Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Revision 0:a3b83d366423, committed 2017-12-06
- Comitter:
- aungriah
- Date:
- Wed Dec 06 21:35:45 2017 +0000
- Commit message:
- test
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DecaWave/DecaWave.cpp Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,1100 @@ +/* + * DecaWave.cpp + * + * Created on: 04.11.2015 + * Author: kauf + */ + +#include "DecaWave.h" +//#include "states.h" + +extern "C" { +// TODO: create dedicated struct instead of void pointer +#pragma Otime +int writetospi(uint16 headerLength, const uint8 *headerBuffer, + uint32 bodyLength, const uint8 *bodyBuffer) { + uint32_t i = 0; + decaIrqStatus_t stat; + + stat = decamutexon(); + + // chip select + decaWaveCs = 0; // set Cable Select pin low to start transmission + for (i = 0; i < headerLength; i++) { + decaWaveSpi.write(headerBuffer[i]); + } + for (i = 0; i < bodyLength; i++) { + decaWaveSpi.write(bodyBuffer[i]); + } + decaWaveCs = 1; + + decamutexoff(stat); + + return 0; +} + +#pragma Otime +int readfromspi(uint16 headerLength, const uint8 *headerBuffer, + uint32 readLength, uint8 *readBuffer) { + uint32_t i = 0; + + decaIrqStatus_t stat; + + stat = decamutexon(); + + /* Wait for SPIx Tx buffer empty */ + //while (port_SPIx_busy_sending()); + decaWaveCs = 0; + for (i = 0; i < headerLength; i++) { + decaWaveSpi.write(headerBuffer[i]); + } + for (i = 0; i < readLength; i++) { + readBuffer[i] = decaWaveSpi.write(0x00); //port_SPIx_receive_data(); //this clears RXNE bit + } + decaWaveCs = 1; + + decamutexoff(stat); + + return 0; +} + +//#pragma Otime +decaIrqStatus_t decamutexon() { + decaWaveIrq.disable_irq(); + return 0; +} + +//#pragma Otime +void decamutexoff(decaIrqStatus_t s) { + decaWaveIrq.enable_irq(); +} + +void deca_sleep(unsigned int time_ms) { + wait_ms(time_ms); +} + +} + +DecaWave::DecaWave() + { + + decaWaveCs = 1; // deselect chip + // decaWaveRst = 1; // make sure that reset pin is high !!!!!!!!!!TODO (haven't the pin definition of the reset pin available + decaWaveIrq.enable_irq(); + decaWaveSpi.format(8, 0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000) + decaWaveSpi.frequency(MIN_SPI_FREQ); // during init phase, only clock at 1 MHz + + decaWaveIrq.rise(dwt_isr); // attach interrupt handler to rising edge of interrupt pin from DW1000 + + hardreset(); + dwt_softreset(); + + _sequenceNumber = 0; +} + +DecaWave::~DecaWave() { + // TODO Auto-generated destructor stub +} + +void DecaWave::setup(dwt_config_t configdw, dwt_txconfig_t configdw_tx, + uint32_t delay, void (*txcallback)(const dwt_cb_data_t *), + void (*rxcallback)(const dwt_cb_data_t *)) { + + _deca_config = configdw; + _antennadelay = delay; + // disable interrupts + decamutexon(); + + // inittestapplication + // setup slow spi + decaWaveSpi.frequency(MIN_SPI_FREQ); // during init phase, only clock at 1 MHz + + // instance init + dwt_initialise(DWT_LOADUCODE); + dwt_geteui(_euid); + + // setinterrupt, callbacks + dwt_setinterrupt(DWT_INT_TFRS | DWT_INT_RFCG, 1); + dwt_setcallbacks(txcallback, rxcallback, NULL, NULL); + + // inst config + dwt_configure(&configdw); + + //Configure TX power + uint32_t power = configdw_tx.power; + _configTX.PGdly = configdw_tx.PGdly; + + //if smart power is used then the value as read from OTP is used directly + //if smart power is used the user needs to make sure to transmit only one frame per 1ms or TX spectrum power will be violated + if (configdw.dataRate == DWT_BR_6M8) { + _configTX.power = power; + dwt_setsmarttxpower(1); + } else { //if the smart power is not used, then the low byte value (repeated) is used for the whole TX power register + uint8 pow = power & 0xFF; + _configTX.power = (pow | (pow << 8) | (pow << 16) | (pow << 24)); + dwt_setsmarttxpower(0); + } + + //configure the tx spectrum parameters (power and PG delay) + dwt_configuretxrf(&_configTX); + + _antennadelay += getAntennaDelayOffset(dwt_getpartid()); + dwt_setrxantennadelay(_antennadelay); + dwt_settxantennadelay(_antennadelay); + + if (configdw.txPreambLength == DWT_PLEN_64) { //if preamble length is 64 + decaWaveSpi.frequency(MIN_SPI_FREQ); //reduce SPI to < 3MHz + dwt_loadopsettabfromotp(0); + decaWaveSpi.frequency(MAX_SPI_FREQ); //increase SPI to max + } + wait_ms(10); + + autoreenable(); + + // enable event counter & clear + dwt_configeventcounters(1); + + decaWaveSpi.frequency(MAX_SPI_FREQ); + + // enable interrupts + decamutexoff(0); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * Function: autoreenable() + * + * Set the auto-reenable flag + * + * arguments: + * returns: + */ +void DecaWave::autoreenable() { + uint8 byte = 0; + dwt_readfromdevice(SYS_CFG_ID, 3, 1, &byte); + + byte |= (SYS_CFG_RXAUTR >> 24); + + dwt_writetodevice(SYS_CFG_ID, 3, 1, &byte) ; +} + + +/*! ------------------------------------------------------------------------------------------------------------------ + * Function: sendFrame() + * + * Send a pre-composed frame: + * - Write uint8_t array of with length bytes to register + * - set length in register + * - if it is scheduled to be sent at a given timestamp, write 40bit delay in timestamps units + * - send TX command + * - if the receiver turns on after a delay, write this delay in us + * - enable (potentially delay) receiver + * + * arguments: pointer to message (uint8 array) with specified length, dtime transmission time (truncated 32bit deca time), delay (us) until RX turn on + * returns DWT_SUCCESS if process was successful, or DWT_ERROR if TX failed. + */ +#pragma Otime +int8_t DecaWave::sendFrame(uint8_t* message, uint16_t length, uint32_t dtime, + uint32_t delay) { + length += 2; // include 2 byte crc in the frame length + + dwt_writetxdata(length, message, 0); + + dwt_writetxfctrl(length, 0, 1); + + if (dtime > 0) { + dwt_setdelayedtrxtime(dtime); + } + + if (_state == DW_RECEIVE) { + uint8_t temp = (uint8)SYS_CTRL_TRXOFF ; // This assumes the bit is in the lowest byte + dwt_writetodevice(SYS_CTRL_ID,0,1,&temp) ; // Disable the radio + } + + uint8_t mode = (dtime>0)*DWT_START_TX_DELAYED + 0*DWT_RESPONSE_EXPECTED; + _state = DW_TRANSMIT; + return dwt_starttx(mode); +} + +uint32_t DecaWave::getStatus() { + uint32_t status; +// status = dwt_read32bitreg(SYS_STATUS_ID, this); + dwt_readfromdevice(SYS_STATUS_ID, 0x0, 4, (uint8_t*) &status); + + uint32_t temp = SYS_STATUS_MASK_32; + dwt_writetodevice(SYS_STATUS_ID, 0x00, 4, (uint8_t*)&temp); + return status; +} + +uint16_t DecaWave::computeFrameLength_us() { + + //configure the rx delay receive delay time, it is dependent on the message length + float msgdatalen = 0; + float preamblelen = 0; + int sfdlen = 0; + int x = 0; + + msgdatalen = 16;//sizeof(FrameHeader_t); //TODO add size of header! + + + x = (int) ceil(msgdatalen * 8 / 330.0f); + + msgdatalen = msgdatalen * 8 + x * 48; + + //assume PHR length is 172308us for 110k and 21539us for 850k/6.81M + if (_deca_config.dataRate == DWT_BR_110K) { + msgdatalen *= 8205.13f; + msgdatalen += 172308; + + } else if (_deca_config.dataRate == DWT_BR_850K) { + msgdatalen *= 1025.64f; + msgdatalen += 21539; + } else { + msgdatalen *= 128.21f; + msgdatalen += 21539; + } + + //SFD length is 64 for 110k (always) + //SFD length is 8 for 6.81M, and 16 for 850k, but can vary between 8 and 16 bytes + sfdlen = dwnsSFDlen[_deca_config.dataRate]; + + switch (_deca_config.txPreambLength) { + case DWT_PLEN_4096: + preamblelen = 4096.0f; + break; + case DWT_PLEN_2048: + preamblelen = 2048.0f; + break; + case DWT_PLEN_1536: + preamblelen = 1536.0f; + break; + case DWT_PLEN_1024: + preamblelen = 1024.0f; + break; + case DWT_PLEN_512: + preamblelen = 512.0f; + break; + case DWT_PLEN_256: + preamblelen = 256.0f; + break; + case DWT_PLEN_128: + preamblelen = 128.0f; + break; + case DWT_PLEN_64: + preamblelen = 64.0f; + break; + } + + //preamble = plen * (994 or 1018) depending on 16 or 64 PRF + if (_deca_config.prf == DWT_PRF_16M) { + preamblelen = (sfdlen + preamblelen) * 0.99359f; + } else { + preamblelen = (sfdlen + preamblelen) * 1.01763f; + } + + //set the frame wait timeout time - total time the frame takes in symbols + return uint16_t( + 16 + (int) ((preamblelen + (msgdatalen / 1000.0f)) / 1.0256f)); + +} + +float DecaWave::getRXLevel(dwt_rxdiag_t *diagnostics) { + float A; // 115.72 if PRF 16 MHz, 121.74 if PRF 64 MHz + if (_deca_config.prf == DWT_PRF_16M) { + A = 115.72f; + } else { + A = 121.74f; + } + // RXLevel (dBm) is calculated as P = 10 * log10( C * 2^17 ) / N^2 ) - A + // use magic number: 10*log10(2^17)=51.175 + return 10 * log10(float(diagnostics->maxGrowthCIR)) + 51.175f - 20 * log10(float(diagnostics->rxPreamCount)) - A; // user manual 4.7.2 p.45 +} + +float DecaWave::getFPLevel() { + + uint32_t frameInfo = dwt_read32bitreg(RX_FINFO_ID); + + uint64_t frameQuality; + dwt_readfromdevice(RX_FQUAL_ID, 0, 8, (uint8_t*) &frameQuality); + + uint16_t F1; + dwt_readfromdevice(RX_TIME_ID, 7, 2, (uint8_t*) &F1); + uint16_t F2 = (frameQuality >> 16) & 0xFFFF; + uint16_t F3 = (frameQuality >> 32) & 0xFFFF; + + float A; // 115.72 if PRF 16 MHz, 121.74 if PRF 64 MHz + if (_deca_config.prf == DWT_PRF_16M) { + A = 115.72f; + } else { + A = 121.74f; + } + uint32_t N = (frameInfo >> 20) & 0x7FF; + + // First Path Power Level (dBm) is calculated as P = 10 * log10( F1^2+F2^2+F3^2) / N^2 ) - A + + return 10 + * log10( + float(F1) * float(F1) + float(F2) * float(F2) + + float(F3) * float(F3)) - 20 * log10(float(N)) - A; // user manual 4.7.1 p.44 +} + +void DecaWave::reset() { + decaWaveSpi.frequency(MIN_SPI_FREQ); + dwt_softreset(); + decaWaveSpi.frequency(MAX_SPI_FREQ); +} + +void DecaWave::hardreset() {//TODO: Check where the reset-pin is and add it! + //decaWaveRst = 0; + wait_ms(10); + // decaWaveRst = 1; +} + +int8_t DecaWave::turnonrx() { + int8_t result = dwt_rxenable(0); + if (result != DWT_ERROR) { + _state = DW_RECEIVE; + } else { + _state = DW_IDLE; + } + return result; +} + +void DecaWave::turnoffrx() { + uint8_t temp = (uint8)SYS_CTRL_TRXOFF ; // This assumes the bit is in the lowest byte + dwt_writetodevice(SYS_CTRL_ID,0,1,&temp) ; // Disable the radio + _state = DW_IDLE; +} + +uint8_t DecaWave::getNextSequenceNumber() { + return ++_sequenceNumber; +} + +uint16_t DecaWave::getAntennaDelay() { + return _antennadelay; +} + + +uint8_t DecaWave::getCHAN() { + return _deca_config.chan; +} + +uint8_t DecaWave::getPRF() { + return _deca_config.prf; +} + +#define NUM_16M_OFFSET (37) +#define NUM_16M_OFFSETWB (68) +#define NUM_64M_OFFSET (26) +#define NUM_64M_OFFSETWB (59) + +const uint8 chan_idxnb[NUM_CH_SUPPORTED] = {0, 0, 1, 2, 0, 3, 0, 0}; // Only channels 1,2,3 and 5 are in the narrow band tables +const uint8 chan_idxwb[NUM_CH_SUPPORTED] = {0, 0, 0, 0, 0, 0, 0, 1}; // Only channels 4 and 7 are in in the wide band tables + +//--------------------------------------------------------------------------------------------------------------------------- +// Range Bias Correction TABLES of range values in integer units of 25 CM, for 8-bit unsigned storage, MUST END IN 255 !!!!!! +//--------------------------------------------------------------------------------------------------------------------------- + +// offsets to nearest centimetre for index 0, all rest are +1 cm per value + +#define CM_OFFSET_16M_NB (-23) // For normal band channels at 16 MHz PRF +#define CM_OFFSET_16M_WB (-28) // For wider band channels at 16 MHz PRF +#define CM_OFFSET_64M_NB (-17) // For normal band channels at 64 MHz PRF +#define CM_OFFSET_64M_WB (-30) // For wider band channels at 64 MHz PRF + + +/*! ------------------------------------------------------------------------------------------------------------------ + * Function: getAntennaDelayOffset() + * + * Get the Offset for the antenna delay + * + * arguments: + * returns: + */ +int16_t DecaWave::getAntennaDelayOffset(uint32_t board_id) { + switch(board_id){ + // Calibrated on 23.03. outside at 15C, windy. 8m side length + case 268436898: return -91; + case 268445167: return -101; + case 268445155: return -106; + case 268445158: return -107; + case 268436604: return -106; + case 268437112: return -102; + case 268445165: return -100; + case 268444882: return -102; + case 268437817: return -87; + case 268445163: return -104; + case 268436897: return -99; + case 268437656: return -106; + case 268445154: return -102; + case 268436603: return -98; + case 268444886: return -112; + case 268437847: return -119; + case 268437825: return -111; + + default: return -106; + } +} + +//--------------------------------------------------------------------------------------------------------------------------- +// range25cm16PRFnb: Range Bias Correction table for narrow band channels at 16 MHz PRF, NB: !!!! each MUST END IN 255 !!!! +//--------------------------------------------------------------------------------------------------------------------------- + +const uint8 range25cm16PRFnb[4][NUM_16M_OFFSET] = +{ + // Ch 1 - range25cm16PRFnb + { + 1, + 3, + 4, + 5, + 7, + 9, + 11, + 12, + 13, + 15, + 18, + 20, + 23, + 25, + 28, + 30, + 33, + 36, + 40, + 43, + 47, + 50, + 54, + 58, + 63, + 66, + 71, + 76, + 82, + 89, + 98, + 109, + 127, + 155, + 222, + 255, + 255 + }, + + // Ch 2 - range25cm16PRFnb + { + 1, + 2, + 4, + 5, + 6, + 8, + 9, + 10, + 12, + 13, + 15, + 18, + 20, + 22, + 24, + 27, + 29, + 32, + 35, + 38, + 41, + 44, + 47, + 51, + 55, + 58, + 62, + 66, + 71, + 78, + 85, + 96, + 111, + 135, + 194, + 240, + 255 + }, + + // Ch 3 - range25cm16PRFnb + { + 1, + 2, + 3, + 4, + 5, + 7, + 8, + 9, + 10, + 12, + 14, + 16, + 18, + 20, + 22, + 24, + 26, + 28, + 31, + 33, + 36, + 39, + 42, + 45, + 49, + 52, + 55, + 59, + 63, + 69, + 76, + 85, + 98, + 120, + 173, + 213, + 255 + }, + + // Ch 5 - range25cm16PRFnb + { + 1, + 1, + 2, + 3, + 4, + 5, + 6, + 6, + 7, + 8, + 9, + 11, + 12, + 14, + 15, + 16, + 18, + 20, + 21, + 23, + 25, + 27, + 29, + 31, + 34, + 36, + 38, + 41, + 44, + 48, + 53, + 59, + 68, + 83, + 120, + 148, + 255 + } +}; // end range25cm16PRFnb + + +//--------------------------------------------------------------------------------------------------------------------------- +// range25cm16PRFwb: Range Bias Correction table for wide band channels at 16 MHz PRF, NB: !!!! each MUST END IN 255 !!!! +//--------------------------------------------------------------------------------------------------------------------------- + +const uint8 range25cm16PRFwb[2][NUM_16M_OFFSETWB] = +{ + // Ch 4 - range25cm16PRFwb + { + 7, + 7, + 8, + 9, + 9, + 10, + 11, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 26, + 27, + 28, + 30, + 31, + 32, + 34, + 36, + 38, + 40, + 42, + 44, + 46, + 48, + 50, + 52, + 55, + 57, + 59, + 61, + 63, + 66, + 68, + 71, + 74, + 78, + 81, + 85, + 89, + 94, + 99, + 104, + 110, + 116, + 123, + 130, + 139, + 150, + 164, + 182, + 207, + 238, + 255, + 255, + 255, + 255, + 255 + }, + + // Ch 7 - range25cm16PRFwb + { + 4, + 5, + 5, + 5, + 6, + 6, + 7, + 7, + 7, + 8, + 9, + 9, + 10, + 10, + 11, + 11, + 12, + 13, + 13, + 14, + 15, + 16, + 17, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 25, + 26, + 27, + 29, + 30, + 31, + 32, + 34, + 35, + 36, + 38, + 39, + 40, + 42, + 44, + 46, + 48, + 50, + 52, + 55, + 58, + 61, + 64, + 68, + 72, + 75, + 80, + 85, + 92, + 101, + 112, + 127, + 147, + 168, + 182, + 194, + 205, + 255 + } +}; // end range25cm16PRFwb + +//--------------------------------------------------------------------------------------------------------------------------- +// range25cm64PRFnb: Range Bias Correction table for narrow band channels at 64 MHz PRF, NB: !!!! each MUST END IN 255 !!!! +//--------------------------------------------------------------------------------------------------------------------------- + +const uint8 range25cm64PRFnb[4][NUM_64M_OFFSET] = +{ + // Ch 1 - range25cm64PRFnb + { + 1, + 2, + 2, + 3, + 4, + 5, + 7, + 10, + 13, + 16, + 19, + 22, + 24, + 27, + 30, + 32, + 35, + 38, + 43, + 48, + 56, + 78, + 101, + 120, + 157, + 255 + }, + + // Ch 2 - range25cm64PRFnb + { + 1, + 2, + 2, + 3, + 4, + 4, + 6, + 9, + 12, + 14, + 17, + 19, + 21, + 24, + 26, + 28, + 31, + 33, + 37, + 42, + 49, + 68, + 89, + 105, + 138, + 255 + }, + + // Ch 3 - range25cm64PRFnb + { + 1, + 1, + 2, + 3, + 3, + 4, + 5, + 8, + 10, + 13, + 15, + 17, + 19, + 21, + 23, + 25, + 27, + 30, + 33, + 37, + 44, + 60, + 79, + 93, + 122, + 255 + }, + + // Ch 5 - range25cm64PRFnb + { + 1, + 1, + 1, + 2, + 2, + 3, + 4, + 6, + 7, + 9, + 10, + 12, + 13, + 15, + 16, + 17, + 19, + 21, + 23, + 26, + 30, + 42, + 55, + 65, + 85, + 255 + } +}; // end range25cm64PRFnb + +//--------------------------------------------------------------------------------------------------------------------------- +// range25cm64PRFwb: Range Bias Correction table for wide band channels at 64 MHz PRF, NB: !!!! each MUST END IN 255 !!!! +//--------------------------------------------------------------------------------------------------------------------------- + +const uint8 range25cm64PRFwb[2][NUM_64M_OFFSETWB] = +{ + // Ch 4 - range25cm64PRFwb + { + 7, + 8, + 8, + 9, + 9, + 10, + 11, + 12, + 13, + 13, + 14, + 15, + 16, + 16, + 17, + 18, + 19, + 19, + 20, + 21, + 22, + 24, + 25, + 27, + 28, + 29, + 30, + 32, + 33, + 34, + 35, + 37, + 39, + 41, + 43, + 45, + 48, + 50, + 53, + 56, + 60, + 64, + 68, + 74, + 81, + 89, + 98, + 109, + 122, + 136, + 146, + 154, + 162, + 178, + 220, + 249, + 255, + 255, + 255 + }, + + // Ch 7 - range25cm64PRFwb + { + 4, + 5, + 5, + 5, + 6, + 6, + 7, + 7, + 8, + 8, + 9, + 9, + 10, + 10, + 10, + 11, + 11, + 12, + 13, + 13, + 14, + 15, + 16, + 16, + 17, + 18, + 19, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 28, + 29, + 31, + 33, + 35, + 37, + 39, + 42, + 46, + 50, + 54, + 60, + 67, + 75, + 83, + 90, + 95, + 100, + 110, + 135, + 153, + 172, + 192, + 255 + } +}; // end range25cm64PRFwb + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_getrangebias() + * + * @brief This function is used to return the range bias correction need for TWR with DW1000 units. + * + * input parameters: + * @param chan - specifies the operating channel (e.g. 1, 2, 3, 4, 5, 6 or 7) + * @param range - the calculated distance before correction + * @param prf - this is the PRF e.g. DWT_PRF_16M or DWT_PRF_64M + * + * output parameters + * + * returns correction needed in meters + */ +double dwt_getrangebias(uint8 chan, float range, uint8 prf) +{ + // First get the lookup index that corresponds to given range for a particular channel at 16M PRF + int i = 0 ; + int chanIdx ; + int cmoffseti ; // Integer number of CM offset + + double mOffset ; // Final offset result in metres + + // NB: note we may get some small negitive values e.g. up to -50 cm. + + int rangeint25cm = (int) (range * 4.00f) ; // Convert range to integer number of 25cm values. + + if (rangeint25cm > 255) rangeint25cm = 255 ; // Make sure it matches largest value in table (all tables end in 255 !!!!) + + if (prf == DWT_PRF_16M) + { + switch(chan) + { + case 4: + case 7: + { + chanIdx = chan_idxwb[chan]; + while (rangeint25cm > range25cm16PRFwb[chanIdx][i]) i++ ; // Find index in table corresponding to range + cmoffseti = i + CM_OFFSET_16M_WB ; // Nearest centimetre correction + } + break; + default: + { + chanIdx = chan_idxnb[chan]; + while (rangeint25cm > range25cm16PRFnb[chanIdx][i]) i++ ; // Find index in table corresponding to range + cmoffseti = i + CM_OFFSET_16M_NB ; // Nearest centimetre correction + } + }//end of switch + } + else // 64M PRF + { + switch(chan) + { + case 4: + case 7: + { + chanIdx = chan_idxwb[chan]; + while (rangeint25cm > range25cm64PRFwb[chanIdx][i]) i++ ; // Find index in table corresponding to range + cmoffseti = i + CM_OFFSET_64M_WB ; // Nearest centimetre correction + } + break; + default: + { + chanIdx = chan_idxnb[chan]; + while (rangeint25cm > range25cm64PRFnb[chanIdx][i]) i++ ; // Find index in table corresponding to range + cmoffseti = i + CM_OFFSET_64M_NB ; // Nearest centimetre correction + } + }//end of switch + } // end else + + + mOffset = (float) cmoffseti ; // Offset result in centimetres + + mOffset *= 0.01 ; // Convert to metres + + return (mOffset) ; +} + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DecaWave/DecaWave.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,86 @@ +/* + * DecaWave.h + * + * Created on: 04.11.2015 + * Author: kauf + */ + +#ifndef _DECAWAVE_H_ +#define _DECAWAVE_H_ + +#include <stddef.h> +#include "deca_device_api.h" +#include "deca_param_types.h" +#include "deca_regs.h" +#include "mbed.h" +#include "PC.h" + +#include "globals.h" +//#include "frames.h" + +#ifndef uint64 +#ifndef _DECA_INT64_ +#define _DECA_INT64_ +typedef uint64_t uint64; +#endif +#endif + +#define TIMEUNITS_TO_US (1/(128*499.2)) // conversion between the decawave timeunits (ca 15.65ps) to microseconds. +#define US_TO_TIMEUNITS (128*499.2) // conversion between microseconds to the decawave timeunits (ca 15.65ps). +#define MASK_40BIT (0x00FFFFFFFFFF) // MP counter is 40 bits +#define MASK_TXDTS (0x00FFFFFFFE00) // TX timestamp will snap to 8 ns resolution - mask lower 9 bits. + +#define SPEED_OF_LIGHT (299702547.0f) // in m/s in air +#define MIN_SPI_FREQ 1000000 +#define MAX_SPI_FREQ 20000000 + +enum dw_state { DW_RECEIVE, DW_TRANSMIT, DW_IDLE }; +double dwt_getrangebias(uint8 chan, float range, uint8 prf); + + +class DecaWave { +public: + + DecaWave(); + + virtual ~DecaWave(); + + void setup(dwt_config_t config, dwt_txconfig_t configdw_tx, uint32_t delay, + void (*txcallback)(const dwt_cb_data_t *), + void (*rxcallback)(const dwt_cb_data_t *)); + + int8_t sendFrame(uint8_t* message, uint16_t length, uint32_t dtime, + uint32_t delay); + int8_t turnonrx(); + void turnoffrx(); + + uint16_t computeFrameLength_us(); + float getRXLevel(dwt_rxdiag_t *diagnostics); + float getFPLevel(); + + uint32_t getStatus(); + uint32_t readdevid(); + + uint8_t getNextSequenceNumber(); + uint16_t getAntennaDelay(); + uint8_t getCHAN(); + uint8_t getPRF(); + + +protected: + + void reset(); + void hardreset(); + void autoreenable(); + int16_t getAntennaDelayOffset(uint32_t board_id); + + uint8_t _sequenceNumber; + dwt_config_t _deca_config; + uint8_t _euid[8]; + uint16_t _antennadelay; + dwt_txconfig_t _configTX; + dw_state _state; +}; + +#endif /* _DECAWAVE_H_ */ +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DecaWave/SMConfig.cpp Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,238 @@ +#include "SMConfig.h" + +void SMsetconfig(uint8_t dr_mode, dwt_config_t *dw_config, + dwt_txconfig_t *dw_configtx) { + + dw_config->chan = chConfig[dr_mode].channel; + dw_config->prf = chConfig[dr_mode].prf; + dw_config->txPreambLength = chConfig[dr_mode].preambleLength; + dw_config->rxPAC = chConfig[dr_mode].pacSize; + dw_config->txCode = chConfig[dr_mode].preambleCode; + dw_config->rxCode = chConfig[dr_mode].preambleCode; + dw_config->nsSFD = chConfig[dr_mode].nsSFD; + dw_config->dataRate = chConfig[dr_mode].datarate; + dw_config->sfdTO = chConfig[dr_mode].sfdTO; + dw_config->phrMode = DWT_PHRMODE_STD; + //enable gating gain for 6.81Mbps data rate + /*if (dw_config->dataRate == DWT_BR_6M8) + dw_config->smartPowerEn = 1; + else + dw_config->smartPowerEn = 0;*/ + + //dwt_setsmarttxpower(0); + dw_configtx->power = txSpectrumConfig[dw_config->chan].txPwr[dw_config->prf + - DWT_PRF_16M]; + dw_configtx->PGdly = txSpectrumConfig[dw_config->chan].PGdelay; + +} + +uint8_t SMpower(float gain) { + if (gain <= 0.0f) { + return 0xc0; + } else if (gain > 18.0f+15.5f) { + return 0x1f; + } else { + int gain_coarse_3; // coarse gain in multiples of 3 dB + int gain_fine_0_5; // gine gain in multiples of 0.5 dB + + // set coarse gain first + if (gain > 18) { + gain_coarse_3 = 6; + } else { + gain_coarse_3 = (int)(gain/3); + } + + // then set the fine gain + gain_fine_0_5 = 2*(gain - gain_coarse_3); + + uint8_t result = ((6-gain_coarse_3)<<5) + gain_fine_0_5; + + return result; + } +} + + +float SMgain(uint8_t power) { + float gain_coarse = 3.0*(6-(power>>5)); + float gain_fine = 0.5*(power & 0x1f); + return gain_coarse + gain_fine; +} + + +const chConfig_t chConfig[NUM_CH_SUPPORTED] = { + { 1, // channel // TKA was 2 + DWT_PRF_16M, // prf + DWT_BR_110K, // datarate + 3, // preambleCode + DWT_PLEN_1024, // preambleLength + DWT_PAC32, // pacSize + 1, // non-standard SFD + (1025 + 64 - 32) //SFD