mix code vision 3. Using the previous algorithm to detect peaks as Nikoleta and Shiyao. Adding overlapping windows
Dependencies: mpu9250_i2c biquadFilter peakdetection Eigen
main.cpp@1:92f42e198925, 2019-11-14 (annotated)
- Committer:
- castlefei
- Date:
- Thu Nov 14 01:28:23 2019 +0000
- Revision:
- 1:92f42e198925
- Parent:
- 0:44701eab0261
- Child:
- 2:d4c480d17944
second test vistion; read data and transform acc to one dimension using PCA
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
castlefei | 0:44701eab0261 | 1 | /* |
castlefei | 1:92f42e198925 | 2 | * read and print acc, gyro,temperature date from MPU9250 |
castlefei | 1:92f42e198925 | 3 | * and transform accelerate data to one dimension. |
castlefei | 0:44701eab0261 | 4 | * in terminal: |
castlefei | 0:44701eab0261 | 5 | * ls /dev/tty.* |
castlefei | 0:44701eab0261 | 6 | * screen /dev/tty.usbmodem14102 9600 |
castlefei | 1:92f42e198925 | 7 | * to see the result |
castlefei | 0:44701eab0261 | 8 | * |
castlefei | 0:44701eab0261 | 9 | * mbed Microcontroller Library |
castlefei | 1:92f42e198925 | 10 | * Eigen Library |
castlefei | 0:44701eab0261 | 11 | */ |
castlefei | 0:44701eab0261 | 12 | |
castlefei | 0:44701eab0261 | 13 | #include "mbed.h" |
castlefei | 0:44701eab0261 | 14 | #include "platform/mbed_thread.h" |
castlefei | 0:44701eab0261 | 15 | #include "stats_report.h" |
castlefei | 0:44701eab0261 | 16 | #include "MPU9250.h" |
castlefei | 1:92f42e198925 | 17 | #include <Eigen/Dense.h> |
castlefei | 1:92f42e198925 | 18 | #include <iostream> |
castlefei | 1:92f42e198925 | 19 | |
castlefei | 1:92f42e198925 | 20 | using namespace std; |
castlefei | 1:92f42e198925 | 21 | using namespace Eigen; |
castlefei | 0:44701eab0261 | 22 | |
castlefei | 0:44701eab0261 | 23 | DigitalOut led1(LED1); |
castlefei | 0:44701eab0261 | 24 | const int addr7bit = 0x68; // 7bit I2C address,AD0 is 0 |
castlefei | 0:44701eab0261 | 25 | |
castlefei | 1:92f42e198925 | 26 | #define SLEEP_TIME 5000 // (msec) |
castlefei | 1:92f42e198925 | 27 | |
castlefei | 1:92f42e198925 | 28 | |
castlefei | 1:92f42e198925 | 29 | /* |
castlefei | 1:92f42e198925 | 30 | * Normalize the Matrix X |
castlefei | 1:92f42e198925 | 31 | */ |
castlefei | 1:92f42e198925 | 32 | MatrixXd featurnormail(MatrixXd &X) |
castlefei | 1:92f42e198925 | 33 | { |
castlefei | 1:92f42e198925 | 34 | //I don't know why to use the transpose |
castlefei | 1:92f42e198925 | 35 | //compute the mean of every dimension |
castlefei | 1:92f42e198925 | 36 | MatrixXd X1 = X.transpose(); |
castlefei | 1:92f42e198925 | 37 | MatrixXd meanval = X1.colwise().mean(); |
castlefei | 1:92f42e198925 | 38 | |
castlefei | 1:92f42e198925 | 39 | //normalization |
castlefei | 1:92f42e198925 | 40 | RowVectorXd meanvecRow = meanval; |
castlefei | 1:92f42e198925 | 41 | X1.rowwise() -= meanvecRow; |
castlefei | 1:92f42e198925 | 42 | |
castlefei | 1:92f42e198925 | 43 | return X1.transpose(); |
castlefei | 1:92f42e198925 | 44 | } |
castlefei | 1:92f42e198925 | 45 | |
castlefei | 1:92f42e198925 | 46 | /* |
