Library to control a 3DOF robotic leg. Specify an [x,y,z] co-ordinate and the library will solve the inverse kinematic equations to calculate the required servo pulse widths to position the foot at the target location.

Dependencies:   Utils

Leg.cpp

Committer:
eencae
Date:
2015-05-24
Revision:
0:74b4e50e0d15
Child:
5:1190596b8842

File content as of revision 0:74b4e50e0d15:

/*
@file Leg.cpp

@brief Member functions implementations

*/
#include "mbed.h"
#include "Leg.h"

Leg::Leg(PinName coxa_pin, PinName femur_pin, PinName tibia_pin)
{
    // set up pins as required
    coxa_servo = new PwmOut(coxa_pin);
    femur_servo = new PwmOut(femur_pin);
    tibia_servo = new PwmOut(tibia_pin);
    // PWM objects have 50 Hz frequency by default so shouldn't need to set servo frequency
    // can do it anyway to be sure. All channels share same period so just need to set one of them
    coxa_servo->period(1.0/50.0);  // servos are typically 50 Hz
    // setup USB serial for debug/comms
    serial = new Serial(USBTX,USBRX);
}

void Leg::solve_inverse_kinematics()
{
    // Equations from Quadrupedal Locomotion - An Introduction to Control of Four-legged Robot
    // Gonzalez de Santos, Garcia and Estremera, Springer-Verlag London, 2006
    coxa_angle_ = atan2(target_.y,target_.x);

    float A = -target_.z;
    float E = target_.x*cos(coxa_angle_) + target_.y*sin(coxa_angle_);
    float B = coxa_length_ - E;
    float D = (2*coxa_length_*E + tibia_length_*tibia_length_ - femur_length_*femur_length_ - coxa_length_*coxa_length_ - target_.z*target_.z - E*E)/(2*femur_length_);

    femur_angle_ = -atan2(B,A) + atan2(D,sqrt(A*A+B*B-D*D));
    tibia_angle_ = atan2(target_.z - femur_length_*sin(femur_angle_),E-femur_length_*cos(femur_angle_)-coxa_length_) - femur_angle_;

    //serial->printf("coxa_angle = %f\n",RAD2DEG*coxa_angle_);
    //serial->printf("femur_angle = %f\n",RAD2DEG*femur_angle_);
    //serial->printf("tibia_angle = %f\n",RAD2DEG*tibia_angle_);
}

void Leg::move_to_target()
{
    // formulas to convert angle to pulse-width
    // these need calibrating for each servo
    // the base value is the pulse width that aligns the joint along the common normal
    // the gradient value comes from measuring the pulse that moves the joint to 90 degree
    // i.e. gradient = (pulse_90 - pulse_normal)/90
    // TODO implement calibration over serial
    float coxa_pulse = 1510.0 + 10.44*coxa_angle_*RAD2DEG;
    float femur_pulse = 1480.0 + 10.88*femur_angle_*RAD2DEG;
    float tibia_pulse = 490.0 - 10.33*tibia_angle_*RAD2DEG;

    //serial.printf("Servo Pulses (us): c = %f f =%f t = %f\n",coxa_pulse,femur_pulse,tibia_pulse);
    
    // update servo pulse widths
    coxa_servo->pulsewidth_us(int(coxa_pulse));
    femur_servo->pulsewidth_us(int(femur_pulse));
    tibia_servo->pulsewidth_us(int(tibia_pulse));

}

void Leg::set_target(float x, float y, float z)
{
    target_.x = x;
    target_.y = y;
    target_.z = z;
}

void Leg::set_link_lengths(float coxa_length, float femur_length, float tibia_length)
{
    coxa_length_ = coxa_length;
    femur_length_ = femur_length;
    tibia_length_ = tibia_length;
}