timeout + }, + //mode 2 + { 2, // channel + DWT_PRF_16M, // prf + DWT_BR_6M8, // datarate + 3, // preambleCode + DWT_PLEN_128, // preambleLength + DWT_PAC8, // pacSize + 0, // non-standard SFD + (129 + 8 - 8) //SFD timeout + }, + //mode 3 + { 2, // channel + DWT_PRF_64M, // prf + DWT_BR_110K, // datarate + 9, // preambleCode + DWT_PLEN_1024, // preambleLength + DWT_PAC32, // pacSize + 1, // non-standard SFD + (1025 + 64 - 32) //SFD timeout + }, + //mode 4 + { 2, // channel + DWT_PRF_64M, // prf + DWT_BR_6M8, // datarate + 9, // preambleCode + DWT_PLEN_128, // preambleLength + DWT_PAC8, // pacSize + 0, // non-standard SFD + (129 + 8 - 8) //SFD timeout + }, + //mode 5 + { 5, // channel + DWT_PRF_16M, // prf + DWT_BR_110K, // datarate + 3, // preambleCode + DWT_PLEN_1024, // preambleLength + DWT_PAC32, // pacSize + 1, // non-standard SFD + (1025 + 64 - 32) //SFD timeout + }, + //mode 6 + { 5, // channel + DWT_PRF_16M, // prf + DWT_BR_6M8, // datarate + 3, // preambleCode + DWT_PLEN_128, // preambleLength + DWT_PAC8, // pacSize + 0, // non-standard SFD + (129 + 8 - 8) //SFD timeout + }, + //mode 6 + { 5, // channel + DWT_PRF_64M, // prf + DWT_BR_110K, // datarate + 9, // preambleCode + DWT_PLEN_1024, // preambleLength + DWT_PAC32, // pacSize + 1, // non-standard SFD + (1025 + 64 - 32) //SFD timeout + }, + //mode 7 + { 7, // channel + DWT_PRF_64M, // prf + DWT_BR_6M8, // datarate + 9, // preambleCode + DWT_PLEN_128, // preambleLength + DWT_PAC8, // pacSize + 0, // non-standard SFD + (129 + 8 - 8) //SFD timeout + } }; + +const float ChannelFrequency[NUM_CH_SUPPORTED] = { 0.0, 3.49944, 3.9936, 4.4928, + 3.9936, 6.4896, 0, 6.4986 }; +const float ChannelBandwidth[NUM_CH_SUPPORTED] = { 0.0, 0.4992, 0.4992, 0.4992, + 1.3312, 0.4992, 0, 1.0816 }; +const char* ChannelBitrate[3] = {"110 kbits/s", "850 kbits/s", "6.8 Mbits/s"}; +const char* ChannelPRF[3] = {"", "16 MHz", "64 MHz"}; +const uint8_t ChannelPAC[4] = {8, 16, 32, 64}; + +uint16_t ChannelPLEN(uint8_t PLEN) { + switch (PLEN) { + case DWT_PLEN_4096: + return (uint16_t)4096; + + case DWT_PLEN_2048: + return (uint16_t)2048; + + case DWT_PLEN_1536: + return (uint16_t)1536; + + case DWT_PLEN_1024: + return (uint16_t)1024; + + case DWT_PLEN_512: + return (uint16_t)512; + + case DWT_PLEN_256: + return (uint16_t)256; + + case DWT_PLEN_128: + return (uint16_t)128; + + case DWT_PLEN_64: + return (uint16_t)64; + + default: + return 0; + }; + +} + + + + +//The table below specifies the default TX spectrum configuration parameters... this has been tuned for DW EVK hardware units +//the table is set for smart power - see below in the instance_config function how this is used when not using smart power +const tx_struct txSpectrumConfig[NUM_CH_SUPPORTED] = { +//Channel 0 ----- this is just a place holder so the next array element is channel 1 + { 0x0, //0 + { 0x0, //0 + 0x0 //0 + } }, + //Channel 1 + { 0xc9, //PG_DELAY + { 0x15355575, //16M prf power + 0x07274767 //64M prf power + } + + }, + //Channel 2 + { 0xc2, //PG_DELAY + { 0x15355575, //16M prf power + 0x07274767 //64M prf power + } }, + //Channel 3 + { 0xc5, //PG_DELAY + { 0x0f2f4f6f, //16M prf power + 0x2b4b6b8b //64M prf power + } }, + //Channel 4 + { 0x95, //PG_DELAY + { 0x1f1f3f5f, //16M prf power + 0x3a5a7a9a //64M prf power + } }, + //Channel 5 + { 0xc0, //PG_DELAY + { 0x0E082848, //16M prf power + 0x25456585 //64M prf power + } }, + //Channel 6 ----- this is just a place holder so the next array element is channel 7 + { 0x0, //0 + { 0x0, //0 + 0x0 //0 + } }, + //Channel 7 + { 0x93, //PG_DELAY + { 0x32527292,//0x51515151, //0xc0c0c0c0,//0x1f1f1f1f,//0x32527292, //16M prf power + 0x1f1f1f1f//0x5171B1d1//0x51515151//0xc0c0c0c0//0x1f1f1f1f// 0x5171B1d1 //64M prf power + } } }; + +//these are default antenna delays for EVB1000, these can be used if there is no calibration data in the DW1000, +//or instead of the calibration data +const uint16_t rfDelays[NUM_PRF] = { (uint16_t) ((DWT_PRF_16M_RFDLY / 2.0f) + * 1.0e-9f / DWT_TIME_UNITS), //PRF 16 + (uint16_t) ((DWT_PRF_64M_RFDLY / 2.0f) * 1.0e-9f / DWT_TIME_UNITS) //PRF 64 + }; +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DecaWave/SMConfig.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,107 @@ +#ifndef _SMCONFIG_H_ +#define _SMCONFIG_H_ + +#include "mbed.h" +#include "deca_device_api.h" +#include "deca_param_types.h" +//#include "frames.h" + +#define DWT_PRF_64M_RFDLY (515.2f) +#define DWT_PRF_16M_RFDLY (514.7f) + + +struct ppsConfig_s { + /*PPS_Role*/ int Role; + + PinName SpiMosi; + PinName SpiMiso; + PinName SpiClk; + + PinName DwCs; + PinName DwIrq; + PinName DwRst; + + PinName LedGreen; + PinName LedRed; + + PinName BatIn; + PinName Buzzer; + PinName Vibra; + + PinName CanRx; + PinName CanTx; + PinName CanStandby; + + PinName I2cSda; + PinName I2cScl; + + PinName DipSwitch0; + PinName DipSwitch1; + PinName DipSwitch2; + PinName DipSwitch3; + PinName DipSwitch4; + PinName DipSwitch5; + PinName DipSwitch6; + PinName DipSwitch7; +}; + +typedef ppsConfig_s ppsConfig_t; + +struct chConfig_t { + uint8_t channel ; + uint8_t prf ; + uint8_t datarate ; + uint8_t preambleCode ; + uint8_t preambleLength ; + uint8_t pacSize ; + uint8_t nsSFD ; + uint16_t sfdTO ; +}; + +struct tx_struct { + uint8_t PGdelay; + + //TX POWER + //31:24 BOOST_0.125ms_PWR + //23:16 BOOST_0.25ms_PWR-TX_SHR_PWR + //15:8 BOOST_0.5ms_PWR-TX_PHR_PWR + //7:0 DEFAULT_PWR-TX_DATA_PWR + uint32_t txPwr[2]; // +}; + +void SMsetconfig(uint8_t dr_mode, dwt_config_t *dw_config, dwt_txconfig_t *dw_configtx); +uint8_t SMpower(float gain); +float SMgain(uint8_t power); + +extern const agc_cfg_struct agc_config ; + +//SFD threshold settings for 110k, 850k, 6.8Mb standard and non-standard +extern const uint16_t sftsh[NUM_BR][NUM_SFD]; + +extern const uint16_t dtune1[NUM_PRF]; + +#define XMLPARAMS_VERSION (1.17f) + +extern const uint8_t pll2_config[NUM_CH][5]; +extern const uint8_t pll2calcfg; +extern const uint8_t rx_config[NUM_BW]; +//extern const uint32_t tx_config[NUM_CH]; +extern const uint8_t dwnsSFDlen[NUM_BR]; //length of SFD for each of the bitrates +//extern const uint32_t digital_bb_config[NUM_PRF][NUM_PACS]; +extern const uint8_t chan_idx[NUM_CH_SUPPORTED]; + +extern const uint16_t lde_replicaCoeff[PCODES]; +extern const tx_struct txSpectrumConfig[NUM_CH_SUPPORTED]; +extern const uint16_t rfDelays[NUM_PRF]; + +extern const chConfig_t chConfig[NUM_CH_SUPPORTED]; +extern const float ChannelFrequency[NUM_CH_SUPPORTED]; +extern const float ChannelBandwidth[NUM_CH_SUPPORTED]; +extern const char* ChannelBitrate[3]; +extern const char* ChannelPRF[3]; +extern const uint8_t ChannelPAC[4]; +extern uint16_t ChannelPLEN(uint8_t PLEN); + +extern const tx_struct txSpectrumConfig[NUM_CH_SUPPORTED]; +#endif +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/PC/PC.cpp Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,63 @@ +#include "PC.h" +#include "mbed.h" + +PC::PC(PinName tx, PinName rx, int baudrate) : Serial(tx, rx) +{ + baud(baudrate); + cls(); + + command[0] = '\0'; + command_char_count = 0; +} + + +void PC::cls() +{ + printf("\x1B[2J"); +} + + +void PC::locate(int Spalte, int Zeile) +{ + printf("\x1B[%d;%dH", Zeile + 1, Spalte + 1); +} + +void PC::readcommand(void (*executer)(char*)) +{ + +/* + char input = getc(); // get the character from serial bus + //printf("\x1B[1K"); + //printf("-"); + if(input == '\r') { // if return was pressed, the command must be executed + command[command_char_count] = '\0'; + executer(&command[0]); + printf("Debug Point 5"); + //printf("1"); + command_char_count = 0; // reset command + command[command_char_count] = '\0'; + // printf("2"); + } else if (command_char_count < COMMAND_MAX_LENGHT) { + printf("Debug Point 4"); + command[command_char_count] = input; + command_char_count++; + } +*/ + + + + while (1) + { + if (readable()) + { + scanf( "%s" , command ); + break; + } + } + + + + executer(&command[0]); + + +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/PC/PC.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,21 @@ +#include "mbed.h" + +#ifndef PC_H +#define PC_H + +#define COMMAND_MAX_LENGHT 300 + +class PC : public Serial +{ + public: + PC(PinName tx, PinName rx, int baud); + void cls(); // to clear the display + void locate(int column, int row); // to relocate the cursor + void readcommand(void (*executer)(char*)); // to read a char from the pc to the command string + + char command[COMMAND_MAX_LENGHT]; + private: + int command_char_count; +}; +#endif +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Watchdog/Watchdog.cpp Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,25 @@ +#include "Watchdog.h" + + +Watchdog::Watchdog() { +} + +// Load timeout value in watchdog timer and enable +void Watchdog::kick(float s) { + + uint32_t clk = SystemCoreClock / 3; // found by trying. TODO: exakt values + hiwdg.Instance = IWDG; + hiwdg.Init.Prescaler = IWDG_PRESCALER_16; + hiwdg.Init.Reload = s * (float)clk; + if (HAL_IWDG_Init(&hiwdg) != HAL_OK) + { + // Error Handler + } +} + +// "kick" or "feed" the dog - reset the watchdog timer +// by writing this required bit pattern +void Watchdog::kick() { + HAL_IWDG_Refresh(&hiwdg); +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Watchdog/Watchdog.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,23 @@ +#ifndef _WATCHDOG_H_ +#define _WATCHDOG_H_ + +#include "globals.h" + +#include "mbed.h" +#include "stm32f4xx.h" + +class Watchdog { +public: + Watchdog(); + void kick(float s); + void kick(); +private: + IWDG_HandleTypeDef hiwdg; +}; + + + + + + +#endif /* _WATCHDOG_H_ */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/decadriver/deca_device.c Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,3245 @@ +/*! ------------------------------------------------------------------------------------------------------------------ + * @file deca_device.c + * @brief Decawave device configuration and control functions + * + * @attention + * + * Copyright 2013 (c) Decawave Ltd, Dublin, Ireland. + * + * All rights reserved. + * + */ + +#include <assert.h> + +#include "deca_types.h" +#include "deca_param_types.h" +#include "deca_regs.h" +#include "deca_device_api.h" + +// Defines for enable_clocks function +#define FORCE_SYS_XTI 0 +#define ENABLE_ALL_SEQ 1 +#define FORCE_SYS_PLL 2 +#define READ_ACC_ON 7 +#define READ_ACC_OFF 8 +#define FORCE_OTP_ON 11 +#define FORCE_OTP_OFF 12 +#define FORCE_TX_PLL 13 +#define FORCE_LDE 14 + +// Defines for ACK request bitmask in DATA and MAC COMMAND frame control (first byte) - Used to detect AAT bit wrongly set. +#define FCTRL_ACK_REQ_MASK 0x20 +// Frame control maximum length in bytes. +#define FCTRL_LEN_MAX 2 + +// #define DWT_API_ERROR_CHECK // define so API checks config input parameters + +// ------------------------------------------------------------------------------------------------------------------- +// +// Internal functions for controlling and configuring the device +// +// ------------------------------------------------------------------------------------------------------------------- + +// Enable and Configure specified clocks +void _dwt_enableclocks(int clocks) ; +// Configure the ucode (FP algorithm) parameters +void _dwt_configlde(int prf); +// Load ucode from OTP/ROM +void _dwt_loaducodefromrom(void); +// Read non-volatile memory +uint32 _dwt_otpread(uint32 address); +// Program the non-volatile memory +uint32 _dwt_otpprogword32(uint32 data, uint16 address); +// Upload the device configuration into always on memory +void _dwt_aonarrayupload(void); +// ------------------------------------------------------------------------------------------------------------------- + +/*! + * Static data for DW1000 DecaWave Transceiver control + */ + +// ------------------------------------------------------------------------------------------------------------------- +// Structure to hold device data +typedef struct +{ + uint32 partID ; // IC Part ID - read during initialisation + uint32 lotID ; // IC Lot ID - read during initialisation + uint8 longFrames ; // Flag in non-standard long frame mode + uint8 otprev ; // OTP revision number (read during initialisation) + uint32 txFCTRL ; // Keep TX_FCTRL register config + uint8 init_xtrim; // initial XTAL trim value read from OTP (or defaulted to mid-range if OTP not programmed) + uint8 dblbuffon; // Double RX buffer mode flag + uint32 sysCFGreg ; // Local copy of system config register + uint16 sleep_mode; // Used for automatic reloading of LDO tune and microcode at wake-up + uint8 wait4resp ; // wait4response was set with last TX start command + dwt_cb_data_t cbData; // Callback data structure + dwt_cb_t cbTxDone; // Callback for TX confirmation event + dwt_cb_t cbRxOk; // Callback for RX good frame event + dwt_cb_t cbRxTo; // Callback for RX timeout events + dwt_cb_t cbRxErr; // Callback for RX error events +} dwt_local_data_t ; + +static dwt_local_data_t dw1000local ; // Static local device data + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_initialise() + * + * @brief This function initiates communications with the DW1000 transceiver + * and reads its DEV_ID register (address 0x00) to verify the IC is one supported + * by this software (e.g. DW1000 32-bit device ID value is 0xDECA0130). Then it + * does any initial once only device configurations needed for use and initialises + * as necessary any static data items belonging to this low-level driver. + * + * NOTES: + * 1.this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz + * 2.it also reads and applies LDO tune and crystal trim values from OTP memory + * + * input parameters + * @param config - specifies what configuration to load + * DWT_LOADUCODE 0x1 - load the LDE microcode from ROM - enabled accurate RX timestamp + * DWT_LOADNONE 0x0 - do not load any values from OTP memory + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +// OTP addresses definitions +#define LDOTUNE_ADDRESS (0x04) +#define PARTID_ADDRESS (0x06) +#define LOTID_ADDRESS (0x07) +#define VBAT_ADDRESS (0x08) +#define VTEMP_ADDRESS (0x09) +#define XTRIM_ADDRESS (0x1E) + +int dwt_initialise(uint16 config) +{ + uint16 otp_addr = 0; + uint32 ldo_tune = 0; + + dw1000local.dblbuffon = 0; // Double buffer mode off by default + dw1000local.wait4resp = 0; + dw1000local.sleep_mode = 0; + + dw1000local.cbTxDone = NULL; + dw1000local.cbRxOk = NULL; + dw1000local.cbRxTo = NULL; + dw1000local.cbRxErr = NULL; + + // Read and validate device ID return -1 if not recognised + if (DWT_DEVICE_ID != dwt_readdevid()) // MP IC ONLY (i.e. DW1000) FOR THIS CODE + { + return DWT_ERROR ; + } + + // Make sure the device is completely reset before starting initialisation + dwt_softreset(); + + _dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read by _dwt_otpread are reliable + + // Configure the CPLL lock detect + dwt_write8bitoffsetreg(EXT_SYNC_ID, EC_CTRL_OFFSET, EC_CTRL_PLLLCK); + + // Read OTP revision number + otp_addr = _dwt_otpread(XTRIM_ADDRESS) & 0xffff; // Read 32 bit value, XTAL trim val is in low octet-0 (5 bits) + dw1000local.otprev = (otp_addr >> 8) & 0xff; // OTP revision is next byte + + // Load LDO tune from OTP and kick it if there is a value actually programmed. + ldo_tune = _dwt_otpread(LDOTUNE_ADDRESS); + if((ldo_tune & 0xFF) != 0) + { + // Kick LDO tune + dwt_write8bitoffsetreg(OTP_IF_ID, OTP_SF, OTP_SF_LDO_KICK); // Set load LDE kick bit + dw1000local.sleep_mode |= AON_WCFG_ONW_LLDO; // LDO tune must be kicked at wake-up + } + + // Load Part and Lot ID from OTP + dw1000local.partID = _dwt_otpread(PARTID_ADDRESS); + dw1000local.lotID = _dwt_otpread(LOTID_ADDRESS); + + // XTAL trim value is set in OTP for DW1000 module and EVK/TREK boards but that might not be the case in a custom design + dw1000local.init_xtrim = otp_addr & 0x1F; + if (!dw1000local.init_xtrim) // A value of 0 means that the crystal has not been trimmed + { + dw1000local.init_xtrim = FS_XTALT_MIDRANGE ; // Set to mid-range if no calibration value inside + } + // Configure XTAL trim + dwt_setxtaltrim(dw1000local.init_xtrim); + + // Load leading edge detect code + if(config & DWT_LOADUCODE) + { + _dwt_loaducodefromrom(); + dw1000local.sleep_mode |= AON_WCFG_ONW_LLDE; // microcode must be loaded at wake-up + } + else // Should disable the LDERUN enable bit in 0x36, 0x4 + { + uint16 rega = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1) ; + rega &= 0xFDFF ; // Clear LDERUN bit + dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1, rega) ; + } + + _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing + + // The 3 bits in AON CFG1 register must be cleared to ensure proper operation of the DW1000 in DEEPSLEEP mode. + dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00); + + // Read system register / store local copy + dw1000local.sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register + + return DWT_SUCCESS ; + +} // end dwt_initialise() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_otprevision() + * + * @brief This is used to return the read OTP revision + * + * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value. + * + * input parameters + * + * output parameters + * + * returns the read OTP revision value + */ +uint8 dwt_otprevision(void) +{ + return dw1000local.otprev ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setfinegraintxseq() + * + * @brief This function enables/disables the fine grain TX sequencing (enabled by default). + * + * input parameters + * @param enable - 1 to enable fine grain TX sequencing, 0 to disable it. + * + * output parameters none + * + * no return value + */ +void dwt_setfinegraintxseq(int enable) +{ + if (enable) + { + dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_ENABLE); + } + else + { + dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_DISABLE); + } +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setlnapamode() + * + * @brief This is used to enable GPIO for external LNA or PA functionality - HW dependent, consult the DW1000 User Manual. + * This can also be used for debug as enabling TX and RX GPIOs is quite handy to monitor DW1000's activity. + * + * NOTE: Enabling PA functionality requires that fine grain TX sequencing is deactivated. This can be done using + * dwt_setfinegraintxseq(). + * + * input parameters + * @param lna - 1 to enable LNA functionality, 0 to disable it + * @param pa - 1 to enable PA functionality, 0 to disable it + * + * output parameters + * + * no return value + */ +void dwt_setlnapamode(int lna, int pa) +{ + uint32 gpio_mode = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); + gpio_mode &= ~(GPIO_MSGP4_MASK | GPIO_MSGP5_MASK | GPIO_MSGP6_MASK); + if (lna) + { + gpio_mode |= GPIO_PIN6_EXTRXE; + } + if (pa) + { + gpio_mode |= (GPIO_PIN5_EXTTXE | GPIO_PIN4_EXTPA); + } + dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, gpio_mode); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setgpiodirection() + * + * @brief This is used to set GPIO direction as an input (1) or output (0) + * + * input parameters + * @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file + * @param direction - this sets the GPIO direction - see GxP0... GxP8 in the deca_regs.h file + * + * output parameters + * + * no return value + */ +void dwt_setgpiodirection(uint32 gpioNum, uint32 direction) +{ + uint8 buf[GPIO_DIR_LEN]; + uint32 command = direction | gpioNum; + + buf[0] = command & 0xff; + buf[1] = (command >> 8) & 0xff; + buf[2] = (command >> 16) & 0xff; + + dwt_writetodevice(GPIO_CTRL_ID, GPIO_DIR_OFFSET, GPIO_DIR_LEN, buf); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setgpiovalue() + * + * @brief This is used to set GPIO value as (1) or (0) only applies if the GPIO is configured as output + * + * input parameters + * @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file + * @param value - this sets the GPIO value - see GDP0... GDP8 in the deca_regs.h file + * + * output parameters + * + * no return value + */ +void dwt_setgpiovalue(uint32 gpioNum, uint32 value) +{ + uint8 buf[GPIO_DOUT_LEN]; + uint32 command = value | gpioNum; + + buf[0] = command & 0xff; + buf[1] = (command >> 8) & 0xff; + buf[2] = (command >> 16) & 0xff; + + dwt_writetodevice(GPIO_CTRL_ID, GPIO_DOUT_OFFSET, GPIO_DOUT_LEN, buf); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_getpartid() + * + * @brief This is used to return the read part ID of the device + * + * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value. + * + * input parameters + * + * output parameters + * + * returns the 32 bit part ID value as programmed in the factory + */ +uint32 dwt_getpartid(void) +{ + return dw1000local.partID; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_getlotid() + * + * @brief This is used to return the read lot ID of the device + * + * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value. + * + * input parameters + * + * output parameters + * + * returns the 32 bit lot ID value as programmed in the factory + */ +uint32 dwt_getlotid(void) +{ + return dw1000local.lotID; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readdevid() + * + * @brief This is used to return the read device type and revision information of the DW1000 device (MP part is 0xDECA0130) + * + * input parameters + * + * output parameters + * + * returns the read value which for DW1000 is 0xDECA0130 + */ +uint32 dwt_readdevid(void) +{ + return dwt_read32bitoffsetreg(DEV_ID_ID,0); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configuretxrf() + * + * @brief This function provides the API for the configuration of the TX spectrum + * including the power and pulse generator delay. The input is a pointer to the data structure + * of type dwt_txconfig_t that holds all the configurable items. + * + * input parameters + * @param config - pointer to the txrf configuration structure, which contains the tx rf config data + * + * output parameters + * + * no return value + */ +void dwt_configuretxrf(dwt_txconfig_t *config) +{ + + // Configure RF TX PG_DELAY + dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, config->PGdly); + + // Configure TX power + dwt_write32bitreg(TX_POWER_ID, config->power); + +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configure() + * + * @brief This function provides the main API for the configuration of the + * DW1000 and this low-level driver. The input is a pointer to the data structure + * of type dwt_config_t that holds all the configurable items. + * The dwt_config_t structure shows which ones are supported + * + * input parameters + * @param config - pointer to the configuration structure, which contains the device configuration data. + * + * output parameters + * + * no return value + */ +void dwt_configure(dwt_config_t *config) +{ + uint8 chan = config->chan ; + uint32 regval ; + uint16 reg16 = lde_replicaCoeff[config->rxCode]; + uint8 prfIndex = config->prf - DWT_PRF_16M; + uint8 bw = ((chan == 4) || (chan == 7)) ? 