castlefei | 1:92f42e198925 | 47 | * Compute the Covariane Matrix of X, put to C |
castlefei | 1:92f42e198925 | 48 | * C = 1/m * X * X.transpose |
castlefei | 1:92f42e198925 | 49 | */ |
castlefei | 1:92f42e198925 | 50 | void ComComputeCov(MatrixXd &X, MatrixXd &C) |
castlefei | 1:92f42e198925 | 51 | { |
castlefei | 1:92f42e198925 | 52 | |
castlefei | 1:92f42e198925 | 53 | C = X*X.adjoint();//same as XT*X a |
castlefei | 1:92f42e198925 | 54 | //translate to array |
castlefei | 1:92f42e198925 | 55 | C = C.array() / X.cols(); |
castlefei | 1:92f42e198925 | 56 | } |
castlefei | 1:92f42e198925 | 57 | |
castlefei | 1:92f42e198925 | 58 | |
castlefei | 1:92f42e198925 | 59 | /* |
castlefei | 1:92f42e198925 | 60 | * Compute the eigenvalue and eigenvector of C |
castlefei | 1:92f42e198925 | 61 | * val = (first eigenvalue) --smallest --not important |
castlefei | 1:92f42e198925 | 62 | * . |
castlefei | 1:92f42e198925 | 63 | * . |
castlefei | 1:92f42e198925 | 64 | * . |
castlefei | 1:92f42e198925 | 65 | * (last eigenvalue) --largest -- important |
castlefei | 1:92f42e198925 | 66 | * |
castlefei | 1:92f42e198925 | 67 | * vec = (first eigenvector, ... , last eigenvector) |
castlefei | 1:92f42e198925 | 68 | * not important important |
castlefei | 1:92f42e198925 | 69 | */ |
castlefei | 1:92f42e198925 | 70 | void ComputEig(MatrixXd &C, MatrixXd &vec, MatrixXd &val) |
castlefei | 1:92f42e198925 | 71 | { |
castlefei | 1:92f42e198925 | 72 | //SelfAdjointEigenSolver will sort the values automatically |
castlefei | 1:92f42e198925 | 73 | SelfAdjointEigenSolver<MatrixXd> eig(C); |
castlefei | 1:92f42e198925 | 74 | vec = eig.eigenvectors(); |
castlefei | 1:92f42e198925 | 75 | val = eig.eigenvalues(); |
castlefei | 1:92f42e198925 | 76 | } |
castlefei | 1:92f42e198925 | 77 | |
castlefei | 1:92f42e198925 | 78 | /* Compute the dimension need to include enough information of raw data. |
castlefei | 1:92f42e198925 | 79 | * form large index to small index, since the val is sorted from small to large. |
castlefei | 1:92f42e198925 | 80 | * in some cases, just decide the number of dimension, instead of compute it. |
castlefei | 1:92f42e198925 | 81 | */ |
castlefei | 1:92f42e198925 | 82 | int ComputDim(MatrixXd &val) |
castlefei | 1:92f42e198925 | 83 | { |
castlefei | 1:92f42e198925 | 84 | int dim; |
castlefei | 1:92f42e198925 | 85 | double sum = 0; |
castlefei | 1:92f42e198925 | 86 | for (int i = val.rows() - 1; i >= 0;--i) |
castlefei | 1:92f42e198925 | 87 | { |
castlefei | 1:92f42e198925 | 88 | sum += val(i, 0); |
castlefei | 1:92f42e198925 | 89 | dim = i; |
castlefei | 1:92f42e198925 | 90 | if (sum / val.sum()>=0.8)//80% of the information |
castlefei | 1:92f42e198925 | 91 | break; |
castlefei | 1:92f42e198925 | 92 | } |
castlefei | 1:92f42e198925 | 93 | return val.rows() - dim; |
castlefei | 1:92f42e198925 | 94 | } |
castlefei | 1:92f42e198925 | 95 | |
castlefei | 0:44701eab0261 | 96 | |
castlefei | 0:44701eab0261 | 97 | // main() runs in its own thread in the OS |
castlefei | 0:44701eab0261 | 98 | int main() |
