f * J_14or21;
gelmes 3:5ffe7e9c0bb3 623 J_33 = 2.0f * J_11or24;
gelmes 3:5ffe7e9c0bb3 624
gelmes 3:5ffe7e9c0bb3 625 // Compute the gradient (matrix multiplication)
gelmes 3:5ffe7e9c0bb3 626 hatDot1 = J_14or21 * f2 - J_11or24 * f1;
gelmes 3:5ffe7e9c0bb3 627 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
gelmes 3:5ffe7e9c0bb3 628 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
gelmes 3:5ffe7e9c0bb3 629 hatDot4 = J_14or21 * f1 + J_11or24 * f2;
gelmes 3:5ffe7e9c0bb3 630
gelmes 3:5ffe7e9c0bb3 631 // Normalize the gradient
gelmes 3:5ffe7e9c0bb3 632 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
gelmes 3:5ffe7e9c0bb3 633 hatDot1 /= norm;
gelmes 3:5ffe7e9c0bb3 634 hatDot2 /= norm;
gelmes 3:5ffe7e9c0bb3 635 hatDot3 /= norm;
gelmes 3:5ffe7e9c0bb3 636 hatDot4 /= norm;
gelmes 3:5ffe7e9c0bb3 637
gelmes 3:5ffe7e9c0bb3 638 // Compute estimated gyroscope biases
gelmes 3:5ffe7e9c0bb3 639 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
gelmes 3:5ffe7e9c0bb3 640 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
gelmes 3:5ffe7e9c0bb3 641 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
gelmes 3:5ffe7e9c0bb3 642
gelmes 3:5ffe7e9c0bb3 643 // Compute and remove gyroscope biases
gelmes 3:5ffe7e9c0bb3 644 gbiasx += gerrx * deltat * zeta;
gelmes 3:5ffe7e9c0bb3 645 gbiasy += gerry * deltat * zeta;
gelmes 3:5ffe7e9c0bb3 646 gbiasz += gerrz * deltat * zeta;
gelmes 3:5ffe7e9c0bb3 647 // gx -= gbiasx;
gelmes 3:5ffe7e9c0bb3 648 // gy -= gbiasy;
gelmes 3:5ffe7e9c0bb3 649 // gz -= gbiasz;
gelmes 3:5ffe7e9c0bb3 650
gelmes 3:5ffe7e9c0bb3 651 // Compute the quaternion derivative
gelmes 3:5ffe7e9c0bb3 652 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
gelmes 3:5ffe7e9c0bb3 653 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
gelmes 3:5ffe7e9c0bb3 654 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
gelmes 3:5ffe7e9c0bb3 655 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
gelmes 3:5ffe7e9c0bb3 656
gelmes 3:5ffe7e9c0bb3 657 // Compute then integrate estimated quaternion derivative
gelmes 3:5ffe7e9c0bb3 658 q1 += (qDot1 -(beta * hatDot1)) * deltat;
gelmes 3:5ffe7e9c0bb3 659 q2 += (qDot2 -(beta * hatDot2)) * deltat;
gelmes 3:5ffe7e9c0bb3 660 q3 += (qDot3 -(beta * hatDot3)) * deltat;
gelmes 3:5ffe7e9c0bb3 661 q4 += (qDot4 -(beta * hatDot4)) * deltat;
gelmes 3:5ffe7e9c0bb3 662
gelmes 3:5ffe7e9c0bb3 663 // Normalize the quaternion
gelmes 3:5ffe7e9c0bb3 664 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
gelmes 3:5ffe7e9c0bb3 665 norm = 1.0f/norm;
gelmes 3:5ffe7e9c0bb3 666 q[0] = q1 * norm;
gelmes 3:5ffe7e9c0bb3 667 q[1] = q2 * norm;
gelmes 3:5ffe7e9c0bb3 668 q[2] = q3 * norm;
gelmes 3:5ffe7e9c0bb3 669 q[3] = q4 * norm;
gelmes 3:5ffe7e9c0bb3 670
gelmes 3:5ffe7e9c0bb3 671 }
gelmes 3:5ffe7e9c0bb3 672
gelmes 3:5ffe7e9c0bb3 673
gelmes 3:5ffe7e9c0bb3 674 };
gelmes 3:5ffe7e9c0bb3 675 #endif