1 : 0 ; // Select wide or narrow band + +#ifdef DWT_API_ERROR_CHECK + assert(config->dataRate <= DWT_BR_6M8); + assert(config->rxPAC <= DWT_PAC64); + assert((chan >= 1) && (chan <= 7) && (chan != 6)); + assert(((config->prf == DWT_PRF_64M) && (config->txCode >= 9) && (config->txCode <= 24)) + || ((config->prf == DWT_PRF_16M) && (config->txCode >= 1) && (config->txCode <= 8))); + assert(((config->prf == DWT_PRF_64M) && (config->rxCode >= 9) && (config->rxCode <= 24)) + || ((config->prf == DWT_PRF_16M) && (config->rxCode >= 1) && (config->rxCode <= 8))); + assert((config->txPreambLength == DWT_PLEN_64) || (config->txPreambLength == DWT_PLEN_128) || (config->txPreambLength == DWT_PLEN_256) + || (config->txPreambLength == DWT_PLEN_512) || (config->txPreambLength == DWT_PLEN_1024) || (config->txPreambLength == DWT_PLEN_1536) + || (config->txPreambLength == DWT_PLEN_2048) || (config->txPreambLength == DWT_PLEN_4096)); + assert((config->phrMode == DWT_PHRMODE_STD) || (config->phrMode == DWT_PHRMODE_EXT)); +#endif + + // For 110 kbps we need a special setup + if(DWT_BR_110K == config->dataRate) + { + dw1000local.sysCFGreg |= SYS_CFG_RXM110K ; + reg16 >>= 3; // lde_replicaCoeff must be divided by 8 + } + else + { + dw1000local.sysCFGreg &= (~SYS_CFG_RXM110K) ; + } + + dw1000local.longFrames = config->phrMode ; + + dw1000local.sysCFGreg &= ~SYS_CFG_PHR_MODE_11; + dw1000local.sysCFGreg |= (SYS_CFG_PHR_MODE_11 & (config->phrMode << SYS_CFG_PHR_MODE_SHFT)); + + dwt_write32bitreg(SYS_CFG_ID,dw1000local.sysCFGreg) ; + // Set the lde_replicaCoeff + dwt_write16bitoffsetreg(LDE_IF_ID, LDE_REPC_OFFSET, reg16) ; + + _dwt_configlde(prfIndex); + + // Configure PLL2/RF PLL block CFG/TUNE (for a given channel) + dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); + dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); + + // Configure RF RX blocks (for specified channel/bandwidth) + dwt_write8bitoffsetreg(RF_CONF_ID, RF_RXCTRLH_OFFSET, rx_config[bw]); + + // Configure RF TX blocks (for specified channel and PRF) + // Configure RF TX control + dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); + + // Configure the baseband parameters (for specified PRF, bit rate, PAC, and SFD settings) + // DTUNE0 + dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE0b_OFFSET, sftsh[config->dataRate][config->nsSFD]); + + // DTUNE1 + dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1a_OFFSET, dtune1[prfIndex]); + + if(config->dataRate == DWT_BR_110K) + { + dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_110K); + } + else + { + if(config->txPreambLength == DWT_PLEN_64) + { + dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_6M8_PRE64); + dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE64); + } + else + { + dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_850K_6M8); + dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE128PLUS); + } + } + + // DTUNE2 + dwt_write32bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET, digital_bb_config[prfIndex][config->rxPAC]); + + // DTUNE3 (SFD timeout) + // Don't allow 0 - SFD timeout will always be enabled + if(config->sfdTO == 0) + { + config->sfdTO = DWT_SFDTOC_DEF; + } + dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_SFDTOC_OFFSET, config->sfdTO); + + // Configure AGC parameters + dwt_write32bitoffsetreg( AGC_CFG_STS_ID, 0xC, agc_config.lo32); + dwt_write16bitoffsetreg( AGC_CFG_STS_ID, 0x4, agc_config.target[prfIndex]); + + // Set (non-standard) user SFD for improved performance, + if(config->nsSFD) + { + // Write non standard (DW) SFD length + dwt_write8bitoffsetreg(USR_SFD_ID, 0x00, dwnsSFDlen[config->dataRate]); + } + regval = (CHAN_CTRL_TX_CHAN_MASK & (chan << CHAN_CTRL_TX_CHAN_SHIFT)) | // Transmit Channel + (CHAN_CTRL_RX_CHAN_MASK & (chan << CHAN_CTRL_RX_CHAN_SHIFT)) | // Receive Channel + (CHAN_CTRL_RXFPRF_MASK & (config->prf << CHAN_CTRL_RXFPRF_SHIFT)) | // RX PRF + (CHAN_CTRL_DWSFD & (config->nsSFD << CHAN_CTRL_DWSFD_SHIFT)) | // Use DW nsSFD + (CHAN_CTRL_TX_PCOD_MASK & (config->txCode << CHAN_CTRL_TX_PCOD_SHIFT)) | // TX Preamble Code + (CHAN_CTRL_RX_PCOD_MASK & (config->rxCode << CHAN_CTRL_RX_PCOD_SHIFT)) ; // RX Preamble Code + + dwt_write32bitreg(CHAN_CTRL_ID,regval) ; + + // Set up TX Preamble Size, PRF and Data Rate + dw1000local.txFCTRL = ((config->txPreambLength | config->prf) << TX_FCTRL_TXPRF_SHFT) | (config->dataRate << TX_FCTRL_TXBR_SHFT); + dwt_write32bitreg(TX_FCTRL_ID, dw1000local.txFCTRL); + + // The SFD transmit pattern is initialised by the DW1000 upon a user TX request, but (due to an IC issue) it is not done for an auto-ACK TX. The + // SYS_CTRL write below works around this issue, by simultaneously initiating and aborting a transmission, which correctly initialises the SFD + // after its configuration or reconfiguration. + // This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016). + dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_TXSTRT | SYS_CTRL_TRXOFF); // Request TX start and TRX off at the same time +} // end dwt_configure() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setrxantennadelay() + * + * @brief This API function writes the antenna delay (in time units) to RX registers + * + * input parameters: + * @param rxDelay - this is the total (RX) antenna delay value, which + * will be programmed into the RX register + * + * output parameters + * + * no return value + */ +void dwt_setrxantennadelay(uint16 rxDelay) +{ + // Set the RX antenna delay for auto TX timestamp adjustment + dwt_write16bitoffsetreg(LDE_IF_ID, LDE_RXANTD_OFFSET, rxDelay); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_settxantennadelay() + * + * @brief This API function writes the antenna delay (in time units) to TX registers + * + * input parameters: + * @param txDelay - this is the total (TX) antenna delay value, which + * will be programmed into the TX delay register + * + * output parameters + * + * no return value + */ +void dwt_settxantennadelay(uint16 txDelay) +{ + // Set the TX antenna delay for auto TX timestamp adjustment + dwt_write16bitoffsetreg(TX_ANTD_ID, TX_ANTD_OFFSET, txDelay); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_writetxdata() + * + * @brief This API function writes the supplied TX data into the DW1000's + * TX buffer. The input parameters are the data length in bytes and a pointer + * to those data bytes. + * + * input parameters + * @param txFrameLength - This is the total frame length, including the two byte CRC. + * Note: this is the length of TX message (including the 2 byte CRC) - max is 1023 + * standard PHR mode allows up to 127 bytes + * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration + * see dwt_configure function + * @param txFrameBytes - Pointer to the users buffer containing the data to send. + * @param txBufferOffset - This specifies an offset in the DW1000s TX Buffer at which to start writing data. + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +int dwt_writetxdata(uint16 txFrameLength, uint8 *txFrameBytes, uint16 txBufferOffset) +{ +#ifdef DWT_API_ERROR_CHECK + assert(txFrameLength >= 2); + assert((dw1000local.longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); + assert((txBufferOffset + txFrameLength) <= 1024); +#endif + + if ((txBufferOffset + txFrameLength) <= 1024) + { + // Write the data to the IC TX buffer, (-2 bytes for auto generated CRC) + dwt_writetodevice( TX_BUFFER_ID, txBufferOffset, txFrameLength-2, txFrameBytes); + return DWT_SUCCESS; + } + else + { + return DWT_ERROR; + } +} // end dwt_writetxdata() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_writetxfctrl() + * + * @brief This API function configures the TX frame control register before the transmission of a frame + * + * input parameters: + * @param txFrameLength - this is the length of TX message (including the 2 byte CRC) - max is 1023 + * NOTE: standard PHR mode allows up to 127 bytes + * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration + * see dwt_configure function + * @param txBufferOffset - the offset in the tx buffer to start writing the data + * @param ranging - 1 if this is a ranging frame, else 0 + * + * output parameters + * + * no return value + */ +void dwt_writetxfctrl(uint16 txFrameLength, uint16 txBufferOffset, int ranging) +{ + +#ifdef DWT_API_ERROR_CHECK + assert((dw1000local.longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); +#endif + + // Write the frame length to the TX frame control register + // dw1000local.txFCTRL has kept configured bit rate information + uint32 reg32 = dw1000local.txFCTRL | txFrameLength | (txBufferOffset << TX_FCTRL_TXBOFFS_SHFT) | (ranging << TX_FCTRL_TR_SHFT); + dwt_write32bitreg(TX_FCTRL_ID, reg32); +} // end dwt_writetxfctrl() + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readrxdata() + * + * @brief This is used to read the data from the RX buffer, from an offset location give by offset parameter + * + * input parameters + * @param buffer - the buffer into which the data will be read + * @param length - the length of data to read (in bytes) + * @param rxBufferOffset - the offset in the rx buffer from which to read the data + * + * output parameters + * + * no return value + */ +void dwt_readrxdata(uint8 *buffer, uint16 length, uint16 rxBufferOffset) +{ + dwt_readfromdevice(RX_BUFFER_ID,rxBufferOffset,length,buffer) ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readaccdata() + * + * @brief This is used to read the data from the Accumulator buffer, from an offset location give by offset parameter + * + * NOTE: Because of an internal memory access delay when reading the accumulator the first octet output is a dummy octet + * that should be discarded. This is true no matter what sub-index the read begins at. + * + * input parameters + * @param buffer - the buffer into which the data will be read + * @param length - the length of data to read (in bytes) + * @param accOffset - the offset in the acc buffer from which to read the data + * + * output parameters + * + * no return value + */ +void dwt_readaccdata(uint8 *buffer, uint16 len, uint16 accOffset) +{ + // Force on the ACC clocks if we are sequenced + _dwt_enableclocks(READ_ACC_ON); + + dwt_readfromdevice(ACC_MEM_ID,accOffset,len,buffer) ; + + _dwt_enableclocks(READ_ACC_OFF); // Revert clocks back +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readdiagnostics() + * + * @brief this function reads the RX signal quality diagnostic data + * + * input parameters + * @param diagnostics - diagnostic structure pointer, this will contain the diagnostic data read from the DW1000 + * + * output parameters + * + * no return value + */ +void dwt_readdiagnostics(dwt_rxdiag_t *diagnostics) +{ + // Read the HW FP index + diagnostics->firstPath = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_INDEX_OFFSET); + + // LDE diagnostic data + diagnostics->maxNoise = dwt_read16bitoffsetreg(LDE_IF_ID, LDE_THRESH_OFFSET); + + // Read all 8 bytes in one SPI transaction + dwt_readfromdevice(RX_FQUAL_ID, 0x0, 8, (uint8*)&diagnostics->stdNoise); + + diagnostics->firstPathAmp1 = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_AMPL1_OFFSET); + + diagnostics->rxPreamCount = (dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXPACC_MASK) >> RX_FINFO_RXPACC_SHIFT ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readtxtimestamp() + * + * @brief This is used to read the TX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * @param timestamp - a pointer to a 5-byte buffer which will store the read TX timestamp time + * + * output parameters - the timestamp buffer will contain the value after the function call + * + * no return value + */ +void dwt_readtxtimestamp(uint8 * timestamp) +{ + dwt_readfromdevice(TX_TIME_ID, TX_TIME_TX_STAMP_OFFSET, TX_TIME_TX_STAMP_LEN, timestamp) ; // Read bytes directly into buffer +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readtxtimestamphi32() + * + * @brief This is used to read the high 32-bits of the TX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * + * output parameters + * + * returns high 32-bits of TX timestamp + */ +uint32 dwt_readtxtimestamphi32(void) +{ + return dwt_read32bitoffsetreg(TX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readtxtimestamplo32() + * + * @brief This is used to read the low 32-bits of the TX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * + * output parameters + * + * returns low 32-bits of TX timestamp + */ +uint32 dwt_readtxtimestamplo32(void) +{ + return dwt_read32bitreg(TX_TIME_ID); // Read TX TIME as a 32-bit register to get the 4 lower bytes out of 5 +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readrxtimestamp() + * + * @brief This is used to read the RX timestamp (adjusted time of arrival) + * + * input parameters + * @param timestamp - a pointer to a 5-byte buffer which will store the read RX timestamp time + * + * output parameters - the timestamp buffer will contain the value after the function call + * + * no return value + */ +void dwt_readrxtimestamp(uint8 * timestamp) +{ + dwt_readfromdevice(RX_TIME_ID, RX_TIME_RX_STAMP_OFFSET, RX_TIME_RX_STAMP_LEN, timestamp) ; // Get the adjusted time of arrival +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readrxtimestamphi32() + * + * @brief This is used to read the high 32-bits of the RX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * + * output parameters + * + * returns high 32-bits of RX timestamp + */ +uint32 dwt_readrxtimestamphi32(void) +{ + return dwt_read32bitoffsetreg(RX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readrxtimestamplo32() + * + * @brief This is used to read the low 32-bits of the RX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * + * output parameters + * + * returns low 32-bits of RX timestamp + */ +uint32 dwt_readrxtimestamplo32(void) +{ + return dwt_read32bitreg(RX_TIME_ID); // Read RX TIME as a 32-bit register to get the 4 lower bytes out of 5 +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readsystimestamphi32() + * + * @brief This is used to read the high 32-bits of the system time + * + * input parameters + * + * output parameters + * + * returns high 32-bits of system time timestamp + */ +uint32 dwt_readsystimestamphi32(void) +{ + return dwt_read32bitoffsetreg(SYS_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readsystime() + * + * @brief This is used to read the system time + * + * input parameters + * @param timestamp - a pointer to a 5-byte buffer which will store the read system time + * + * output parameters + * @param timestamp - the timestamp buffer will contain the value after the function call + * + * no return value + */ +void dwt_readsystime(uint8 * timestamp) +{ + dwt_readfromdevice(SYS_TIME_ID, SYS_TIME_OFFSET, SYS_TIME_LEN, timestamp) ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_writetodevice() + * + * @brief this function is used to write to the DW1000 device registers + * Notes: + * 1. Firstly we create a header (the first byte is a header byte) + * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte + * b. set bit-7 (or with 0x80) for write operation + * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte + * + * 2. Write the header followed by the data bytes to the DW1000 device + * + * + * input parameters: + * @param recordNumber - ID of register file or buffer being accessed + * @param index - byte index into register file or buffer being accessed + * @param length - number of bytes being written + * @param buffer - pointer to buffer containing the 'length' bytes to be written + * + * output parameters + * + * no return value + */ +void dwt_writetodevice +( + uint16 recordNumber, + uint16 index, + uint32 length, + const uint8 *buffer +) +{ + uint8 header[3] ; // Buffer to compose header in + int cnt = 0; // Counter for length of header +#ifdef DWT_API_ERROR_CHECK + assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. +#endif + + // Write message header selecting WRITE operation and addresses as appropriate (this is one to three bytes long) + if (index == 0) // For index of 0, no sub-index is required + { + header[cnt++] = 0x80 | recordNumber ; // Bit-7 is WRITE operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id + } + else + { +#ifdef DWT_API_ERROR_CHECK + assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. +#endif + header[cnt++] = 0xC0 | recordNumber ; // Bit-7 is WRITE operation, bit-6 one=sub-address follows, bits 5-0 is reg file id + + if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required + { + header[cnt++] = (uint8)index ; // Bit-7 zero means no extension, bits 6-0 is index. + } + else + { + header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. + header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. + } + } + + // Write it to the SPI + writetospi(cnt,header,length,buffer); +} // end dwt_writetodevice() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readfromdevice() + * + * @brief this function is used to read from the DW1000 device registers + * Notes: + * 1. Firstly we create a header (the first byte is a header byte) + * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte + * b. set bit-7 (or with 0x80) for write operation + * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte + * + * 2. Write the header followed by the data bytes to the DW1000 device + * 3. Store the read data in the input buffer + * + * input parameters: + * @param recordNumber - ID of register file or buffer being accessed + * @param index - byte index into register file or buffer being accessed + * @param length - number of bytes being read + * @param buffer - pointer to buffer in which to return the read data. + * + * output parameters + * + * no return value + */ +void dwt_readfromdevice +( + uint16 recordNumber, + uint16 index, + uint32 length, + uint8 *buffer +) +{ + uint8 header[3] ; // Buffer to compose header in + int cnt = 0; // Counter for length of header +#ifdef DWT_API_ERROR_CHECK + assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. +#endif + + // Write message header selecting READ operation and addresses as appropriate (this is one to three bytes long) + if (index == 0) // For index of 0, no sub-index is required + { + header[cnt++] = (uint8) recordNumber ; // Bit-7 zero is READ operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id + } + else + { +#ifdef DWT_API_ERROR_CHECK + assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. +#endif + header[cnt++] = (uint8)(0x40 | recordNumber) ; // Bit-7 zero is READ operation, bit-6 one=sub-address follows, bits 5-0 is reg file id + + if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required + { + header[cnt++] = (uint8) index ; // Bit-7 zero means no extension, bits 6-0 is index. + } + else + { + header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. + header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. + } + } + + // Do the read from the SPI + readfromspi(cnt, header, length, buffer); // result is stored in the buffer +} // end dwt_readfromdevice() + + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_read32bitoffsetreg() + * + * @brief this function is used to read 32-bit value from the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * + * output parameters + * + * returns 32 bit register value + */ +uint32 dwt_read32bitoffsetreg(int regFileID,int regOffset) +{ + uint32 regval = 0 ; + int j ; + uint8 buffer[4] ; + + dwt_readfromdevice(regFileID,regOffset,4,buffer); // Read 4 bytes (32-bits) register into buffer + + for (j = 3 ; j >= 0 ; j --) + { + regval = (regval << 8) + buffer[j] ; + } + return regval ; + +} // end dwt_read32bitoffsetreg() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_read16bitoffsetreg() + * + * @brief this function is used to read 16-bit value from the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * + * output parameters + * + * returns 16 bit register value + */ +uint16 dwt_read16bitoffsetreg(int regFileID,int regOffset) +{ + uint16 regval = 0 ; + uint8 buffer[2] ; + + dwt_readfromdevice(regFileID,regOffset,2,buffer); // Read 2 bytes (16-bits) register into buffer + + regval = (buffer[1] << 8) + buffer[0] ; + return regval ; + +} // end dwt_read16bitoffsetreg() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_read8bitoffsetreg() + * + * @brief this function is used to read an 8-bit value from the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * + * output parameters + * + * returns 8-bit register value + */ +uint8 dwt_read8bitoffsetreg(int regFileID, int regOffset) +{ + uint8 regval; + + dwt_readfromdevice(regFileID, regOffset, 1, ®val); + + return regval ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_write8bitoffsetreg() + * + * @brief this function is used to write an 8-bit value to the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * @param regval - the value to write + * + * output parameters + * + * no return value + */ +void dwt_write8bitoffsetreg(int regFileID, int regOffset, uint8 regval) +{ + dwt_writetodevice(regFileID, regOffset, 1, ®val); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_write16bitoffsetreg() + * + * @brief this function is used to write 16-bit value to the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * @param regval - the value to write + * + * output parameters + * + * no return value + */ +void dwt_write16bitoffsetreg(int regFileID,int regOffset,uint16 regval) +{ + uint8 buffer[2] ; + + buffer[0] = regval & 0xFF; + buffer[1] = regval >> 8 ; + + dwt_writetodevice(regFileID,regOffset,2,buffer); +} // end dwt_write16bitoffsetreg() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_write32bitoffsetreg() + * + * @brief this function is used to write 32-bit value to the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * @param regval - the value to write + * + * output parameters + * + * no return value + */ +void dwt_write32bitoffsetreg(int regFileID,int regOffset,uint32 regval) +{ + int j ; + uint8 buffer[4] ; + + for ( j = 0 ; j < 4 ; j++ ) + { + buffer[j] = regval & 0xff ; + regval >>= 8 ; + } + + dwt_writetodevice(regFileID,regOffset,4,buffer); +} // end dwt_write32bitoffsetreg() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_enableframefilter() + * + * @brief This is used to enable the frame filtering - (the default option is to + * accept any data and ACK frames with correct destination address + * + * input parameters + * @param - bitmask - enables/disables the frame filtering options according to + * DWT_FF_NOTYPE_EN 0x000 no frame types allowed + * DWT_FF_COORD_EN 0x002 behave as coordinator (can receive frames with no destination address (PAN ID has to match)) + * DWT_FF_BEACON_EN 0x004 beacon frames allowed + * DWT_FF_DATA_EN 0x008 data frames allowed + * DWT_FF_ACK_EN 0x010 ack frames allowed + * DWT_FF_MAC_EN 0x020 mac control frames allowed + * DWT_FF_RSVD_EN 0x040 reserved frame types allowed + * + * output parameters + * + * no return value + */ +void dwt_enableframefilter(uint16 enable) +{ + uint32 sysconfig = SYS_CFG_MASK & dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register + + if(enable) + { + // Enable frame filtering and configure frame types + sysconfig &= ~(SYS_CFG_FF_ALL_EN); // Clear all + sysconfig |= (enable & SYS_CFG_FF_ALL_EN) | SYS_CFG_FFE; + } + else + { + sysconfig &= ~(SYS_CFG_FFE); + } + + dw1000local.sysCFGreg = sysconfig ; + dwt_write32bitreg(SYS_CFG_ID,sysconfig) ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setpanid() + * + * @brief This is used to set the PAN ID + * + * input parameters + * @param panID - this is the PAN ID + * + * output parameters + * + * no return value + */ +void dwt_setpanid(uint16 panID) +{ + // PAN ID is high 16 bits of register + dwt_write16bitoffsetreg(PANADR_ID, PANADR_PAN_ID_OFFSET, panID); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setaddress16() + * + * @brief This is used to set 16-bit (short) address + * + * input parameters + * @param shortAddress - this sets the 16 bit short address + * + * output parameters + * + * no return value + */ +void dwt_setaddress16(uint16 shortAddress) +{ + // Short address into low 16 bits + dwt_write16bitoffsetreg(PANADR_ID, PANADR_SHORT_ADDR_OFFSET, shortAddress); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_seteui() + * + * @brief This is used to set the EUI 64-bit (long) address + * + * input parameters + * @param eui64 - this is the pointer to a buffer that contains the 64bit address + * + * output parameters + * + * no return value + */ +void dwt_seteui(uint8 *eui64) +{ + dwt_writetodevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_geteui() + * + * @brief This is used to get the EUI 64-bit from the DW1000 + * + * input parameters + * @param eui64 - this is the pointer to a buffer that will contain the read 64-bit EUI value + * + * output parameters + * + * no return value + */ +void dwt_geteui(uint8 *eui64) +{ + dwt_readfromdevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_otpread() + * + * @brief This is used to read the OTP data from given address into provided array + * + * input parameters + * @param address - this is the OTP address to read from + * @param array - this is the pointer to the array into which to read the data + * @param length - this is the number of 32 bit words to read (array needs to be at least this length) + * + * output parameters + * + * no return value + */ +void dwt_otpread(uint32 address, uint32 *array, uint8 length) +{ + int i; + + _dwt_enableclocks(FORCE_SYS_XTI); // NOTE: Set system clock to XTAL - this is necessary to make sure the values read by _dwt_otpread are reliable + + for(i=0; i<length; i++) + { + array[i] = _dwt_otpread(address + i) ; + } + + _dwt_enableclocks(ENABLE_ALL_SEQ); // Restore