castlefei | 0:44701eab0261 | 99 | { |
castlefei | 0:44701eab0261 | 100 | //new mpu(data,clk,address),in constructor addr7bit<<1 |
castlefei | 0:44701eab0261 | 101 | mpu9250 *mpu = new mpu9250(p26,p27,addr7bit); |
castlefei | 0:44701eab0261 | 102 | //scale of acc and gyro |
castlefei | 0:44701eab0261 | 103 | mpu->initMPU9250(0x00,0x00); |
castlefei | 0:44701eab0261 | 104 | |
castlefei | 0:44701eab0261 | 105 | float AccRead[3]; |
castlefei | 0:44701eab0261 | 106 | float GyroRead[3]; |
castlefei | 0:44701eab0261 | 107 | float TempRead[1]; |
castlefei | 0:44701eab0261 | 108 | |
castlefei | 1:92f42e198925 | 109 | |
castlefei | 1:92f42e198925 | 110 | MatrixXd acc_raw(3,0); |
castlefei | 1:92f42e198925 | 111 | Vector3d acc_new; |
castlefei | 1:92f42e198925 | 112 | MatrixXd C; |
castlefei | 1:92f42e198925 | 113 | MatrixXd vec, val; |
castlefei | 1:92f42e198925 | 114 | int dim = 1; //dimension of PCA |
castlefei | 1:92f42e198925 | 115 | |
castlefei | 0:44701eab0261 | 116 | while (true) { |
castlefei | 0:44701eab0261 | 117 | |
castlefei | 0:44701eab0261 | 118 | //Blink LED and wait 1 seconds |
castlefei | 0:44701eab0261 | 119 | led1 = !led1; |
castlefei | 0:44701eab0261 | 120 | thread_sleep_for(SLEEP_TIME); |
castlefei | 0:44701eab0261 | 121 | //read and convert date |
castlefei | 0:44701eab0261 | 122 | mpu->ReadConvertAll(AccRead,GyroRead,TempRead); |
castlefei | 0:44701eab0261 | 123 | printf("acc value is (%f,%f,%f).\n\r",AccRead[0],AccRead[1],AccRead[2]); |
castlefei | 0:44701eab0261 | 124 | printf("gyro value is (%f,%f,%f).\n\r",GyroRead[0],GyroRead[1],GyroRead[2]); |
castlefei | 0:44701eab0261 | 125 | printf("temp value is %f.\n\r",TempRead[0]); |
castlefei | 0:44701eab0261 | 126 | |
castlefei | 1:92f42e198925 | 127 | //append new data to matrix acc_raw |
castlefei | 1:92f42e198925 | 128 | //adding the columns |
castlefei | 1:92f42e198925 | 129 | acc_new << AccRead[0],AccRead[1],AccRead[2]; |
castlefei | 1:92f42e198925 | 130 | acc_raw.conservativeResize(acc_raw.rows(), acc_raw.cols()+1); |
castlefei | 1:92f42e198925 | 131 | acc_raw.col(acc_raw.cols()-1) = acc_new; |
castlefei | 1:92f42e198925 | 132 | |
castlefei | 1:92f42e198925 | 133 | cout << "acc_raw:" << acc_raw << endl; |
castlefei | 1:92f42e198925 | 134 | |
castlefei | 1:92f42e198925 | 135 | //run PCA |
castlefei | 1:92f42e198925 | 136 | MatrixXd X1=featurnormail(acc_raw); |
castlefei | 1:92f42e198925 | 137 | ComComputeCov(X1, C); |
castlefei | 1:92f42e198925 | 138 | ComputEig(C, vec, val); |
castlefei | 1:92f42e198925 | 139 | //select dim num of eigenvector from right to left. right is important |
castlefei | 1:92f42e198925 | 140 | //compute the result array |
castlefei | 1:92f42e198925 | 141 | MatrixXd res = vec.rightCols(dim).transpose()*X1; |
castlefei | 1:92f42e198925 | 142 | |
castlefei | 1:92f42e198925 | 143 | //show the result after PCA |
castlefei | 1:92f42e198925 | 144 | cout << "result" << res << endl; |
castlefei | 0:44701eab0261 | 145 | } |
castlefei | 0:44701eab0261 | 146 | } |