mix code vision 3. Using the previous algorithm to detect peaks as Nikoleta and Shiyao. Adding overlapping windows
Dependencies: mpu9250_i2c biquadFilter peakdetection Eigen
Diff: main.cpp
- Revision:
- 1:92f42e198925
- Parent:
- 0:44701eab0261
- Child:
- 2:d4c480d17944
--- a/main.cpp Wed Nov 06 12:36:55 2019 +0000 +++ b/main.cpp Thu Nov 14 01:28:23 2019 +0000 @@ -1,23 +1,98 @@ /* - * reading and print acc and gyro date from MPU9250 + * read and print acc, gyro,temperature date from MPU9250 + * and transform accelerate data to one dimension. * in terminal: * ls /dev/tty.* * screen /dev/tty.usbmodem14102 9600 + * to see the result * * mbed Microcontroller Library - * Copyright (c) 2018 ARM Limited - * SPDX-License-Identifier: Apache-2.0 + * Eigen Library */ #include "mbed.h" #include "platform/mbed_thread.h" #include "stats_report.h" #include "MPU9250.h" +#include <Eigen/Dense.h> +#include <iostream> + +using namespace std; +using namespace Eigen; DigitalOut led1(LED1); const int addr7bit = 0x68; // 7bit I2C address,AD0 is 0 -#define SLEEP_TIME 1000 // (msec) +#define SLEEP_TIME 5000 // (msec) + + +/* + * Normalize the Matrix X + */ + MatrixXd featurnormail(MatrixXd &X) +{ + //I don't know why to use the transpose + //compute the mean of every dimension + MatrixXd X1 = X.transpose(); + MatrixXd meanval = X1.colwise().mean(); + + //normalization + RowVectorXd meanvecRow = meanval; + X1.rowwise() -= meanvecRow; + + return X1.transpose(); +} + + /* + * Compute the Covariane Matrix of X, put to C + * C = 1/m * X * X.transpose + */ +void ComComputeCov(MatrixXd &X, MatrixXd &C) +{ + + C = X*X.adjoint();//same as XT*X a + //translate to array + C = C.array() / X.cols(); +} + + +/* + * Compute the eigenvalue and eigenvector of C + * val = (first eigenvalue) --smallest --not important + * . + * . + * . + * (last eigenvalue) --largest -- important + * + * vec = (first eigenvector, ... , last eigenvector) + * not important important + */ +void ComputEig(MatrixXd &C, MatrixXd &vec, MatrixXd &val) +{ + //SelfAdjointEigenSolver will sort the values automatically + SelfAdjointEigenSolver<MatrixXd> eig(C); + vec = eig.eigenvectors(); + val = eig.eigenvalues(); +} + +/* Compute the dimension need to include enough information of raw data. + * form large index to small index, since the val is sorted from small to large. + * in some cases, just decide the number of dimension, instead of compute it. + */ +int ComputDim(MatrixXd &val) +{ + int dim; + double sum = 0; + for (int i = val.rows() - 1; i >= 0;--i) + { + sum += val(i, 0); + dim = i; + if (sum / val.sum()>=0.8)//80% of the information + break; + } + return val.rows() - dim; +} + // main() runs in its own thread in the OS int main() @@ -31,6 +106,13 @@ float GyroRead[3]; float TempRead[1]; + + MatrixXd acc_raw(3,0); + Vector3d acc_new; + MatrixXd C; + MatrixXd vec, val; + int dim = 1; //dimension of PCA + while (true) { //Blink LED and wait 1 seconds @@ -42,5 +124,23 @@ printf("gyro value is (%f,%f,%f).\n\r",GyroRead[0],GyroRead[1],GyroRead[2]); printf("temp value is %f.\n\r",TempRead[0]); + //append new data to matrix acc_raw + //adding the columns + acc_new << AccRead[0],AccRead[1],AccRead[2]; + acc_raw.conservativeResize(acc_raw.rows(), acc_raw.cols()+1); + acc_raw.col(acc_raw.cols()-1) = acc_new; + + cout << "acc_raw:" << acc_raw << endl; + + //run PCA + MatrixXd X1=featurnormail(acc_raw); + ComComputeCov(X1, C); + ComputEig(C, vec, val); + //select dim num of eigenvector from right to left. right is important + //compute the result array + MatrixXd res = vec.rightCols(dim).transpose()*X1; + + //show the result after PCA + cout << "result" << res << endl; } }