system clock to PLL + + return ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn _dwt_otpread() + * + * @brief function to read the OTP memory. Ensure that MR,MRa,MRb are reset to 0. + * + * input parameters + * @param address - address to read at + * + * output parameters + * + * returns the 32bit of read data + */ +uint32 _dwt_otpread(uint32 address) +{ + uint32 ret_data; + + // Write the address + dwt_write16bitoffsetreg(OTP_IF_ID, OTP_ADDR, address); + + // Perform OTP Read - Manual read mode has to be set + dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_OTPREAD | OTP_CTRL_OTPRDEN); + dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, 0x00); // OTPREAD is self clearing but OTPRDEN is not + + // Read read data, available 40ns after rising edge of OTP_READ + ret_data = dwt_read32bitoffsetreg(OTP_IF_ID, OTP_RDAT); + + // Return the 32bit of read data + return ret_data; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn _dwt_otpsetmrregs() + * + * @brief Configure the MR registers for initial programming (enable charge pump). + * Read margin is used to stress the read back from the + * programmed bit. In normal operation this is relaxed. + * + * input parameters + * @param mode - "0" : Reset all to 0x0: MRA=0x0000, MRB=0x0000, MR=0x0000 + * "1" : Set for inital programming: MRA=0x9220, MRB=0x000E, MR=0x1024 + * "2" : Set for soak programming: MRA=0x9220, MRB=0x0003, MR=0x1824 + * "3" : High Vpp: MRA=0x9220, MRB=0x004E, MR=0x1824 + * "4" : Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000 + * "5" : Array Clean: MRA=0x0049, MRB=0x0003, MR=0x0024 + * "4" : Very Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000 + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +uint32 _dwt_otpsetmrregs(int mode) +{ + uint8 rd_buf[4]; + uint8 wr_buf[4]; + uint32 mra=0,mrb=0,mr=0; + + // PROGRAMME MRA + // Set MRA, MODE_SEL + wr_buf[0] = 0x03; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL+1,1,wr_buf); + + // Load data + switch(mode&0x0f) { + case 0x0 : + mr =0x0000; + mra=0x0000; + mrb=0x0000; + break; + case 0x1 : + mr =0x1024; + mra=0x9220; // Enable CPP mon + mrb=0x000e; + break; + case 0x2 : + mr =0x1824; + mra=0x9220; + mrb=0x0003; + break; + case 0x3 : + mr =0x1824; + mra=0x9220; + mrb=0x004e; + break; + case 0x4 : + mr =0x0000; + mra=0x0000; + mrb=0x0003; + break; + case 0x5 : + mr =0x0024; + mra=0x0000; + mrb=0x0003; + break; + default : + return DWT_ERROR; + } + + wr_buf[0] = mra & 0x00ff; + wr_buf[1] = (mra & 0xff00)>>8; + dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf); + + + // Set WRITE_MR + wr_buf[0] = 0x08; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + + // Wait? + + // Set Clear Mode sel + wr_buf[0] = 0x02; + dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); + + // Set AUX update, write MR + wr_buf[0] = 0x88; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + // Clear write MR + wr_buf[0] = 0x80; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + // Clear AUX update + wr_buf[0] = 0x00; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + + /////////////////////////////////////////// + // PROGRAM MRB + // Set SLOW, MRB, MODE_SEL + wr_buf[0] = 0x05; + dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); + + wr_buf[0] = mrb & 0x00ff; + wr_buf[1] = (mrb & 0xff00)>>8; + dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf); + + // Set WRITE_MR + wr_buf[0] = 0x08; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + + // Wait? + + // Set Clear Mode sel + wr_buf[0] = 0x04; + dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); + + // Set AUX update, write MR + wr_buf[0] = 0x88; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + // Clear write MR + wr_buf[0] = 0x80; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + // Clear AUX update + wr_buf[0] = 0x00; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + + /////////////////////////////////////////// + // PROGRAM MR + // Set SLOW, MODE_SEL + wr_buf[0] = 0x01; + dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); + // Load data + + wr_buf[0] = mr & 0x00ff; + wr_buf[1] = (mr & 0xff00)>>8; + dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf); + + // Set WRITE_MR + wr_buf[0] = 0x08; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + + // Wait? + deca_sleep(10); + // Set Clear Mode sel + wr_buf[0] = 0x00; + dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); + + // Read confirm mode writes. + // Set man override, MRA_SEL + wr_buf[0] = OTP_CTRL_OTPRDEN; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + wr_buf[0] = 0x02; + dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); + // MRB_SEL + wr_buf[0] = 0x04; + dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); + deca_sleep(100); + + // Clear mode sel + wr_buf[0] = 0x00; + dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); + // Clear MAN_OVERRIDE + wr_buf[0] = 0x00; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); + + deca_sleep(10); + + if (((mode&0x0f) == 0x1)||((mode&0x0f) == 0x2)) + { + // Read status register + dwt_readfromdevice(OTP_IF_ID, OTP_STAT,1,rd_buf); + } + + return DWT_SUCCESS; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn _dwt_otpprogword32() + * + * @brief function to program the OTP memory. Ensure that MR,MRa,MRb are reset to 0. + * VNM Charge pump needs to be enabled (see _dwt_otpsetmrregs) + * Note the address is only 11 bits long. + * + * input parameters + * @param address - address to read at + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +uint32 _dwt_otpprogword32(uint32 data, uint16 address) +{ + uint8 rd_buf[1]; + uint8 wr_buf[4]; + uint8 otp_done; + + // Read status register + dwt_readfromdevice(OTP_IF_ID, OTP_STAT, 1, rd_buf); + + if((rd_buf[0] & 0x02) != 0x02) + { + return DWT_ERROR; + } + + // Write the data + wr_buf[3] = (data>>24) & 0xff; + wr_buf[2] = (data>>16) & 0xff; + wr_buf[1] = (data>>8) & 0xff; + wr_buf[0] = data & 0xff; + dwt_writetodevice(OTP_IF_ID, OTP_WDAT, 4, wr_buf); + + // Write the address [10:0] + wr_buf[1] = (address>>8) & 0x07; + wr_buf[0] = address & 0xff; + dwt_writetodevice(OTP_IF_ID, OTP_ADDR, 2, wr_buf); + + // Enable Sequenced programming + wr_buf[0] = OTP_CTRL_OTPPROG; + dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf); + wr_buf[0] = 0x00; // And clear + dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf); + + // WAIT for status to flag PRGM OK.. + otp_done = 0; + while(otp_done == 0) + { + deca_sleep(1); + dwt_readfromdevice(OTP_IF_ID, OTP_STAT, 1, rd_buf); + + if((rd_buf[0] & 0x01) == 0x01) + { + otp_done = 1; + } + } + + return DWT_SUCCESS; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_otpwriteandverify() + * + * @brief This is used to program 32-bit value into the DW1000 OTP memory. + * + * input parameters + * @param value - this is the 32-bit value to be programmed into OTP + * @param address - this is the 16-bit OTP address into which the 32-bit value is programmed + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +uint32 dwt_otpwriteandverify(uint32 value, uint16 address) +{ + int prog_ok = DWT_SUCCESS; + int retry = 0; + // Firstly set the system clock to crystal + _dwt_enableclocks(FORCE_SYS_XTI); //set system clock to XTI + + // + //!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!! + //Set the supply to 3.7V + // + + _dwt_otpsetmrregs(1); // Set mode for programming + + // For each value to program - the readback/check is done couple of times to verify it has programmed successfully + while(1) + { + _dwt_otpprogword32(value, address); + + if(_dwt_otpread(address) == value) + { + break; + } + retry++; + if(retry==5) + { + break; + } + } + + // Even if the above does not exit before retry reaches 5, the programming has probably been successful + + _dwt_otpsetmrregs(4); // Set mode for reading + + if(_dwt_otpread(address) != value) // If this does not pass please check voltage supply on VDDIO + { + prog_ok = DWT_ERROR; + } + + _dwt_otpsetmrregs(0); // Setting OTP mode register for low RM read - resetting the device would be alternative + + return prog_ok; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn _dwt_aonconfigupload() + * + * @brief This function uploads always on (AON) configuration, as set in the AON_CFG0_OFFSET register. + * + * input parameters + * + * output parameters + * + * no return value + */ +void _dwt_aonconfigupload(void) +{ + dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_UPL_CFG); + dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn _dwt_aonarrayupload() + * + * @brief This function uploads always on (AON) data array and configuration. Thus if this function is used, then _dwt_aonconfigupload + * is not necessary. The DW1000 will go so SLEEP straight after this if the DWT_SLP_EN has been set. + * + * input parameters + * + * output parameters + * + * no return value + */ +void _dwt_aonarrayupload(void) +{ + dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register + dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_SAVE); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_entersleep() + * + * @brief This function puts the device into deep sleep or sleep. dwt_configuresleep() should be called first + * to configure the sleep and on-wake/wake-up parameters + * + * input parameters + * + * output parameters + * + * no return value + */ +void dwt_entersleep(void) +{ + // Copy config to AON - upload the new configuration + _dwt_aonarrayupload(); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configuresleepcnt() + * + * @brief sets the sleep counter to new value, this function programs the high 16-bits of the 28-bit counter + * + * NOTE: this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz + * + * input parameters + * @param sleepcnt - this it value of the sleep counter to program + * + * output parameters + * + * no return value + */ +void dwt_configuresleepcnt(uint16 sleepcnt) +{ + // Force system clock to crystal + _dwt_enableclocks(FORCE_SYS_XTI); + + // Reset sleep configuration to make sure we don't accidentally go to sleep + dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00); // NB: this write change the default LPCLKDIVA value which is not used anyway. + dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00); + + // Disable the sleep counter + _dwt_aonconfigupload(); + + // Set new value + dwt_write16bitoffsetreg(AON_ID, AON_CFG0_OFFSET + AON_CFG0_SLEEP_TIM_OFFSET, sleepcnt); + _dwt_aonconfigupload(); + + // Enable the sleep counter + dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_SLEEP_CEN); + _dwt_aonconfigupload(); + + // Put system PLL back on + _dwt_enableclocks(ENABLE_ALL_SEQ); +} + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_calibratesleepcnt() + * + * @brief calibrates the local oscillator as its frequency can vary between 7 and 13kHz depending on temp and voltage + * + * NOTE: this function needs to be run before dwt_configuresleepcnt, so that we know what the counter units are + * + * input parameters + * + * output parameters + * + * returns the number of XTAL/2 cycles per low-power oscillator cycle. LP OSC frequency = 19.2 MHz/return value + */ +uint16 dwt_calibratesleepcnt(void) +{ + uint16 result; + + // Enable calibration of the sleep counter + dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_LPOSC_CAL); + _dwt_aonconfigupload(); + + // Disable calibration of the sleep counter + dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00); + _dwt_aonconfigupload(); + + // Force system clock to crystal + _dwt_enableclocks(FORCE_SYS_XTI); + + deca_sleep(1); + + // Read the number of XTAL/2 cycles one LP oscillator cycle took. + // Set up address - Read upper byte first + dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_1); + + // Enable manual override + dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); + + // Read confirm data that was written + dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); + + // Read back byte from AON + result = dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); + result <<= 8; + + // Set up address - Read lower byte + dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_0); + + // Enable manual override + dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); + + // Read confirm data that was written + dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); + + // Read back byte from AON + result |= dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); + + // Disable manual override + dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); + + // Put system PLL back on + _dwt_enableclocks(ENABLE_ALL_SEQ); + + // Returns the number of XTAL/2 cycles per one LP OSC cycle + // This can be converted into LP OSC frequency by 19.2 MHz/result + return result; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configuresleep() + * + * @brief configures the device for both DEEP_SLEEP and SLEEP modes, and on-wake mode + * i.e. before entering the sleep, the device should be programmed for TX or RX, then upon "waking up" the TX/RX settings + * will be preserved and the device can immediately perform the desired action TX/RX + * + * NOTE: e.g. Tag operation - after deep sleep, the device needs to just load the TX buffer and send the frame + * + * + * mode: the array and LDE code (OTP/ROM) and LDO tune, and set sleep persist + * DWT_PRESRV_SLEEP 0x0100 - preserve sleep + * DWT_LOADOPSET 0x0080 - load operating parameter set on wakeup + * DWT_CONFIG 0x0040 - download the AON array into the HIF (configuration download) + * DWT_LOADEUI 0x0008 + * DWT_GOTORX 0x0002 + * DWT_TANDV 0x0001 + * + * wake: wake up parameters + * DWT_XTAL_EN 0x10 - keep XTAL running during sleep + * DWT_WAKE_SLPCNT 0x8 - wake up after sleep count + * DWT_WAKE_CS 0x4 - wake up on chip select + * DWT_WAKE_WK 0x2 - wake up on WAKEUP PIN + * DWT_SLP_EN 0x1 - enable sleep/deep sleep functionality + * + * input parameters + * @param mode - config on-wake parameters + * @param wake - config wake up parameters + * + * output parameters + * + * no return value + */ +void dwt_configuresleep(uint16 mode, uint8 wake) +{ + // Add predefined sleep settings before writing the mode + mode |= dw1000local.sleep_mode; + dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, mode); + + dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, wake); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_entersleepaftertx(int enable) + * + * @brief sets the auto TX to sleep bit. This means that after a frame + * transmission the device will enter deep sleep mode. The dwt_configuresleep() function + * needs to be called before this to configure the on-wake settings + * + * NOTE: the IRQ line has to be low/inactive (i.e. no pending events) + * + * input parameters + * @param enable - 1 to configure the device to enter deep sleep after TX, 0 - disables the configuration + * + * output parameters + * + * no return value + */ +void dwt_entersleepaftertx(int enable) +{ + uint32 reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); + // Set the auto TX -> sleep bit + if(enable) + { + reg |= PMSC_CTRL1_ATXSLP; + } + else + { + reg &= ~(PMSC_CTRL1_ATXSLP); + } + dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, reg); +} + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_spicswakeup() + * + * @brief wake up the device from sleep mode using the SPI read, + * the device will wake up on chip select line going low if the line is held low for at least 500us. + * To define the length depending on the time one wants to hold + * the chip select line low, use the following formula: + * + * length (bytes) = time (s) * byte_rate (Hz) + * + * where fastest byte_rate is spi_rate (Hz) / 8 if the SPI is sending the bytes back-to-back. + * To save time and power, a system designer could determine byte_rate value more precisely. + * + * NOTE: Alternatively the device can be waken up with WAKE_UP pin if configured for that operation + * + * input parameters + * @param buff - this is a pointer to the dummy buffer which will be used in the SPI read transaction used for the WAKE UP of the device + * @param length - this is the length of the dummy buffer + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +int dwt_spicswakeup(uint8 *buff, uint16 length) +{ + if(dwt_readdevid() != DWT_DEVICE_ID) // Device was in deep sleep (the first read fails) + { + // Need to keep chip select line low for at least 500us + dwt_readfromdevice(0x0, 0x0, length, buff); // Do a long read to wake up the chip (hold the chip select low) + + // Need 5ms for XTAL to start and stabilise (could wait for PLL lock IRQ status bit !!!) + // NOTE: Polling of the STATUS register is not possible unless frequency is < 3MHz + deca_sleep(5); + } + else + { + return DWT_SUCCESS; + } + // DEBUG - check if still in sleep mode + if(dwt_readdevid() != DWT_DEVICE_ID) + { + return DWT_ERROR; + } + + return DWT_SUCCESS; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn _dwt_configlde() + * + * @brief configure LDE algorithm parameters + * + * input parameters + * @param prf - this is the PRF index (0 or 1) 0 corresponds to 16 and 1 to 64 PRF + * + * output parameters + * + * no return value + */ +void _dwt_configlde(int prfIndex) +{ + dwt_write8bitoffsetreg(LDE_IF_ID, LDE_CFG1_OFFSET, LDE_PARAM1); // 8-bit configuration register + + if(prfIndex) + { + dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_64); // 16-bit LDE configuration tuning register + } + else + { + dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_16); + } +} + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn _dwt_loaducodefromrom() + * + * @brief load ucode from OTP MEMORY or ROM + * + * input parameters + * + * output parameters + * + * no return value + */ +void _dwt_loaducodefromrom(void) +{ + // Set up clocks + _dwt_enableclocks(FORCE_LDE); + + // Kick off the LDE load + dwt_write16bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_LDELOAD); // Set load LDE kick bit + + deca_sleep(1); // Allow time for code to upload (should take up to 120 us) + + // Default clocks (ENABLE_ALL_SEQ) + _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_loadopsettabfromotp() + * + * @brief This is used to select which Operational Parameter Set table to load from OTP memory + * + * input parameters + * @param ops_sel - Operational Parameter Set table to load: + * DWT_OPSET_64LEN = 0x0 - load the operational parameter set table for 64 length preamble configuration + * DWT_OPSET_TIGHT = 0x1 - load the operational parameter set table for tight xtal offsets (<1ppm) + * DWT_OPSET_DEFLT = 0x2 - load the default operational parameter set table (this is loaded from reset) + * + * output parameters + * + * no return value + */ +void dwt_loadopsettabfromotp(uint8 ops_sel) +{ + uint16 reg = ((ops_sel << OTP_SF_OPS_SEL_SHFT) & OTP_SF_OPS_SEL_MASK) | OTP_SF_OPS_KICK; // Select defined OPS table and trigger its loading + + // Set up clocks + _dwt_enableclocks(FORCE_LDE); + + dwt_write16bitoffsetreg(OTP_IF_ID, OTP_SF, reg); + + // Default clocks (ENABLE_ALL_SEQ) + _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing + +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setsmarttxpower() + * + * @brief This call enables or disables the smart TX power feature. + * + * input parameters + * @param enable - this enables or disables the TX smart power (1 = enable, 0 = disable) + * + * output parameters + * + * no return value + */ +void dwt_setsmarttxpower(int enable) +{ + // Config system register + dw1000local.sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register + + // Disable smart power configuration + if(enable) + { + dw1000local.sysCFGreg &= ~(SYS_CFG_DIS_STXP) ; + } + else + { + dw1000local.sysCFGreg |= SYS_CFG_DIS_STXP ; + } + + dwt_write32bitreg(SYS_CFG_ID,dw1000local.sysCFGreg) ; +} + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_enableautoack() + * + * @brief This call enables the auto-ACK feature. If the responseDelayTime (parameter) is 0, the ACK will be sent a.s.a.p. + * otherwise it will be sent with a programmed delay (in symbols), max is 255. + * NOTE: needs to have frame filtering enabled as well + * + * input parameters + * @param responseDelayTime - if non-zero the ACK is sent after this delay, max is 255. + * + * output parameters + * + * no return value + */ +void dwt_enableautoack(uint8 responseDelayTime) +{ + // Set auto ACK reply delay + dwt_write8bitoffsetreg(ACK_RESP_T_ID, ACK_RESP_T_ACK_TIM_OFFSET, responseDelayTime); // In symbols + // Enable auto ACK + dw1000local.sysCFGreg |= SYS_CFG_AUTOACK; + dwt_write32bitreg(SYS_CFG_ID,dw1000local.sysCFGreg) ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setdblrxbuffmode() + * + * @brief This call enables the double receive buffer mode + * + * input parameters + * @param enable - 1 to enable, 0 to disable the double buffer mode + * + * output parameters + * + * no return value + */ +void dwt_setdblrxbuffmode(int enable) +{ + if(enable) + { + // Enable double RX buffer mode + dw1000local.sysCFGreg &= ~SYS_CFG_DIS_DRXB; + dw1000local.dblbuffon = 1; + } + else + { + // Disable double RX buffer mode + dw1000local.sysCFGreg |= SYS_CFG_DIS_DRXB; + dw1000local.dblbuffon = 0; + } + + dwt_write32bitreg(SYS_CFG_ID,dw1000local.sysCFGreg) ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setrxaftertxdelay() + * + * @brief This sets the receiver turn on delay time after a transmission of a frame + * + * input parameters + * @param rxDelayTime - (20 bits) - the delay is in UWB microseconds + * + * output parameters + * + * no return value + */ +void dwt_setrxaftertxdelay(uint32 rxDelayTime) +{ + uint32 val = dwt_read32bitreg(ACK_RESP_T_ID) ; // Read ACK_RESP_T_ID register + + val &= ~(ACK_RESP_T_W4R_TIM_MASK) ; // Clear the timer (19:0) + + val |= (rxDelayTime & ACK_RESP_T_W4R_TIM_MASK) ; // In UWB microseconds (e.g. turn the receiver on 20uus after TX) + + dwt_write32bitreg(ACK_RESP_T_ID, val) ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setcallbacks() + * + * @brief This function is used to register the different callbacks called when one of the corresponding event occurs. + * + * NOTE: Callbacks can be undefined (set to NULL). In this case, dwt_isr() will process the event as usual but the 'null' + * callback will not be called. + * + * input parameters + * @param cbTxDone - the pointer to the TX confirmation event callback function + * @param cbRxOk - the pointer to the RX good frame event callback function + * @param cbRxTo - the pointer to the RX timeout events callback function + * @param cbRxErr - the pointer to the RX error events callback function + * + * output parameters + * + * no return value + */ +void dwt_setcallbacks(dwt_cb_t cbTxDone, dwt_cb_t cbRxOk, dwt_cb_t cbRxTo, dwt_cb_t cbRxErr) +{ + dw1000local.cbTxDone = cbTxDone; + dw1000local.cbRxOk = cbRxOk; + dw1000local.cbRxTo = cbRxTo; + dw1000local.cbRxErr = cbRxErr; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_checkirq() + * + * @brief This function checks if the IRQ line is active - this is used instead of interrupt handler + * + * input parameters + * + * output parameters + * + * return value is 1 if the IRQS bit is set and 0 otherwise + */ +uint8 dwt_checkirq(void) +{ + return (dwt_read8bitoffsetreg(SYS_STATUS_ID, SYS_STATUS_OFFSET) & SYS_STATUS_IRQS); // Reading the lower byte only is enough for this operation +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_isr() + * + * @brief This is the DW1000's general Interrupt Service Routine. It will process/report the following events: + * - RXFCG (through cbRxOk callback) + * - TXFRS (through cbTxDone callback) + * - RXRFTO/RXPTO (through cbRxTo callback) + * - RXPHE/RXFCE/RXRFSL/RXSFDTO/AFFREJ/LDEERR (through cbRxTo cbRxErr) + * For all events, corresponding interrupts are cleared and necessary resets are performed. In addition, in the RXFCG case, + * received frame information and frame control are read before calling the callback. If double buffering is activated, it + * will also toggle between reception buffers once the reception callback processing has ended. + * + * /!