mix code vision 3. Using the previous algorithm to detect peaks as Nikoleta and Shiyao. Adding overlapping windows
Dependencies: mpu9250_i2c biquadFilter peakdetection Eigen
Diff: main.cpp
- Revision:
- 2:d4c480d17944
- Parent:
- 1:92f42e198925
- Child:
- 4:15d6c7123b09
--- a/main.cpp Thu Nov 14 01:28:23 2019 +0000 +++ b/main.cpp Mon Nov 25 14:28:46 2019 +0000 @@ -14,84 +14,25 @@ #include "platform/mbed_thread.h" #include "stats_report.h" #include "MPU9250.h" -#include <Eigen/Dense.h> +//#include <Eigen/Dense.h> #include <iostream> +#include <vector> +#include <complex> +#include "BiQuad.h" +#include "pca.h" +#include "peak.h" using namespace std; using namespace Eigen; DigitalOut led1(LED1); const int addr7bit = 0x68; // 7bit I2C address,AD0 is 0 - -#define SLEEP_TIME 5000 // (msec) +//the parameter of biquad filter, 40Hz sampling frequence,10Hz cut-off freq, Q:0.719 +BiQuad mybq(0.3403575989782886,0.6807151979565772,0.3403575989782886, -1.511491371967327e-16,0.36143039591315457); +BiQuadChain bqc; -/* - * Normalize the Matrix X - */ - MatrixXd featurnormail(MatrixXd &X) -{ - //I don't know why to use the transpose - //compute the mean of every dimension - MatrixXd X1 = X.transpose(); - MatrixXd meanval = X1.colwise().mean(); - - //normalization - RowVectorXd meanvecRow = meanval; - X1.rowwise() -= meanvecRow; - - return X1.transpose(); -} - - /* - * Compute the Covariane Matrix of X, put to C - * C = 1/m * X * X.transpose - */ -void ComComputeCov(MatrixXd &X, MatrixXd &C) -{ - - C = X*X.adjoint();//same as XT*X a - //translate to array - C = C.array() / X.cols(); -} - - -/* - * Compute the eigenvalue and eigenvector of C - * val = (first eigenvalue) --smallest --not important - * . - * . - * . - * (last eigenvalue) --largest -- important - * - * vec = (first eigenvector, ... , last eigenvector) - * not important important - */ -void ComputEig(MatrixXd &C, MatrixXd &vec, MatrixXd &val) -{ - //SelfAdjointEigenSolver will sort the values automatically - SelfAdjointEigenSolver<MatrixXd> eig(C); - vec = eig.eigenvectors(); - val = eig.eigenvalues(); -} - -/* Compute the dimension need to include enough information of raw data. - * form large index to small index, since the val is sorted from small to large. - * in some cases, just decide the number of dimension, instead of compute it. - */ -int ComputDim(MatrixXd &val) -{ - int dim; - double sum = 0; - for (int i = val.rows() - 1; i >= 0;--i) - { - sum += val(i, 0); - dim = i; - if (sum / val.sum()>=0.8)//80% of the information - break; - } - return val.rows() - dim; -} +#define SLEEP_TIME 20 // (msec) // main() runs in its own thread in the OS @@ -105,24 +46,40 @@ float AccRead[3]; float GyroRead[3]; float TempRead[1]; - + float res_smooth; + //vector<float> res_list; + float number=0; - MatrixXd acc_raw(3,0); + static MatrixXd acc_raw(3,0); Vector3d acc_new; MatrixXd C; MatrixXd vec, val; int dim = 1; //dimension of PCA + //use the class defined in pca.h and peak.h + PCA pca; + PEAK peak; + + bqc.add(&mybq); + + static vector<float> res_list; while (true) { + //when i add to 600, there accure faugment error + //printf("the %f loop", number); + number = number +1; + //vector<float> res_list; //Blink LED and wait 1 seconds led1 = !led1; thread_sleep_for(SLEEP_TIME); //read and convert date mpu->ReadConvertAll(AccRead,GyroRead,TempRead); + AccRead[0]= AccRead[0]/1000; + AccRead[1]= AccRead[1]/1000; + AccRead[2]= AccRead[2]/1000; printf("acc value is (%f,%f,%f).\n\r",AccRead[0],AccRead[1],AccRead[2]); - printf("gyro value is (%f,%f,%f).\n\r",GyroRead[0],GyroRead[1],GyroRead[2]); - printf("temp value is %f.\n\r",TempRead[0]); + //printf("gyro value is (%f,%f,%f).\n\r",GyroRead[0],GyroRead[1],GyroRead[2]); + //printf("temp value is %f.\n\r",TempRead[0]); //append new data to matrix acc_raw //adding the columns @@ -130,17 +87,30 @@ acc_raw.conservativeResize(acc_raw.rows(), acc_raw.cols()+1); acc_raw.col(acc_raw.cols()-1) = acc_new; - cout << "acc_raw:" << acc_raw << endl; + //////cout << "acc_raw:" << acc_raw << endl; //run PCA - MatrixXd X1=featurnormail(acc_raw); - ComComputeCov(X1, C); - ComputEig(C, vec, val); + MatrixXd X1=pca.featurnormail(acc_raw); + pca.ComComputeCov(X1, C); + pca.ComputEig(C, vec, val); //select dim num of eigenvector from right to left. right is important //compute the result array MatrixXd res = vec.rightCols(dim).transpose()*X1; //show the result after PCA - cout << "result" << res << endl; + //////cout << "result" << res << endl; + res_list.clear(); + for(int i = 0; i < res.cols(); i++) + { + res_smooth = bqc.step(res(i)); + res_list.push_back(res_smooth); + //printf("result after filter in for loop %d: %f\n\r",i,res_smooth); + //std::cout << "\t" << bqc.step( ) << std::endl; + } + int len = res_list.size(); + printf("len of res:%d\n\r", len); + peak.findPeaks(res_list,len,0.1); + + } }