\ This version of the ISR supports double buffering but does not support automatic RX re-enabling! + * + * NOTE: In PC based system using (Cheetah or ARM) USB to SPI converter there can be no interrupts, however we still need something + * to take the place of it and operate in a polled way. In an embedded system this function should be configured to be triggered + * on any of the interrupts described above. + + * input parameters + * + * output parameters + * + * no return value + */ +void dwt_isr(void) +{ + uint32 status = dw1000local.cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits + + // Handle RX good frame event + if(status & SYS_STATUS_RXFCG) + { + uint16 finfo16; + uint16 len; + + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits + + dw1000local.cbData.rx_flags = 0; + + // Read frame info - Only the first two bytes of the register are used here. + finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, RX_FINFO_OFFSET); + + // Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes + len = finfo16 & RX_FINFO_RXFL_MASK_1023; + if(dw1000local.longFrames == 0) + { + len &= RX_FINFO_RXFLEN_MASK; + } + dw1000local.cbData.datalength = len; + + // Report ranging bit + if(finfo16 & RX_FINFO_RNG) + { + dw1000local.cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; + } + + // Report frame control - First bytes of the received frame. + dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, dw1000local.cbData.fctrl); + + // Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for + // acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this + // implementation works only for IEEE802.15.4-2011 compliant frames). + // This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016). + if((status & SYS_STATUS_AAT) && ((dw1000local.cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) + { + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register + dw1000local.cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy + dw1000local.wait4resp = 0; + } + + // Call the corresponding callback if present + if(dw1000local.cbRxOk != NULL) + { + dw1000local.cbRxOk(&dw1000local.cbData); + } + + if (dw1000local.dblbuffon) + { + // Toggle the Host side Receive Buffer Pointer + dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET, 1); + } + } + + // Handle TX confirmation event + if(status & SYS_STATUS_TXFRS) + { + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_TX); // Clear TX event bits + + // In the case where this TXFRS interrupt is due to the automatic transmission of an ACK solicited by a response (with ACK request bit set) + // that we receive through using wait4resp to a previous TX (and assuming that the IRQ processing of that TX has already been handled), then + // we need to handle the IC issue which turns on the RX again in this situation (i.e. because it is wrongly applying the wait4resp after the + // ACK TX). + // See section "Transmit and automatically wait for response" in DW1000 User Manual + if((status & SYS_STATUS_AAT) && dw1000local.wait4resp) + { + dwt_forcetrxoff(); // Turn the RX off + dwt_rxreset(); // Reset in case we were late and a frame was already being received + } + + // Call the corresponding callback if present + if(dw1000local.cbTxDone != NULL) + { + dw1000local.cbTxDone(&dw1000local.cbData); + } + } + + // Handle frame reception/preamble detect timeout events + if(status & SYS_STATUS_ALL_RX_TO) + { + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXRFTO); // Clear RX timeout event bits + + dw1000local.wait4resp = 0; + + // Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure + // the next good frame's timestamp is computed correctly. + // See section "RX Message timestamp" in DW1000 User Manual. + dwt_forcetrxoff(); + dwt_rxreset(); + + // Call the corresponding callback if present + if(dw1000local.cbRxTo != NULL) + { + dw1000local.cbRxTo(&dw1000local.cbData); + } + } + + // Handle RX errors events + if(status & SYS_STATUS_ALL_RX_ERR) + { + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); // Clear RX error event bits + + dw1000local.wait4resp = 0; + + // Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure + // the next good frame's timestamp is computed correctly. + // See section "RX Message timestamp" in DW1000 User Manual. + dwt_forcetrxoff(); + dwt_rxreset(); + + // Call the corresponding callback if present + if(dw1000local.cbRxErr != NULL) + { + dw1000local.cbRxErr(&dw1000local.cbData); + } + } +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_isr_lplisten() + * + * @brief This is the DW1000's Interrupt Service Routine to use when low-power listening scheme is implemented. It will + * only process/report the RXFCG event (through cbRxOk callback). + * It clears RXFCG interrupt and reads received frame information and frame control before calling the callback. + * + * /!\ This version of the ISR is designed for single buffering case only! + * + * input parameters + * + * output parameters + * + * no return value + */ +void dwt_lowpowerlistenisr(void) +{ + uint32 status = dw1000local.cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits + uint16 finfo16; + uint16 len; + + // The only interrupt handled when in low-power listening mode is RX good frame so proceed directly to the handling of the received frame. + + // Deactivate low-power listening before clearing the interrupt. If not, the DW1000 will go back to sleep as soon as the interrupt is cleared. + dwt_setlowpowerlistening(0); + + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits + + dw1000local.cbData.rx_flags = 0; + + // Read frame info - Only the first two bytes of the register are used here. + finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, 0); + + // Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes + len = finfo16 & RX_FINFO_RXFL_MASK_1023; + if(dw1000local.longFrames == 0) + { + len &= RX_FINFO_RXFLEN_MASK; + } + dw1000local.cbData.datalength = len; + + // Report ranging bit + if(finfo16 & RX_FINFO_RNG) + { + dw1000local.cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; + } + + // Report frame control - First bytes of the received frame. + dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, dw1000local.cbData.fctrl); + + // Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for + // acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this + // implementation works only for IEEE802.15.4-2011 compliant frames). + // This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016). + if((status & SYS_STATUS_AAT) && ((dw1000local.cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) + { + dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register + dw1000local.cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy + dw1000local.wait4resp = 0; + } + + // Call the corresponding callback if present + if(dw1000local.cbRxOk != NULL) + { + dw1000local.cbRxOk(&dw1000local.cbData); + } +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setleds() + * + * @brief This is used to set up Tx/Rx GPIOs which could be used to control LEDs + * Note: not completely IC dependent, also needs board with LEDS fitted on right I/O lines + * this function enables GPIOs 2 and 3 which are connected to LED3 and LED4 on EVB1000 + * + * input parameters + * @param mode - this is a bit field interpreted as follows: + * - bit 0: 1 to enable LEDs, 0 to disable them + * - bit 1: 1 to make LEDs blink once on init. Only valid if bit 0 is set (enable LEDs) + * - bit 2 to 7: reserved + * + * output parameters none + * + * no return value + */ +void dwt_setleds(uint8 mode) +{ + uint32 reg; + + if (mode & DWT_LEDS_ENABLE) + { + // Set up MFIO for LED output. + reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); + reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); + reg |= (GPIO_PIN2_RXLED | GPIO_PIN3_TXLED); + dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); + + // Enable LP Oscillator to run from counter and turn on de-bounce clock. + reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); + reg |= (PMSC_CTRL0_GPDCE | PMSC_CTRL0_KHZCLEN); + dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, reg); + + // Enable LEDs to blink and set default blink time. + reg = PMSC_LEDC_BLNKEN | PMSC_LEDC_BLINK_TIME_DEF; + // Make LEDs blink once if requested. + if (mode & DWT_LEDS_INIT_BLINK) + { + reg |= PMSC_LEDC_BLINK_NOW_ALL; + } + dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); + // Clear force blink bits if needed. + if(mode & DWT_LEDS_INIT_BLINK) + { + reg &= ~PMSC_LEDC_BLINK_NOW_ALL; + dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); + } + } + else + { + // Clear the GPIO bits that are used for LED control. + reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); + reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); + dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); + } +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn _dwt_enableclocks() + * + * @brief function to enable/disable clocks to particular digital blocks/system + * + * input parameters + * @param clocks - set of clocks to enable/disable + * + * output parameters none + * + * no return value + */ +void _dwt_enableclocks(int clocks) +{ + uint8 reg[2]; + + dwt_readfromdevice(PMSC_ID, PMSC_CTRL0_OFFSET, 2, reg); + switch(clocks) + { + case ENABLE_ALL_SEQ: + { + reg[0] = 0x00 ; + reg[1] = reg[1] & 0xfe; + } + break; + case FORCE_SYS_XTI: + { + // System and RX + reg[0] = 0x01 | (reg[0] & 0xfc); + } + break; + case FORCE_SYS_PLL: + { + // System + reg[0] = 0x02 | (reg[0] & 0xfc); + } + break; + case READ_ACC_ON: + { + reg[0] = 0x48 | (reg[0] & 0xb3); + reg[1] = 0x80 | reg[1]; + } + break; + case READ_ACC_OFF: + { + reg[0] = reg[0] & 0xb3; + reg[1] = 0x7f & reg[1]; + } + break; + case FORCE_OTP_ON: + { + reg[1] = 0x02 | reg[1]; + } + break; + case FORCE_OTP_OFF: + { + reg[1] = reg[1] & 0xfd; + } + break; + case FORCE_TX_PLL: + { + reg[0] = 0x20 | (reg[0] & 0xcf); + } + break; + case FORCE_LDE: + { + reg[0] = 0x01; + reg[1] = 0x03; + } + break; + default: + break; + } + + + // Need to write lower byte separately before setting the higher byte(s) + dwt_writetodevice(PMSC_ID, PMSC_CTRL0_OFFSET, 1, ®[0]); + dwt_writetodevice(PMSC_ID, 0x1, 1, ®[1]); + +} // end _dwt_enableclocks() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn _dwt_disablesequencing() + * + * @brief This function disables the TX blocks sequencing, it disables PMSC control of RF blocks, system clock is also set to XTAL + * + * input parameters none + * + * output parameters none + * + * no return value + */ +void _dwt_disablesequencing(void) // Disable sequencing and go to state "INIT" +{ + _dwt_enableclocks(FORCE_SYS_XTI); // Set system clock to XTI + + dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); // Disable PMSC ctrl of RF and RX clk blocks +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setdelayedtrxtime() + * + * @brief This API function configures the delayed transmit time or the delayed RX on time + * + * input parameters + * @param starttime - the TX/RX start time (the 32 bits should be the high 32 bits of the system time at which to send the message, + * or at which to turn on the receiver) + * + * output parameters none + * + * no return value + */ +void dwt_setdelayedtrxtime(uint32 starttime) +{ + dwt_write32bitoffsetreg(DX_TIME_ID, 1, starttime); // Write at offset 1 as the lower 9 bits of this register are ignored + +} // end dwt_setdelayedtrxtime() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_starttx() + * + * @brief This call initiates the transmission, input parameter indicates which TX mode is used see below + * + * input parameters: + * @param mode - if 0 immediate TX (no response expected) + * if 1 delayed TX (no response expected) + * if 2 immediate TX (response expected - so the receiver will be automatically turned on after TX is done) + * if 3 delayed TX (response expected - so the receiver will be automatically turned on after TX is done) + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed transmission will fail if the delayed time has passed) + */ +int dwt_starttx(uint8 mode) +{ + int retval = DWT_SUCCESS ; + uint8 temp = 0x00; + uint16 checkTxOK = 0 ; + + if(mode & DWT_RESPONSE_EXPECTED) + { + temp = (uint8)SYS_CTRL_WAIT4RESP ; // Set wait4response bit + dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); + dw1000local.wait4resp = 1; + } + + if (mode & DWT_START_TX_DELAYED) + { + // Both SYS_CTRL_TXSTRT and SYS_CTRL_TXDLYS to correctly enable TX + temp |= (uint8)(SYS_CTRL_TXDLYS | SYS_CTRL_TXSTRT) ; + dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); + checkTxOK = dwt_read16bitoffsetreg(SYS_STATUS_ID, 3); // Read at offset 3 to get the upper 2 bytes out of 5 + if ((checkTxOK & SYS_STATUS_TXERR) == 0) // Transmit Delayed Send set over Half a Period away or Power Up error (there is enough time to send but not to power up individual blocks). + { + retval = DWT_SUCCESS ; // All okay + } + else + { + // I am taking DSHP set to Indicate that the TXDLYS was set too late for the specified DX_TIME. + // Remedial Action - (a) cancel delayed send + temp = (uint8)SYS_CTRL_TRXOFF; // This assumes the bit is in the lowest byte + dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); + // Note event Delayed TX Time too Late + // Could fall through to start a normal send (below) just sending late..... + // ... instead return and assume return value of 1 will be used to detect and recover from the issue. + dw1000local.wait4resp = 0; + retval = DWT_ERROR ; // Failed ! + } + } + else + { + temp |= (uint8)SYS_CTRL_TXSTRT ; + dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); + } + + return retval; + +} // end dwt_starttx() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_forcetrxoff() + * + * @brief This is used to turn off the transceiver + * + * input parameters + * + * output parameters + * + * no return value + */ +void dwt_forcetrxoff(void) +{ + decaIrqStatus_t stat ; + uint32 mask; + + mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read set interrupt mask + + // Need to beware of interrupts occurring in the middle of following read modify write cycle + // We can disable the radio, but before the status is cleared an interrupt can be set (e.g. the + // event has just happened before the radio was disabled) + // thus we need to disable interrupt during this operation + stat = decamutexon() ; + + dwt_write32bitreg(SYS_MASK_ID, 0) ; // Clear interrupt mask - so we don't get any unwanted events + + dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, (uint8)SYS_CTRL_TRXOFF) ; // Disable the radio + + // Forcing Transceiver off - so we do not want to see any new events that may have happened + dwt_write32bitreg(SYS_STATUS_ID, (SYS_STATUS_ALL_TX | SYS_STATUS_ALL_RX_ERR | SYS_STATUS_ALL_RX_TO | SYS_STATUS_ALL_RX_GOOD)); + + dwt_syncrxbufptrs(); + + dwt_write32bitreg(SYS_MASK_ID, mask) ; // Set interrupt mask to what it was + + // Enable/restore interrupts again... + decamutexoff(stat) ; + dw1000local.wait4resp = 0; + +} // end deviceforcetrxoff() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_syncrxbufptrs() + * + * @brief this function synchronizes rx buffer pointers + * need to make sure that the host/IC buffer pointers are aligned before starting RX + * + * input parameters: + * + * output parameters + * + * no return value + */ +void dwt_syncrxbufptrs(void) +{ + uint8 buff ; + // Need to make sure that the host/IC buffer pointers are aligned before starting RX + buff = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 + + if((buff & (SYS_STATUS_ICRBP >> 24)) != // IC side Receive Buffer Pointer + ((buff & (SYS_STATUS_HSRBP>>24)) << 1) ) // Host Side Receive Buffer Pointer + { + dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET , 0x01) ; // We need to swap RX buffer status reg (write one to toggle internally) + } +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setsniffmode() + * + * @brief enable/disable and configure SNIFF mode. + * + * SNIFF mode is a low-power reception mode where the receiver is sequenced on and off instead of being on all the time. + * The time spent in each state (on/off) is specified through the parameters below. + * See DW1000 User Manual section 4.5 "Low-Power SNIFF mode" for more details. + * + * input parameters: + * @param enable - 1 to enable SNIFF mode, 0 to disable. When 0, all other parameters are not taken into account. + * @param timeOn - duration of receiver ON phase, expressed in multiples of PAC size. The counter automatically adds 1 PAC + * size to the value set. Min value that can be set is 1 (i.e. an ON time of 2 PAC size), max value is 15. + * @param timeOff - duration of receiver OFF phase, expressed in multiples of 128/125 µs (~1 µs). Max value is 255. + * + * output parameters + * + * no return value + */ +void dwt_setsniffmode(int enable, uint8 timeOn, uint8 timeOff) +{ + uint32 pmsc_reg; + if (enable) + { + /* Configure ON/OFF times and enable PLL2 on/off sequencing by SNIFF mode. */ + uint16 sniff_reg = ((timeOff << 8) | timeOn) & RX_SNIFF_MASK; + dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, sniff_reg); + pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); + pmsc_reg |= PMSC_CTRL0_PLL2_SEQ_EN; + dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); + } + else + { + /* Clear ON/OFF times and disable PLL2 on/off sequencing by SNIFF mode. */ + dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, 0x0000); + pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); + pmsc_reg &= ~PMSC_CTRL0_PLL2_SEQ_EN; + dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); + } +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setlowpowerlistening() + * + * @brief enable/disable low-power listening mode. + * + * Low-power listening is a feature whereby the DW1000 is predominantly in the SLEEP state but wakes periodically, (after + * this "long sleep"), for a very short time to sample the air for a preamble sequence. This preamble sampling "listening" + * phase is actually two reception phases separated by a "short sleep" time. See DW1000 User Manual section "Low-Power + * Listening" for more details. + * + * NOTE: Before enabling low-power listening, the following functions have to be called to fully configure it: + * - dwt_configuresleep() to configure long sleep phase. "mode" parameter should at least have DWT_PRESRV_SLEEP, + * DWT_CONFIG and DWT_RX_EN set and "wake" parameter should at least have both DWT_WAKE_SLPCNT and DWT_SLP_EN set. + * - dwt_calibratesleepcnt() and dwt_configuresleepcnt() to define the "long sleep" phase duration. + * - dwt_setsnoozetime() to define the "short sleep" phase duration. + * - dwt_setpreambledetecttimeout() to define the reception phases duration. + * - dwt_setinterrupt() to activate RX good frame interrupt (DWT_INT_RFCG) only. + * When configured, low-power listening mode can be triggered either by putting the DW1000 to sleep (using + * dwt_entersleep()) or by activating reception (using dwt_rxenable()). + * + * Please refer to the low-power listening examples (examples 8a/8b accompanying the API distribution on Decawave's + * website). They form a working example code that shows how to use low-power listening correctly. + * + * input parameters: + * @param enable - 1 to enable low-power listening, 0 to disable. + * + * output parameters + * + * no return value + */ +void dwt_setlowpowerlistening(int enable) +{ + uint32 pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); + if (enable) + { + /* Configure RX to sleep and snooze features. */ + pmsc_reg |= (PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); + } + else + { + /* Reset RX to sleep and snooze features. */ + pmsc_reg &= ~(PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); + } + dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, pmsc_reg); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setsnoozetime() + * + * @brief Set duration of "short sleep" phase when in low-power listening mode. + * + * input parameters: + * @param snooze_time - "short sleep" phase duration, expressed in multiples of 512/19.2 µs (~26.7 µs). The counter + * automatically adds 1 to the value set. The smallest working value that should be set is 1, + * i.e. giving a snooze time of 2 units (or ~53 µs). + * + * output parameters + * + * no return value + */ +void dwt_setsnoozetime(uint8 snooze_time) +{ + dwt_write8bitoffsetreg(PMSC_ID, PMSC_SNOZT_OFFSET, snooze_time); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_rxenable() + * + * @brief This call turns on the receiver, can be immediate or delayed (depending on the mode parameter). In the case of a + * "late" error the receiver will only be turned on if the DWT_IDLE_ON_DLY_ERR is not set. + * The receiver will stay turned on, listening to any messages until + * it either receives a good frame, an error (CRC, PHY header, Reed Solomon) or it times out (SFD, Preamble or Frame). + * + * input parameters + * @param mode - this can be one of the following allowed values: + * + * DWT_START_RX_IMMEDIATE 0 used to enbale receiver immediately + * DWT_START_RX_DELAYED 1 used to set up delayed RX, if "late" error triggers, then the RX will be enabled immediately + * (DWT_START_RX_DELAYED | DWT_IDLE_ON_DLY_ERR) 3 used to disable re-enabling of receiver if delayed RX failed due to "late" error + * (DWT_START_RX_IMMEDIATE | DWT_NO_SYNC_PTRS) 4 used to re-enable RX without trying to sync IC and host side buffer pointers, typically when + * performing manual RX re-enabling in double buffering mode + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed receive enable will be too far in the future if delayed time has passed) + */ +int dwt_rxenable(int mode) +{ + uint16 temp ; + uint8 temp1 ; + + if ((mode & DWT_NO_SYNC_PTRS) == 0) + { + dwt_syncrxbufptrs(); + } + + temp = (uint16)SYS_CTRL_RXENAB ; + + if (mode & DWT_START_RX_DELAYED) + { + temp |= (uint16)SYS_CTRL_RXDLYE ; + } + + dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); + + if (mode & DWT_START_RX_DELAYED) // check for errors + { + temp1 = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 + if ((temp1 & (SYS_STATUS_HPDWARN >> 24)) != 0) // if delay has passed do immediate RX on unless DWT_IDLE_ON_DLY_ERR is true + { + dwt_forcetrxoff(); // turn the delayed receive off + + if((mode & DWT_IDLE_ON_DLY_ERR) == 0) // if DWT_IDLE_ON_DLY_ERR not set then re-enable receiver + { + dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_RXENAB); + } + return DWT_ERROR; // return warning indication + } + } + + return DWT_SUCCESS; +} // end dwt_rxenable() + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setrxtimeout() + * + * @brief This call enables RX timeout (SY_STAT_RFTO event) + * + * input parameters + * @param time - how long the receiver remains on from the RX enable command + * The time parameter used here is in 1.0256 us (512/499.2MHz) units + * If set to 0 the timeout is disabled. + * + * output parameters + * + * no return value + */ +void dwt_setrxtimeout(uint16 time) +{ + uint8 temp ; + + temp = dwt_read8bitoffsetreg(SYS_CFG_ID, 3); // Read at offset 3 to get the upper byte only + + if(time > 0) + { + dwt_write16bitoffsetreg(RX_FWTO_ID, RX_FWTO_OFFSET, time) ; + + temp |= (uint8)(SYS_CFG_RXWTOE>>24); // Shift RXWTOE mask as we read the upper byte only + // OR in 32bit value (1 bit set), I know this is in high byte. + dw1000local.sysCFGreg |= SYS_CFG_RXWTOE; + + dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only + } + else + { + temp &= ~((uint8)(SYS_CFG_RXWTOE>>24)); // Shift RXWTOE mask as we read the upper byte only + // AND in inverted 32bit value (1 bit clear), I know this is in high byte. + dw1000local.sysCFGreg &= ~(SYS_CFG_RXWTOE); + + dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only + } + +} // end dwt_setrxtimeout() + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setpreambledetecttimeout() + * + * @brief This call enables preamble timeout (SY_STAT_RXPTO event) + * + * input parameters + * @param timeout - Preamble detection timeout, expressed in multiples of PAC size. The counter automatically adds 1 PAC + * size to the value set. Min value that can be set is 1 (i.e. a timeout of 2 PAC size). + * + * output parameters + * + * no return value + */ +void dwt_setpreambledetecttimeout(uint16 timeout) +{ + dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_PRETOC_OFFSET, timeout); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn void dwt_setinterrupt() + * + * @brief This function enables the specified events to trigger an interrupt. + * The following events can be enabled: + * DWT_INT_TFRS 0x00000080 // frame sent + * DWT_INT_RFCG 0x00004000 // frame received with good CRC + * DWT_INT_RPHE 0x00001000 // receiver PHY header error + * DWT_INT_RFCE 0x00008000 // receiver CRC error + * DWT_INT_RFSL 0x00010000 // receiver sync loss error + * DWT_INT_RFTO 0x00020000 // frame wait timeout + * DWT_INT_RXPTO 0x00200000 // preamble detect timeout + * DWT_INT_SFDT 0x04000000 // SFD timeout + * DWT_INT_ARFE 0x20000000 // frame rejected (due to frame filtering configuration) + * + * + * input parameters: + * @param bitmask - sets the events which will generate interrupt + * @param enable - if set the interrupts are enabled else they are cleared + * + * output parameters + * + * no return value + */ +void dwt_setinterrupt(uint32 bitmask, uint8 enable) +{ + decaIrqStatus_t stat ; + uint32 mask ; + + // Need to beware of interrupts occurring in the middle of following read modify write cycle + stat = decamutexon() ; + + mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read register + + if(enable) + { + mask |= bitmask ; + } + else + { + mask &= ~bitmask ; // Clear the bit + } + dwt_write32bitreg(SYS_MASK_ID,mask) ; // New value + + decamutexoff(stat) ; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configeventcounters() + * + * @brief This is used to enable/disable the event counter in the IC + * + * input parameters + * @param - enable - 1 enables (and reset), 0 disables the event counters + * output parameters + * + * no return value + */ +void dwt_configeventcounters(int enable) +{ + // Need to clear and disable, can't just clear + dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_CLR)); + + if(enable) + { + dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_EN)); // Enable + } +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readeventcounters() + * + * @brief This is used to read the event counters in the IC + * + * input parameters + * @param counters - pointer to the dwt_deviceentcnts_t structure which will hold the read data + * + * output parameters + * + * no return value + */ +void dwt_readeventcounters(dwt_deviceentcnts_t *counters) +{ + uint32 temp; + + temp= dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_PHE_OFFSET); // Read sync loss (31-16), PHE (15-0) + counters->PHE = temp & 0xFFF; + counters->RSL = (temp >> 16) & 0xFFF; + + temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FCG_OFFSET); // Read CRC bad (31-16), CRC good (15-0) + counters->CRCG = temp & 0xFFF; + counters->CRCB = (temp >> 16) & 0xFFF; + + temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FFR_OFFSET); // Overruns (31-16), address errors (15-0) + counters->ARFE = temp & 0xFFF; + counters->OVER = (temp >> 16) & 0xFFF; + + temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_STO_OFFSET); // Read PTO (31-16), SFDTO (15-0) + counters->PTO = (temp >> 16) & 0xFFF; + counters->SFDTO = temp & 0xFFF; + + temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FWTO_OFFSET); // Read RX TO (31-16), TXFRAME (15-0) + counters->TXF = (temp >> 16) & 0xFFF; + counters->RTO = temp & 0xFFF; + + temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_HPW_OFFSET); // Read half period warning events + counters->HPW = temp & 0xFFF; + counters->TXW = (temp >> 16) & 0xFFF; // Power-up warning events + +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_rxreset() + * + * @brief this function resets the receiver of the DW1000 + * + * input parameters: + * + * output parameters + * + * no return value + */ +void dwt_rxreset(void) +{ + // Set RX reset + dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_RX); + + // Clear RX reset + dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_softreset() + * + * @brief this function resets the DW1000 + * + * input parameters: + * + * output parameters + * + * no return value + */ +void dwt_softreset(void) +{ + _dwt_disablesequencing(); + + // Clear any AON auto download bits (as reset will trigger AON download) + dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, 0x00); + // Clear the wake-up configuration + dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00); + // Upload the new configuration + _dwt_aonarrayupload(); + + // Reset HIF, TX, RX and PMSC + dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_ALL); + + // DW1000 needs a 10us sleep to let clk PLL lock after reset - the PLL will automatically lock after the reset + // Could also have polled the PLL lock flag, but then the SPI needs to be < 3MHz !! So a simple delay is easier + deca_sleep(1); + + // Clear reset + dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); + + dw1000local.wait4resp = 0; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setxtaltrim() + * + * @brief This is used to adjust the crystal frequency + * + * input parameters: + * @param value - crystal trim value (in range 0x0 to 0x1F) 31 steps (~1.5ppm per step) + * + * output parameters + * + * no return value + */ +void dwt_setxtaltrim(uint8 value) +{ + // The 3 MSb in this 8-bit register must be kept to 0b011 to avoid any malfunction. + uint8 reg_val = (3 << 5) | (value & FS_XTALT_MASK); + dwt_write8bitoffsetreg(FS_CTRL_ID, FS_XTALT_OFFSET, reg_val); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_getinitxtaltrim() + * + * @brief This function returns the value of XTAL trim that has been applied during initialisation (dwt_init). This can + * be either the value read in OTP memory or a default value. + * + * NOTE: The value returned by this function is the initial value only! It is not updated on dwt_setxtaltrim calls. + * + * input parameters + * + * output parameters + * + * returns the XTAL trim value set upon initialisation + */ +uint8 dwt_getinitxtaltrim(void) +{ + return dw1000local.init_xtrim; +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configcwmode() + * + * @brief this function sets the DW1000 to transmit cw signal at specific channel frequency + * + * input parameters: + * @param chan - specifies the operating channel (e.g. 1, 2, 3, 4, 5, 6 or 7) + * + * output parameters + * + * no return value + */ +void dwt_configcwmode(uint8 chan) +{ +#ifdef DWT_API_ERROR_CHECK + assert((chan >= 1) && (chan <= 7) && (chan != 6)); +#endif + + // + // Disable TX/RX RF block sequencing (needed for cw frame mode) + // + _dwt_disablesequencing(); + + // Config RF pll (for a given channel) + // Configure PLL2/RF PLL block CFG/TUNE + dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); + dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); + // PLL wont be enabled until a TX/RX enable is issued later on + // Configure RF TX blocks (for specified channel and prf) + // Config RF TX control + dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); + + // + // Enable RF PLL + // + dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks + dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks + + // + // Configure TX clocks + // + dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, 0x22); + dwt_write8bitoffsetreg(PMSC_ID, 0x1, 0x07); + + // Disable fine grain TX sequencing + dwt_setfinegraintxseq(0); + + // Configure CW mode + dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGTEST_OFFSET, TC_PGTEST_CW); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configcontinuousframemode() + * + * @brief this function sets the DW1000 to continuous tx frame mode for regulatory approvals testing. + * + * input parameters: + * @param framerepetitionrate - This is a 32-bit value that is used to set the interval between transmissions. +* The minimum value is 4. The units are approximately 8 ns. (or more precisely 512/(499.2e6*128) seconds)). + * + * output parameters + * + * no return value + */ +void dwt_configcontinuousframemode(uint32 framerepetitionrate) +{ + // + // Disable TX/RX RF block sequencing (needed for continuous frame mode) + // + _dwt_disablesequencing(); + + // + // Enable RF PLL and TX blocks + // + dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks + dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks + + // + // Configure TX clocks + // + _dwt_enableclocks(FORCE_SYS_PLL); + _dwt_enableclocks(FORCE_TX_PLL); + + // Set the frame repetition rate + if(framerepetitionrate < 4) + { + framerepetitionrate = 4; + } + dwt_write32bitreg(DX_TIME_ID, framerepetitionrate); + + // + // Configure continuous frame TX + // + dwt_write8bitoffsetreg(DIG_DIAG_ID, DIAG_TMC_OFFSET, (uint8)(DIAG_TMC_TX_PSTM)); // Turn the tx power spectrum test mode - continuous sending of frames +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readtempvbat() + * + * @brief this function reads the battery voltage and temperature of the MP + * The values read here will be the current values sampled by DW1000 AtoD converters. + * Note on Temperature: the temperature value needs to be converted to give the real temperature + * the formula is: 1.13 * reading - 113.0 + * Note on Voltage: the voltage value needs to be converted to give the real voltage + * the formula is: 0.0057 * reading + 2.3 + * + * NB: To correctly read the temperature this read should be done with xtal clock + * however that means that the receiver will be switched off, if receiver needs to be on then + * the timer is used to make sure the value is stable before reading + * + * input parameters: + * @param fastSPI - set to 1 if SPI rate > than 3MHz is used + * + * output parameters + * + * returns (temp_raw<<8)|(vbat_raw) + */ +uint16 dwt_readtempvbat(uint8 fastSPI) +{ + uint8 wr_buf[2]; + uint8 vbat_raw; + uint8 temp_raw; + + // These writes should be single writes and in sequence + wr_buf[0] = 0x80; // Enable TLD Bias + dwt_writetodevice(RF_CONF_ID,0x11,1,wr_buf); + + wr_buf[0] = 0x0A; // Enable TLD Bias and ADC Bias + dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); + + wr_buf[0] = 0x0f; // Enable Outputs (only after Biases are up and running) + dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); // + + // Reading All SAR inputs + wr_buf[0] = 0x00; + dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf); + wr_buf[0] = 0x01; // Set SAR enable + dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf); + + if(fastSPI == 1) + { + deca_sleep(1); // If using PLL clocks(and fast SPI rate) then this sleep is needed + // Read voltage and temperature. + dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf); + } + else //change to a slow clock + { + _dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read are reliable + // Read voltage and temperature. + dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf); + // Default clocks (ENABLE_ALL_SEQ) + _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing + } + + vbat_raw = wr_buf[0]; + temp_raw = wr_buf[1]; + + wr_buf[0] = 0x00; // Clear SAR enable + dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf); + + return ((temp_raw<<8)|(vbat_raw)); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readwakeuptemp() + * + * @brief this function reads the temperature of the DW1000 that was sampled + * on waking from Sleep/Deepsleep. They are not current values, but read on last + * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep + * + * input parameters: + * + * output parameters: + * + * returns: 8-bit raw temperature sensor value + */ +uint8 dwt_readwakeuptemp(void) +{ + return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LTEMP_OFFSET); +} + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readwakeupvbat() + * + * @brief this function reads the battery voltage of the DW1000 that was sampled + * on waking from Sleep/Deepsleep. They are not current values, but read on last + * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep + * + * input parameters: + * + * output parameters: + * + * returns: 8-bit raw battery voltage sensor value + */ +uint8 dwt_readwakeupvbat(void) +{ + return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET); +} + + +/* =============================================================================================== + List of expected (known) device ID handled by this software + =============================================================================================== + + 0xDECA0130 // DW1000 - MP + + =============================================================================================== +*/ + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/decadriver/deca_device_api.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,1745 @@ +/*! ---------------------------------------------------------------------------- + * @file deca_device_api.h + * @brief DW1000 API Functions + * + * @attention + * + * Copyright 2013 (c) Decawave Ltd, Dublin, Ireland. + * + * All rights reserved. + * + */ + +#ifndef _DECA_DEVICE_API_H_ +#define _DECA_DEVICE_API_H_ + +#ifdef __cplusplus +extern "C" { +#endif + + +#ifndef uint8 +#ifndef _DECA_UINT8_ +#define _DECA_UINT8_ +typedef unsigned char uint8; +#endif +#endif + +#ifndef uint16 +#ifndef _DECA_UINT16_ +#define _DECA_UINT16_ +typedef unsigned short uint16; +#endif +#endif + +#ifndef uint32 +#ifndef _DECA_UINT32_ +#define _DECA_UINT32_ +typedef unsigned long uint32; +#endif +#endif + +#ifndef int8 +#ifndef _DECA_INT8_ +#define _DECA_INT8_ +typedef signed char int8; +#endif +#endif + +#ifndef int16 +#ifndef _DECA_INT16_ +#define _DECA_INT16_ +typedef signed short int16; +#endif +#endif + +#ifndef int32 +#ifndef _DECA_INT32_ +#define _DECA_INT32_ +typedef signed long int32; +#endif +#endif + +#define DWT_SUCCESS (0) +#define DWT_ERROR (-1) + +#define DWT_TIME_UNITS (1.0/499.2e6/128.0) //!< = 15.65e-12 s + +#define DWT_DEVICE_ID (0xDECA0130) //!< DW1000 MP device ID + +//! constants for selecting the bit rate for data TX (and RX) +//! These are defined for write (with just a shift) the TX_FCTRL register +#define DWT_BR_110K 0 //!< UWB bit rate 110 kbits/s +#define DWT_BR_850K 1 //!< UWB bit rate 850 kbits/s +#define DWT_BR_6M8 2 //!< UWB bit rate 6.8 Mbits/s + +//! constants for specifying the (Nominal) mean Pulse Repetition Frequency +//! These are defined for direct write (with a shift if necessary) to CHAN_CTRL and TX_FCTRL regs +#define DWT_PRF_16M 1 //!< UWB PRF 16 MHz +#define DWT_PRF_64M 2 //!< UWB PRF 64 MHz + +//! constants for specifying Preamble Acquisition Chunk (PAC) Size in symbols +#define DWT_PAC8 0 //!< PAC 8 (recommended for RX of preamble length 128 and below +#define DWT_PAC16 1 //!< PAC 16 (recommended for RX of preamble length 256 +#define DWT_PAC32 2 //!< PAC 32 (recommended for RX of preamble length 512 +#define DWT_PAC64 3 //!< PAC 64 (recommended for RX of preamble length 1024 and up + +//! constants for specifying TX Preamble length in symbols +//! These are defined to allow them be directly written into byte 2 of the TX_FCTRL register +//! (i.e. a four bit value destined for bits 20..18 but shifted left by 2 for byte alignment) +#define DWT_PLEN_4096 0x0C //! Standard preamble length 4096 symbols +#define DWT_PLEN_2048 0x28 //! Non-standard preamble length 2048 symbols +#define DWT_PLEN_1536 0x18 //! Non-standard preamble length 1536 symbols +#define DWT_PLEN_1024 0x08 //! Standard preamble length 1024 symbols +#define DWT_PLEN_512 0x34 //! Non-standard preamble length 512 symbols +#define DWT_PLEN_256 0x24 //! Non-standard preamble length 256 symbols +#define DWT_PLEN_128 0x14 //! Non-standard preamble length 128 symbols +#define DWT_PLEN_64 0x04 //! Standard preamble length 64 symbols + +#define DWT_SFDTOC_DEF 0x1041 // default SFD timeout value + +#define DWT_PHRMODE_STD 0x0 // standard PHR mode +#define DWT_PHRMODE_EXT 0x3 // DW proprietary extended frames PHR mode + +// Defined constants for "mode" bitmask parameter passed into dwt_starttx() function. +#define DWT_START_TX_IMMEDIATE 0 +#define DWT_START_TX_DELAYED 1 +#define DWT_RESPONSE_EXPECTED 2 + +#define DWT_START_RX_IMMEDIATE 0 +#define DWT_START_RX_DELAYED 1 // Set up delayed RX, if "late" error triggers, then the RX will be enabled immediately +#define DWT_IDLE_ON_DLY_ERR 2 // If delayed RX failed due to "late" error then if this + // flag is set the RX will not be re-enabled immediately, and device will be in IDLE when function exits +#define DWT_NO_SYNC_PTRS 4 // Do not try to sync IC side and Host side buffer pointers when enabling RX. This is used to perform manual RX + // re-enabling when receiving a frame in double buffer mode. + +// Defined constants for "mode" bit field parameter passed to dwt_setleds() function. +#define DWT_LEDS_DISABLE 0x00 +#define DWT_LEDS_ENABLE 0x01 +#define DWT_LEDS_INIT_BLINK 0x02 + +//frame filtering configuration options +#define DWT_FF_NOTYPE_EN 0x000 // no frame types allowed (FF disabled) +#define DWT_FF_COORD_EN 0x002 // behave as coordinator (can receive frames with no dest address (PAN ID has to match)) +#define DWT_FF_BEACON_EN 0x004 // beacon frames allowed +#define DWT_FF_DATA_EN 0x008 // data frames allowed +#define DWT_FF_ACK_EN 0x010 // ack frames allowed +#define DWT_FF_MAC_EN 0x020 // mac control frames allowed +#define DWT_FF_RSVD_EN 0x040 // reserved frame types allowed + +//DW1000 interrupt events +#define DWT_INT_TFRS 0x00000080 // frame sent +#define DWT_INT_LDED 0x00000400 // micro-code has finished execution +#define DWT_INT_RFCG 0x00004000 // frame received with good CRC +#define DWT_INT_RPHE 0x00001000 // receiver PHY header error +#define DWT_INT_RFCE 0x00008000 // receiver CRC error +#define DWT_INT_RFSL 0x00010000 // receiver sync loss error +#define DWT_INT_RFTO 0x00020000 // frame wait timeout +#define DWT_INT_RXOVRR 0x00100000 // receiver overrun +#define DWT_INT_RXPTO 0x00200000 // preamble detect timeout +#define DWT_INT_SFDT 0x04000000 // SFD timeout +#define DWT_INT_ARFE 0x20000000 // frame rejected (due to frame filtering configuration) + + +//DW1000 SLEEP and WAKEUP configuration parameters +#define DWT_PRESRV_SLEEP 0x0100 // PRES_SLEEP - on wakeup preserve sleep bit +#define DWT_LOADOPSET 0x0080 // ONW_L64P - on wakeup load operating parameter set for 64 PSR +#define DWT_CONFIG 0x0040 // ONW_LDC - on wakeup restore (load) the saved configurations (from AON array into HIF) +#define DWT_RX_EN 0x0002 // ONW_RX - on wakeup activate reception +#define DWT_TANDV 0x0001 // ONW_RADC - on wakeup run ADC to sample temperature and voltage sensor values + +#define DWT_XTAL_EN 0x10 // keep XTAL running during sleep +#define DWT_WAKE_SLPCNT 0x8 // wake up after sleep count +#define DWT_WAKE_CS 0x4 // wake up on chip select +#define DWT_WAKE_WK 0x2 // wake up on WAKEUP PIN +#define DWT_SLP_EN 0x1 // enable sleep/deep sleep functionality + +//DW1000 INIT configuration parameters +#define DWT_LOADUCODE 0x1 +#define DWT_LOADNONE 0x0 + +//DW1000 OTP operating parameter set selection +#define DWT_OPSET_64LEN 0x0 +#define DWT_OPSET_TIGHT 0x1 +#define DWT_OPSET_DEFLT 0x2 + +// Call-back data RX frames flags +#define DWT_CB_DATA_RX_FLAG_RNG 0x1 // Ranging bit + +// TX/RX call-back data +typedef struct +{ + uint32 status; //initial value of register as ISR is entered + uint16 datalength; //length of frame + uint8 fctrl[2]; //frame control bytes + uint8 rx_flags; //RX frame flags, see above +} dwt_cb_data_t; + +// Call-back type for all events +typedef void (*dwt_cb_t)(const dwt_cb_data_t *); + +/*! ------------------------------------------------------------------------------------------------------------------ + * Structure typedef: dwt_config_t + * + * Structure for setting device configuration via dwt_configure() function + * + */ +typedef struct +{ + uint8 chan ; //!< channel number {1, 2, 3, 4, 5, 7 } + uint8 prf ; //!< Pulse Repetition Frequency {DWT_PRF_16M or DWT_PRF_64M} + uint8 txPreambLength ; //!< DWT_PLEN_64..DWT_PLEN_4096 + uint8 rxPAC ; //!< Acquisition Chunk Size (Relates to RX preamble length) + uint8 txCode ; //!< TX preamble code + uint8 rxCode ; //!< RX preamble code + uint8 nsSFD ; //!< Boolean should we use non-standard SFD for better performance + uint8 dataRate ; //!< Data Rate {DWT_BR_110K, DWT_BR_850K or DWT_BR_6M8} + uint8 phrMode ; //!< PHR mode {0x0 - standard DWT_PHRMODE_STD, 0x3 - extended frames DWT_PHRMODE_EXT} + uint16 sfdTO ; //!< SFD timeout value (in symbols) +} dwt_config_t ; + + +typedef struct +{ + uint8 PGdly; + //TX POWER + //31:24 BOOST_0.125ms_PWR + //23:16 BOOST_0.25ms_PWR-TX_SHR_PWR + //15:8 BOOST_0.5ms_PWR-TX_PHR_PWR + //7:0 DEFAULT_PWR-TX_DATA_PWR + uint32 power; +} +dwt_txconfig_t ; + + +typedef struct +{ + + uint16 maxNoise ; // LDE max value of noise + uint16 firstPathAmp1 ; // Amplitude at floor(index FP) + 1 + uint16 stdNoise ; // Standard deviation of noise + uint16 firstPathAmp2 ; // Amplitude at floor(index FP) + 2 + uint16 firstPathAmp3 ; // Amplitude at floor(index FP) + 3 + uint16 maxGrowthCIR ; // Channel Impulse Response max growth CIR + uint16 rxPreamCount ; // Count of preamble symbols accumulated + uint16 firstPath ; // First p ath index (10.6 bits fixed point integer) +}dwt_rxdiag_t ; + + +typedef struct +{ + //all of the below are mapped to a 12-bit register in DW1000 + uint16 PHE ; //number of received header errors + uint16 RSL ; //number of received frame sync loss events + uint16 CRCG ; //number of good CRC received frames + uint16 CRCB ; //number of bad CRC (CRC error) received frames + uint16 ARFE ; //number of address filter errors + uint16 OVER ; //number of receiver overflows (used in double buffer mode) + uint16 SFDTO ; //SFD timeouts + uint16 PTO ; //Preamble timeouts + uint16 RTO ; //RX frame wait timeouts + uint16 TXF ; //number of transmitted frames + uint16 HPW ; //half period warn + uint16 TXW ; //power up warn + +} dwt_deviceentcnts_t ; + + +/********************************************************************************************************************/ +/* REMOVED API LIST */ +/********************************************************************************************************************/ +/* + * From version 4.0.0: + * - dwt_setGPIOforEXTTRX: Replaced by dwt_setlnapamode to get equivalent functionality. + * - dwt_setGPIOdirection: Renamed to dwt_setgpiodirection. + * - dwt_setGPIOvalue: Renamed to dwt_setgpiovalue. + * - dwt_setrxmode: Replaced by dwt_setsniffmode and dwt_setlowpowerlistening depending on the RX mode the user + * wants to set up. + * - dwt_checkoverrun: As automatic RX re-enabling is not supported anymore, this functions has become useless. + * - dwt_setautorxreenable: As automatic RX re-enabling is not supported anymore, this functions has become + * useless. + * - dwt_getrangebias: Range bias correction values are platform dependent and should therefore be managed at user + * application level. + * - dwt_xtaltrim: Renamed to dwt_setxtaltrim. + * - dwt_checkIRQ: Renamed to dwt_checkirq. + * + * From version 3.0.0: + * - dwt_getldotune: As LDO loading is now automatically managed by the driver, this function has become useless. + * - dwt_getotptxpower: TX power values and location in OTP memory are platform dependent and should therefore be + * managed at user application level. + * - dwt_readantennadelay: Antenna delay values and location in OTP memory are platform dependent and should + * therefore be managed at user application level. + * - dwt_readdignostics: Renamed to dwt_readdiagnostics. + */ + +/********************************************************************************************************************/ +/* API LIST */ +/********************************************************************************************************************/ + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_getpartid() + * + * @brief This is used to return the read part ID of the device + * + * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value. + * + * input parameters + * + * output parameters + * + * returns the 32 bit part ID value as programmed in the factory + */ +uint32 dwt_getpartid(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_getlotid() + * + * @brief This is used to return the read lot ID of the device + * + * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value. + * + * input parameters + * + * output parameters + * + * returns the 32 bit lot ID value as programmed in the factory + */ +uint32 dwt_getlotid(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readdevid() + * + * @brief This is used to return the read device type and revision information of the DW1000 device (MP part is 0xDECA0130) + * + * input parameters + * + * output parameters + * + * returns the read value which for DW1000 is 0xDECA0130 + */ +uint32 dwt_readdevid(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_otprevision() + * + * @brief This is used to return the read OTP revision + * + * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value. + * + * input parameters + * + * output parameters + * + * returns the read OTP revision value + */ +uint8 dwt_otprevision(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setfinegraintxseq() + * + * @brief This function enables/disables the fine grain TX sequencing (enabled by default). + * + * input parameters + * @param enable - 1 to enable fine grain TX sequencing, 0 to disable it. + * + * output parameters none + * + * no return value + */ +void dwt_setfinegraintxseq(int enable); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setlnapamode() + * + * @brief This is used to enable GPIO for external LNA or PA functionality - HW dependent, consult the DW1000 User Manual. + * This can also be used for debug as enabling TX and RX GPIOs is quite handy to monitor DW1000's activity. + * + * NOTE: Enabling PA functionality requires that fine grain TX sequencing is deactivated. This can be done using + * dwt_setfinegraintxseq(). + * + * input parameters + * @param lna - 1 to enable LNA functionality, 0 to disable it + * @param pa - 1 to enable PA functionality, 0 to disable it + * + * output parameters + * + * no return value + */ +void dwt_setlnapamode(int lna, int pa); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setgpiodirection() + * + * @brief This is used to set GPIO direction as an input (1) or output (0) + * + * input parameters + * @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file + * @param direction - this sets the GPIO direction - see GxP0... GxP8 in the deca_regs.h file + * + * output parameters + * + * no return value + */ +void dwt_setgpiodirection(uint32 gpioNum, uint32 direction); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setgpiovalue() + * + * @brief This is used to set GPIO value as (1) or (0) only applies if the GPIO is configured as output + * + * input parameters + * @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file + * @param value - this sets the GPIO value - see GDP0... GDP8 in the deca_regs.h file + * + * output parameters + * + * no return value + */ +void dwt_setgpiovalue(uint32 gpioNum, uint32 value); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_initialise() + * + * @brief This function initiates communications with the DW1000 transceiver + * and reads its DEV_ID register (address 0x00) to verify the IC is one supported + * by this software (e.g. DW1000 32-bit device ID value is 0xDECA0130). Then it + * does any initial once only device configurations needed for use and initialises + * as necessary any static data items belonging to this low-level driver. + * + * NOTES: + * 1.this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz + * 2.it also reads and applies LDO tune and crystal trim values from OTP memory + * + * input parameters + * @param config - specifies what configuration to load + * DWT_LOADUCODE 0x1 - load the LDE microcode from ROM - enabled accurate RX timestamp + * DWT_LOADNONE 0x0 - do not load any values from OTP memory + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +int dwt_initialise(uint16 config) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configure() + * + * @brief This function provides the main API for the configuration of the + * DW1000 and this low-level driver. The input is a pointer to the data structure + * of type dwt_config_t that holds all the configurable items. + * The dwt_config_t structure shows which ones are supported + * + * input parameters + * @param config - pointer to the configuration structure, which contains the device configuration data. + * + * output parameters + * + * no return value + */ +void dwt_configure(dwt_config_t *config) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configuretxrf() + * + * @brief This function provides the API for the configuration of the TX spectrum + * including the power and pulse generator delay. The input is a pointer to the data structure + * of type dwt_txconfig_t that holds all the configurable items. + * + * input parameters + * @param config - pointer to the txrf configuration structure, which contains the tx rf config data + * + * output parameters + * + * no return value + */ +void dwt_configuretxrf(dwt_txconfig_t *config) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setrxantennadelay() + * + * @brief This API function writes the antenna delay (in time units) to RX registers + * + * input parameters: + * @param rxDelay - this is the total (RX) antenna delay value, which + * will be programmed into the RX register + * + * output parameters + * + * no return value + */ +void dwt_setrxantennadelay(uint16 antennaDly); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_settxantennadelay() + * + * @brief This API function writes the antenna delay (in time units) to TX registers + * + * input parameters: + * @param txDelay - this is the total (TX) antenna delay value, which + * will be programmed into the TX delay register + * + * output parameters + * + * no return value + */ +void dwt_settxantennadelay(uint16 antennaDly); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setsmarttxpower() + * + * @brief This call enables or disables the smart TX power feature. + * + * input parameters + * @param enable - this enables or disables the TX smart power (1 = enable, 0 = disable) + * + * output parameters + * + * no return value + */ +void dwt_setsmarttxpower(int enable); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_writetxdata() + * + * @brief This API function writes the supplied TX data into the DW1000's + * TX buffer. The input parameters are the data length in bytes and a pointer + * to those data bytes. + * + * input parameters + * @param txFrameLength - This is the total frame length, including the two byte CRC. + * Note: this is the length of TX message (including the 2 byte CRC) - max is 1023 + * standard PHR mode allows up to 127 bytes + * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration + * see dwt_configure function + * @param txFrameBytes - Pointer to the users buffer containing the data to send. + * @param txBufferOffset - This specifies an offset in the DW1000s TX Buffer at which to start writing data. + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +int dwt_writetxdata(uint16 txFrameLength, uint8 *txFrameBytes, uint16 txBufferOffset) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_writetxfctrl() + * + * @brief This API function configures the TX frame control register before the transmission of a frame + * + * input parameters: + * @param txFrameLength - this is the length of TX message (including the 2 byte CRC) - max is 1023 + * NOTE: standard PHR mode allows up to 127 bytes + * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration + * see dwt_configure function + * @param txBufferOffset - the offset in the tx buffer to start writing the data + * @param ranging - 1 if this is a ranging frame, else 0 + * + * output parameters + * + * no return value + */ +void dwt_writetxfctrl(uint16 txFrameLength, uint16 txBufferOffset, int ranging); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_starttx() + * + * @brief This call initiates the transmission, input parameter indicates which TX mode is used see below + * + * input parameters: + * @param mode - if 0 immediate TX (no response expected) + * if 1 delayed TX (no response expected) + * if 2 immediate TX (response expected - so the receiver will be automatically turned on after TX is done) + * if 3 delayed TX (response expected - so the receiver will be automatically turned on after TX is done) + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed transmission will fail if the delayed time has passed) + */ +int dwt_starttx(uint8 mode) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setdelayedtrxtime() + * + * @brief This API function configures the delayed transmit time or the delayed RX on time + * + * input parameters + * @param starttime - the TX/RX start time (the 32 bits should be the high 32 bits of the system time at which to send the message, + * or at which to turn on the receiver) + * + * output parameters none + * + * no return value + */ +void dwt_setdelayedtrxtime(uint32 starttime) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readtxtimestamp() + * + * @brief This is used to read the TX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * @param timestamp - a pointer to a 5-byte buffer which will store the read TX timestamp time + * + * output parameters - the timestamp buffer will contain the value after the function call + * + * no return value + */ +void dwt_readtxtimestamp(uint8 * timestamp); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readtxtimestamphi32() + * + * @brief This is used to read the high 32-bits of the TX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * + * output parameters + * + * returns high 32-bits of TX timestamp + */ +uint32 dwt_readtxtimestamphi32(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readtxtimestamplo32() + * + * @brief This is used to read the low 32-bits of the TX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * + * output parameters + * + * returns low 32-bits of TX timestamp + */ +uint32 dwt_readtxtimestamplo32(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readrxtimestamp() + * + * @brief This is used to read the RX timestamp (adjusted time of arrival) + * + * input parameters + * @param timestamp - a pointer to a 5-byte buffer which will store the read RX timestamp time + * + * output parameters - the timestamp buffer will contain the value after the function call + * + * no return value + */ +void dwt_readrxtimestamp(uint8 * timestamp); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readrxtimestamphi32() + * + * @brief This is used to read the high 32-bits of the RX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * + * output parameters + * + * returns high 32-bits of RX timestamp + */ +uint32 dwt_readrxtimestamphi32(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readrxtimestamplo32() + * + * @brief This is used to read the low 32-bits of the RX timestamp (adjusted with the programmed antenna delay) + * + * input parameters + * + * output parameters + * + * returns low 32-bits of RX timestamp + */ +uint32 dwt_readrxtimestamplo32(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readsystimestamphi32() + * + * @brief This is used to read the high 32-bits of the system time + * + * input parameters + * + * output parameters + * + * returns high 32-bits of system time timestamp + */ +uint32 dwt_readsystimestamphi32(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readsystime() + * + * @brief This is used to read the system time + * + * input parameters + * @param timestamp - a pointer to a 5-byte buffer which will store the read system time + * + * output parameters + * @param timestamp - the timestamp buffer will contain the value after the function call + * + * no return value + */ +void dwt_readsystime(uint8 * timestamp); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_forcetrxoff() + * + * @brief This is used to turn off the transceiver + * + * input parameters + * + * output parameters + * + * no return value + */ +void dwt_forcetrxoff(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_syncrxbufptrs() + * + * @brief this function synchronizes rx buffer pointers + * need to make sure that the host/IC buffer pointers are aligned before starting RX + * + * input parameters: + * + * output parameters + * + * no return value + */ +void dwt_syncrxbufptrs(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_rxenable() + * + * @brief This call turns on the receiver, can be immediate or delayed (depending on the mode parameter). In the case of a + * "late" error the receiver will only be turned on if the DWT_IDLE_ON_DLY_ERR is not set. + * The receiver will stay turned on, listening to any messages until + * it either receives a good frame, an error (CRC, PHY header, Reed Solomon) or it times out (SFD, Preamble or Frame). + * + * input parameters + * @param mode - this can be one of the following allowed values: + * + * DWT_START_RX_IMMEDIATE 0 used to enbale receiver immediately + * DWT_START_RX_DELAYED 1 used to set up delayed RX, if "late" error triggers, then the RX will be enabled immediately + * (DWT_START_RX_DELAYED | DWT_IDLE_ON_DLY_ERR) 3 used to disable re-enabling of receiver if delayed RX failed due to "late" error + * (DWT_START_RX_IMMEDIATE | DWT_NO_SYNC_PTRS) 4 used to re-enable RX without trying to sync IC and host side buffer pointers, typically when + * performing manual RX re-enabling in double buffering mode + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed receive enable will be too far in the future if delayed time has passed) + */ +int dwt_rxenable(int mode); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setsniffmode() + * + * @brief enable/disable and configure SNIFF mode. + * + * SNIFF mode is a low-power reception mode where the receiver is sequenced on and off instead of being on all the time. + * The time spent in each state (on/off) is specified through the parameters below. + * See DW1000 User Manual section 4.5 "Low-Power SNIFF mode" for more details. + * + * input parameters: + * @param enable - 1 to enable SNIFF mode, 0 to disable. When 0, all other parameters are not taken into account. + * @param timeOn - duration of receiver ON phase, expressed in multiples of PAC size. The counter automatically adds 1 PAC + * size to the value set. Min value that can be set is 1 (i.e. an ON time of 2 PAC size), max value is 15. + * @param timeOff - duration of receiver OFF phase, expressed in multiples of 128/125 µs (~1 µs). Max value is 255. + * + * output parameters + * + * no return value + */ +void dwt_setsniffmode(int enable, uint8 timeOn, uint8 timeOff); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setlowpowerlistening() + * + * @brief enable/disable low-power listening mode. + * + * Low-power listening is a feature whereby the DW1000 is predominantly in the SLEEP state but wakes periodically, (after + * this "long sleep"), for a very short time to sample the air for a preamble sequence. This preamble sampling "listening" + * phase is actually two reception phases separated by a "short sleep" time. See DW1000 User Manual section "Low-Power + * Listening" for more details. + * + * NOTE: Before enabling low-power listening, the following functions have to be called to fully configure it: + * - dwt_configuresleep() to configure long sleep phase. "mode" parameter should at least have DWT_PRESRV_SLEEP, + * DWT_CONFIG and DWT_RX_EN set and "wake" parameter should at least have both DWT_WAKE_SLPCNT and DWT_SLP_EN set. + * - dwt_calibratesleepcnt() and dwt_configuresleepcnt() to define the "long sleep" phase duration. + * - dwt_setsnoozetime() to define the "short sleep" phase duration. + * - dwt_setpreambledetecttimeout() to define the reception phases duration. + * - dwt_setinterrupt() to activate RX good frame interrupt (DWT_INT_RFCG) only. + * When configured, low-power listening mode can be triggered either by putting the DW1000 to sleep (using + * dwt_entersleep()) or by activating reception (using dwt_rxenable()). + * + * Please refer to the low-power listening examples (examples 8a/8b accompanying the API distribution on Decawave's + * website). They form a working example code that shows how to use low-power listening correctly. + * + * input parameters: + * @param enable - 1 to enable low-power listening, 0 to disable. + * + * output parameters + * + * no return value + */ +void dwt_setlowpowerlistening(int enable); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setsnoozetime() + * + * @brief Set duration of "short sleep" phase when in low-power listening mode. + * + * input parameters: + * @param snooze_time - "short sleep" phase duration, expressed in multiples of 512/19.2 µs (~26.7 µs). The counter + * automatically adds 1 to the value set. The smallest working value that should be set is 1, + * i.e. giving a snooze time of 2 units (or ~53 µs). + * + * output parameters + * + * no return value + */ +void dwt_setsnoozetime(uint8 snooze_time); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setdblrxbuffmode() + * + * @brief This call enables the double receive buffer mode + * + * input parameters + * @param enable - 1 to enable, 0 to disable the double buffer mode + * + * output parameters + * + * no return value + */ +void dwt_setdblrxbuffmode(int enable); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setrxtimeout() + * + * @brief This call enables RX timeout (SY_STAT_RFTO event) + * + * input parameters + * @param time - how long the receiver remains on from the RX enable command + * The time parameter used here is in 1.0256 us (512/499.2MHz) units + * If set to 0 the timeout is disabled. + * + * output parameters + * + * no return value + */ +void dwt_setrxtimeout(uint16 time); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setpreambledetecttimeout() + * + * @brief This call enables preamble timeout (SY_STAT_RXPTO event) + * + * input parameters + * @param timeout - Preamble detection timeout, expressed in multiples of PAC size. The counter automatically adds 1 PAC + * size to the value set. Min value that can be set is 1 (i.e. a timeout of 2 PAC size). + * + * output parameters + * + * no return value + */ +void dwt_setpreambledetecttimeout(uint16 timeout); + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_calibratesleepcnt() + * + * @brief calibrates the local oscillator as its frequency can vary between 7 and 13kHz depending on temp and voltage + * + * NOTE: this function needs to be run before dwt_configuresleepcnt, so that we know what the counter units are + * + * input parameters + * + * output parameters + * + * returns the number of XTAL/2 cycles per low-power oscillator cycle. LP OSC frequency = 19.2 MHz/return value + */ +uint16 dwt_calibratesleepcnt(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configuresleepcnt() + * + * @brief sets the sleep counter to new value, this function programs the high 16-bits of the 28-bit counter + * + * NOTE: this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz + * + * input parameters + * @param sleepcnt - this it value of the sleep counter to program + * + * output parameters + * + * no return value + */ + void dwt_configuresleepcnt(uint16 sleepcnt); + + /*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configuresleep() + * + * @brief configures the device for both DEEP_SLEEP and SLEEP modes, and on-wake mode + * i.e. before entering the sleep, the device should be programmed for TX or RX, then upon "waking up" the TX/RX settings + * will be preserved and the device can immediately perform the desired action TX/RX + * + * NOTE: e.g. Tag operation - after deep sleep, the device needs to just load the TX buffer and send the frame + * + * + * mode: the array and LDE code (OTP/ROM) and LDO tune, and set sleep persist + * DWT_PRESRV_SLEEP 0x0100 - preserve sleep + * DWT_LOADOPSET 0x0080 - load operating parameter set on wakeup + * DWT_CONFIG 0x0040 - download the AON array into the HIF (configuration download) + * DWT_LOADEUI 0x0008 + * DWT_GOTORX 0x0002 + * DWT_TANDV 0x0001 + * + * wake: wake up parameters + * DWT_XTAL_EN 0x10 - keep XTAL running during sleep + * DWT_WAKE_SLPCNT 0x8 - wake up after sleep count + * DWT_WAKE_CS 0x4 - wake up on chip select + * DWT_WAKE_WK 0x2 - wake up on WAKEUP PIN + * DWT_SLP_EN 0x1 - enable sleep/deep sleep functionality + * + * input parameters + * @param mode - config on-wake parameters + * @param wake - config wake up parameters + * + * output parameters + * + * no return value + */ +void dwt_configuresleep(uint16 mode, uint8 wake); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_entersleep() + * + * @brief This function puts the device into deep sleep or sleep. dwt_configuresleep() should be called first + * to configure the sleep and on-wake/wake-up parameters + * + * input parameters + * + * output parameters + * + * no return value + */ +void dwt_entersleep(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_entersleepaftertx(int enable) + * + * @brief sets the auto TX to sleep bit. This means that after a frame + * transmission the device will enter deep sleep mode. The dwt_configuresleep() function + * needs to be called before this to configure the on-wake settings + * + * NOTE: the IRQ line has to be low/inactive (i.e. no pending events) + * + * input parameters + * @param enable - 1 to configure the device to enter deep sleep after TX, 0 - disables the configuration + * + * output parameters + * + * no return value + */ +void dwt_entersleepaftertx(int enable); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_spicswakeup() + * + * @brief wake up the device from sleep mode using the SPI read, + * the device will wake up on chip select line going low if the line is held low for at least 500us. + * To define the length depending on the time one wants to hold + * the chip select line low, use the following formula: + * + * length (bytes) = time (s) * byte_rate (Hz) + * + * where fastest byte_rate is spi_rate (Hz) / 8 if the SPI is sending the bytes back-to-back. + * To save time and power, a system designer could determine byte_rate value more precisely. + * + * NOTE: Alternatively the device can be waken up with WAKE_UP pin if configured for that operation + * + * input parameters + * @param buff - this is a pointer to the dummy buffer which will be used in the SPI read transaction used for the WAKE UP of the device + * @param length - this is the length of the dummy buffer + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +int dwt_spicswakeup(uint8 *buff, uint16 length); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setcallbacks() + * + * @brief This function is used to register the different callbacks called when one of the corresponding event occurs. + * + * NOTE: Callbacks can be undefined (set to NULL). In this case, dwt_isr() will process the event as usual but the 'null' + * callback will not be called. + * + * input parameters + * @param cbTxDone - the pointer to the TX confirmation event callback function + * @param cbRxOk - the pointer to the RX good frame event callback function + * @param cbRxTo - the pointer to the RX timeout events callback function + * @param cbRxErr - the pointer to the RX error events callback function + * + * output parameters + * + * no return value + */ +void dwt_setcallbacks(dwt_cb_t cbTxDone, dwt_cb_t cbRxOk, dwt_cb_t cbRxTo, dwt_cb_t cbRxErr); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_checkirq() + * + * @brief This function checks if the IRQ line is active - this is used instead of interrupt handler + * + * input parameters + * + * output parameters + * + * return value is 1 if the IRQS bit is set and 0 otherwise + */ +uint8 dwt_checkirq(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_isr() + * + * @brief This is the DW1000's general Interrupt Service Routine. It will process/report the following events: + * - RXFCG (through cbRxOk callback) + * - TXFRS (through cbTxDone callback) + * - RXRFTO/RXPTO (through cbRxTo callback) + * - RXPHE/RXFCE/RXRFSL/RXSFDTO/AFFREJ/LDEERR (through cbRxTo cbRxErr) + * For all events, corresponding interrupts are cleared and necessary resets are performed. In addition, in the RXFCG case, + * received frame information and frame control are read before calling the callback. If double buffering is activated, it + * will also toggle between reception buffers once the reception callback processing has ended. + * + * /!\ This version of the ISR supports double buffering but does not support automatic RX re-enabling! + * + * NOTE: In PC based system using (Cheetah or ARM) USB to SPI converter there can be no interrupts, however we still need something + * to take the place of it and operate in a polled way. In an embedded system this function should be configured to be triggered + * on any of the interrupts described above. + + * input parameters + * + * output parameters + * + * no return value + */ +void dwt_isr(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_isr_lplisten() + * + * @brief This is the DW1000's Interrupt Service Routine to use when low-power listening scheme is implemented. It will + * only process/report the RXFCG event (through cbRxOk callback). + * It clears RXFCG interrupt and reads received frame information and frame control before calling the callback. + * + * /!\ This version of the ISR is designed for single buffering case only! + * + * input parameters + * + * output parameters + * + * no return value + */ +void dwt_lowpowerlistenisr(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn void dwt_setinterrupt() + * + * @brief This function enables the specified events to trigger an interrupt. + * The following events can be enabled: + * DWT_INT_TFRS 0x00000080 // frame sent + * DWT_INT_RFCG 0x00004000 // frame received with good CRC + * DWT_INT_RPHE 0x00001000 // receiver PHY header error + * DWT_INT_RFCE 0x00008000 // receiver CRC error + * DWT_INT_RFSL 0x00010000 // receiver sync loss error + * DWT_INT_RFTO 0x00020000 // frame wait timeout + * DWT_INT_RXPTO 0x00200000 // preamble detect timeout + * DWT_INT_SFDT 0x04000000 // SFD timeout + * DWT_INT_ARFE 0x20000000 // frame rejected (due to frame filtering configuration) + * + * + * input parameters: + * @param bitmask - sets the events which will generate interrupt + * @param enable - if set the interrupts are enabled else they are cleared + * + * output parameters + * + * no return value + */ +void dwt_setinterrupt( uint32 bitmask, uint8 enable); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setpanid() + * + * @brief This is used to set the PAN ID + * + * input parameters + * @param panID - this is the PAN ID + * + * output parameters + * + * no return value + */ +void dwt_setpanid(uint16 panID); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setaddress16() + * + * @brief This is used to set 16-bit (short) address + * + * input parameters + * @param shortAddress - this sets the 16 bit short address + * + * output parameters + * + * no return value + */ +void dwt_setaddress16(uint16 shortAddress); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_seteui() + * + * @brief This is used to set the EUI 64-bit (long) address + * + * input parameters + * @param eui64 - this is the pointer to a buffer that contains the 64bit address + * + * output parameters + * + * no return value + */ +void dwt_seteui(uint8 *eui64); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_geteui() + * + * @brief This is used to get the EUI 64-bit from the DW1000 + * + * input parameters + * @param eui64 - this is the pointer to a buffer that will contain the read 64-bit EUI value + * + * output parameters + * + * no return value + */ +void dwt_geteui(uint8 *eui64); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_otpread() + * + * @brief This is used to read the OTP data from given address into provided array + * + * input parameters + * @param address - this is the OTP address to read from + * @param array - this is the pointer to the array into which to read the data + * @param length - this is the number of 32 bit words to read (array needs to be at least this length) + * + * output parameters + * + * no return value + */ +void dwt_otpread(uint32 address, uint32 *array, uint8 length); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_enableframefilter() + * + * @brief This is used to enable the frame filtering - (the default option is to + * accept any data and ACK frames with correct destination address + * + * input parameters + * @param - bitmask - enables/disables the frame filtering options according to + * DWT_FF_NOTYPE_EN 0x000 no frame types allowed + * DWT_FF_COORD_EN 0x002 behave as coordinator (can receive frames with no destination address (PAN ID has to match)) + * DWT_FF_BEACON_EN 0x004 beacon frames allowed + * DWT_FF_DATA_EN 0x008 data frames allowed + * DWT_FF_ACK_EN 0x010 ack frames allowed + * DWT_FF_MAC_EN 0x020 mac control frames allowed + * DWT_FF_RSVD_EN 0x040 reserved frame types allowed + * + * output parameters + * + * no return value + */ +void dwt_enableframefilter(uint16 bitmask); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_enableautoack() + * + * @brief This call enables the auto-ACK feature. If the responseDelayTime (parameter) is 0, the ACK will be sent a.s.a.p. + * otherwise it will be sent with a programmed delay (in symbols), max is 255. + * NOTE: needs to have frame filtering enabled as well + * + * input parameters + * @param responseDelayTime - if non-zero the ACK is sent after this delay, max is 255. + * + * output parameters + * + * no return value + */ +void dwt_enableautoack(uint8 responseDelayTime); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setrxaftertxdelay() + * + * @brief This sets the receiver turn on delay time after a transmission of a frame + * + * input parameters + * @param rxDelayTime - (20 bits) - the delay is in UWB microseconds + * + * output parameters + * + * no return value + */ +void dwt_setrxaftertxdelay(uint32 rxDelayTime); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_rxreset() + * + * @brief this function resets the receiver of the DW1000 + * + * input parameters: + * + * output parameters + * + * no return value + */ +void dwt_rxreset(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_softreset() + * + * @brief this function resets the DW1000 + * + * input parameters: + * + * output parameters + * + * no return value + */ +void dwt_softreset(void) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readrxdata() + * + * @brief This is used to read the data from the RX buffer, from an offset location give by offset parameter + * + * input parameters + * @param buffer - the buffer into which the data will be read + * @param length - the length of data to read (in bytes) + * @param rxBufferOffset - the offset in the rx buffer from which to read the data + * + * output parameters + * + * no return value + */ +void dwt_readrxdata(uint8 *buffer, uint16 length, uint16 rxBufferOffset); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readaccdata() + * + * @brief This is used to read the data from the Accumulator buffer, from an offset location give by offset parameter + * + * NOTE: Because of an internal memory access delay when reading the accumulator the first octet output is a dummy octet + * that should be discarded. This is true no matter what sub-index the read begins at. + * + * input parameters + * @param buffer - the buffer into which the data will be read + * @param length - the length of data to read (in bytes) + * @param accOffset - the offset in the acc buffer from which to read the data + * + * output parameters + * + * no return value + */ +void dwt_readaccdata(uint8 *buffer, uint16 length, uint16 rxBufferOffset); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readdiagnostics() + * + * @brief this function reads the RX signal quality diagnostic data + * + * input parameters + * @param diagnostics - diagnostic structure pointer, this will contain the diagnostic data read from the DW1000 + * + * output parameters + * + * no return value + */ +void dwt_readdiagnostics(dwt_rxdiag_t * diagnostics); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_loadopsettabfromotp() + * + * @brief This is used to select which Operational Parameter Set table to load from OTP memory + * + * input parameters + * @param ops_sel - Operational Parameter Set table to load: + * DWT_OPSET_64LEN = 0x0 - load the operational parameter set table for 64 length preamble configuration + * DWT_OPSET_TIGHT = 0x1 - load the operational parameter set table for tight xtal offsets (<1ppm) + * DWT_OPSET_DEFLT = 0x2 - load the default operational parameter set table (this is loaded from reset) + * + * output parameters + * + * no return value + */ +void dwt_loadopsettabfromotp(uint8 ops_sel); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configeventcounters() + * + * @brief This is used to enable/disable the event counter in the IC + * + * input parameters + * @param - enable - 1 enables (and reset), 0 disables the event counters + * output parameters + * + * no return value + */ +void dwt_configeventcounters(int enable); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readeventcounters() + * + * @brief This is used to read the event counters in the IC + * + * input parameters + * @param counters - pointer to the dwt_deviceentcnts_t structure which will hold the read data + * + * output parameters + * + * no return value + */ +void dwt_readeventcounters(dwt_deviceentcnts_t *counters); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_otpwriteandverify() + * + * @brief This is used to program 32-bit value into the DW1000 OTP memory. + * + * input parameters + * @param value - this is the 32-bit value to be programmed into OTP + * @param address - this is the 16-bit OTP address into which the 32-bit value is programmed + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +uint32 dwt_otpwriteandverify(uint32 value, uint16 address); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setleds() + * + * @brief This is used to set up Tx/Rx GPIOs which could be used to control LEDs + * Note: not completely IC dependent, also needs board with LEDS fitted on right I/O lines + * this function enables GPIOs 2 and 3 which are connected to LED3 and LED4 on EVB1000 + * + * input parameters + * @param mode - this is a bit field interpreted as follows: + * - bit 0: 1 to enable LEDs, 0 to disable them + * - bit 1: 1 to make LEDs blink once on init. Only valid if bit 0 is set (enable LEDs) + * - bit 2 to 7: reserved + * + * output parameters none + * + * no return value + */ +void dwt_setleds(uint8 mode); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_setxtaltrim() + * + * @brief This is used to adjust the crystal frequency + * + * input parameters: + * @param value - crystal trim value (in range 0x0 to 0x1F) 31 steps (~1.5ppm per step) + * + * output parameters + * + * no return value + */ +void dwt_setxtaltrim(uint8 value); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_getinitxtaltrim() + * + * @brief This function returns the value of XTAL trim that has been applied during initialisation (dwt_init). This can + * be either the value read in OTP memory or a default value. + * + * NOTE: The value returned by this function is the initial value only! It is not updated on dwt_setxtaltrim calls. + * + * input parameters + * + * output parameters + * + * returns the XTAL trim value set upon initialisation + */ +uint8 dwt_getinitxtaltrim(void); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configcwmode() + * + * @brief this function sets the DW1000 to transmit cw signal at specific channel frequency + * + * input parameters: + * @param chan - specifies the operating channel (e.g. 1, 2, 3, 4, 5, 6 or 7) + * + * output parameters + * + * no return value + */ +void dwt_configcwmode(uint8 chan); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_configcontinuousframemode() + * + * @brief this function sets the DW1000 to continuous tx frame mode for regulatory approvals testing. + * + * input parameters: + * @param framerepetitionrate - This is a 32-bit value that is used to set the interval between transmissions. +* The minimum value is 4. The units are approximately 8 ns. (or more precisely 512/(499.2e6*128) seconds)). + * + * output parameters + * + * no return value + */ +void dwt_configcontinuousframemode(uint32 framerepetitionrate); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readtempvbat() + * + * @brief this function reads the battery voltage and temperature of the MP + * The values read here will be the current values sampled by DW1000 AtoD converters. + * Note on Temperature: the temperature value needs to be converted to give the real temperature + * the formula is: 1.13 * reading - 113.0 + * Note on Voltage: the voltage value needs to be converted to give the real voltage + * the formula is: 0.0057 * reading + 2.3 + * + * NB: To correctly read the temperature this read should be done with xtal clock + * however that means that the receiver will be switched off, if receiver needs to be on then + * the timer is used to make sure the value is stable before reading + * + * input parameters: + * @param fastSPI - set to 1 if SPI rate > than 3MHz is used + * + * output parameters + * + * returns (temp_raw<<8)|(vbat_raw) + */ +uint16 dwt_readtempvbat(uint8 fastSPI); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readwakeuptemp() + * + * @brief this function reads the temperature of the DW1000 that was sampled + * on waking from Sleep/Deepsleep. They are not current values, but read on last + * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep + * + * input parameters: + * + * output parameters: + * + * returns: 8-bit raw temperature sensor value + */ +uint8 dwt_readwakeuptemp(void) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readwakeupvbat() + * + * @brief this function reads the battery voltage of the DW1000 that was sampled + * on waking from Sleep/Deepsleep. They are not current values, but read on last + * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep + * + * input parameters: + * + * output parameters: + * + * returns: 8-bit raw battery voltage sensor value + */ +uint8 dwt_readwakeupvbat(void) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_writetodevice() + * + * @brief this function is used to write to the DW1000 device registers + * Notes: + * 1. Firstly we create a header (the first byte is a header byte) + * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte + * b. set bit-7 (or with 0x80) for write operation + * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte + * + * 2. Write the header followed by the data bytes to the DW1000 device + * + * + * input parameters: + * @param recordNumber - ID of register file or buffer being accessed + * @param index - byte index into register file or buffer being accessed + * @param length - number of bytes being written + * @param buffer - pointer to buffer containing the 'length' bytes to be written + * + * output parameters + * + * no return value + */ +void dwt_writetodevice +( + uint16 recordNumber, // input parameter - ID of register file or buffer being accessed + uint16 index, // input parameter - byte index into register file or buffer being accessed + uint32 length, // input parameter - number of bytes being written + const uint8 *buffer // input parameter - pointer to buffer containing the 'length' bytes to be written +) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_readfromdevice() + * + * @brief this function is used to read from the DW1000 device registers + * Notes: + * 1. Firstly we create a header (the first byte is a header byte) + * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte + * b. set bit-7 (or with 0x80) for write operation + * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte + * + * 2. Write the header followed by the data bytes to the DW1000 device + * 3. Store the read data in the input buffer + * + * input parameters: + * @param recordNumber - ID of register file or buffer being accessed + * @param index - byte index into register file or buffer being accessed + * @param length - number of bytes being read + * @param buffer - pointer to buffer in which to return the read data. + * + * output parameters + * + * no return value + */ +void dwt_readfromdevice +( + uint16 recordNumber, // input parameter - ID of register file or buffer being accessed + uint16 index, // input parameter - byte index into register file or buffer being accessed + uint32 length, // input parameter - number of bytes being read + uint8 *buffer // input parameter - pointer to buffer in which to return the read data. +) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_read32bitoffsetreg() + * + * @brief this function is used to read 32-bit value from the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * + * output parameters + * + * returns 32 bit register value + */ +uint32 dwt_read32bitoffsetreg(int regFileID, int regOffset) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_write32bitoffsetreg() + * + * @brief this function is used to write 32-bit value to the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * @param regval - the value to write + * + * output parameters + * + * no return value + */ +void dwt_write32bitoffsetreg(int regFileID, int regOffset, uint32 regval); + +#define dwt_write32bitreg(x,y) dwt_write32bitoffsetreg(x,0,y) +#define dwt_read32bitreg(x) dwt_read32bitoffsetreg(x,0) + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_read16bitoffsetreg() + * + * @brief this function is used to read 16-bit value from the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * + * output parameters + * + * returns 16 bit register value + */ +uint16 dwt_read16bitoffsetreg(int regFileID, int regOffset); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_write16bitoffsetreg() + * + * @brief this function is used to write 16-bit value to the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * @param regval - the value to write + * + * output parameters + * + * no return value + */ +void dwt_write16bitoffsetreg(int regFileID, int regOffset, uint16 regval) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_read8bitoffsetreg() + * + * @brief this function is used to read an 8-bit value from the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * + * output parameters + * + * returns 8-bit register value + */ +uint8 dwt_read8bitoffsetreg(int regFileID, int regOffset); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn dwt_write8bitoffsetreg() + * + * @brief this function is used to write an 8-bit value to the DW1000 device registers + * + * input parameters: + * @param regFileID - ID of register file or buffer being accessed + * @param regOffset - the index into register file or buffer being accessed + * @param regval - the value to write + * + * output parameters + * + * no return value + */ +void dwt_write8bitoffsetreg(int regFileID, int regOffset, uint8 regval); + + +/**************************************************************************************************************************************************** + * + * Declaration of platform-dependent lower level functions. + * + ****************************************************************************************************************************************************/ + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn writetospi() + * + * @brief + * NB: In porting this to a particular microprocessor, the implementer needs to define the two low + * level abstract functions to write to and read from the SPI the definitions should be in deca_spi.c file. + * Low level abstract function to write to the SPI + * Takes two separate byte buffers for write header and write data + * returns 0 for success, or -1 for error + * + * Note: The body of this function is defined in deca_spi.c and is platform specific + * + * input parameters: + * @param headerLength - number of bytes header being written + * @param headerBuffer - pointer to buffer containing the 'headerLength' bytes of header to be written + * @param bodylength - number of bytes data being written + * @param bodyBuffer - pointer to buffer containing the 'bodylength' bytes od data to be written + * + * output parameters + * + * returns DWT_SUCCESS for success, or DWT_ERROR for error + */ +int writetospi(uint16 headerLength, const uint8 *headerBuffer, uint32 bodylength, const uint8 *bodyBuffer); + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn readfromspi() + * + * @brief + * NB: In porting this to a particular microprocessor, the implementer needs to define the two low + * level abstract functions to write to and read from the SPI the definitions should be in deca_spi.c file. + * Low level abstract function to write to the SPI + * Takes two separate byte buffers for write header and write data + * returns 0 for success, or -1 for error + * + * Note: The body of this function is defined in deca_spi.c and is platform specific + * + * input parameters: + * @param headerLength - number of bytes header to write + * @param headerBuffer - pointer to buffer containing the 'headerLength' bytes of header to write + * @param readlength - number of bytes data being read + * @param readBuffer - pointer to buffer containing to return the data (NB: size required = headerLength + readlength) + * + * output parameters + * + * returns DWT_SUCCESS for success (and the position in the buffer at which data begins), or DWT_ERROR for error + */ +int readfromspi(uint16 headerLength, const uint8 *headerBuffer, uint32 readlength, uint8 *readBuffer); + +// --------------------------------------------------------------------------- +// +// NB: The purpose of the deca_mutex.c file is to provide for microprocessor interrupt enable/disable, this is used for +// controlling mutual exclusion from critical sections in the code where interrupts and background +// processing may interact. The code using this is kept to a minimum and the disabling time is also +// kept to a minimum, so blanket interrupt disable may be the easiest way to provide this. But at a +// minimum those interrupts coming from the decawave device should be disabled/re-enabled by this activity. +// +// In porting this to a particular microprocessor, the implementer may choose to use #defines here +// to map these calls transparently to the target system. Alternatively the appropriate code may +// be embedded in the functions provided in the deca_irq.c file. +// +// --------------------------------------------------------------------------- + +typedef int decaIrqStatus_t ; // Type for remembering IRQ status + + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn decamutexon() + * + * @brief This function should disable interrupts. This is called at the start of a critical section + * It returns the IRQ state before disable, this value is used to re-enable in decamutexoff call + * + * Note: The body of this function is defined in deca_mutex.c and is platform specific + * + * input parameters: + * + * output parameters + * + * returns the state of the DW1000 interrupt + */ +decaIrqStatus_t decamutexon(void) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn decamutexoff() + * + * @brief This function should re-enable interrupts, or at least restore their state as returned(&saved) by decamutexon + * This is called at the end of a critical section + * + * Note: The body of this function is defined in deca_mutex.c and is platform specific + * + * input parameters: + * @param s - the state of the DW1000 interrupt as returned by decamutexon + * + * output parameters + * + * returns the state of the DW1000 interrupt + */ +void decamutexoff(decaIrqStatus_t s) ; + +/*! ------------------------------------------------------------------------------------------------------------------ + * @fn deca_sleep() + * + * @brief Wait for a given amount of time. + * NB: The body of this function is defined in deca_sleep.c and is platform specific + * + * input parameters: + * @param time_ms - time to wait in milliseconds + * + * output parameters + * + * no return value + */ +void deca_sleep(unsigned int time_ms); + +#ifdef __cplusplus +} +#endif + +#endif /* _DECA_DEVICE_API_H_ */ + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/decadriver/deca_param_types.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,68 @@ +/*! ---------------------------------------------------------------------------- + * @file deca_param_types.h + * @brief Decawave general type definitions for configuration structures + * + * @attention + * + * Copyright 2013 (c) Decawave Ltd, Dublin, Ireland. + * + * All rights reserved. + * + */ +#ifndef _DECA_PARAM_TYPES_H_ +#define _DECA_PARAM_TYPES_H_ + +#ifdef __cplusplus +extern "C" { +#endif +#include "deca_types.h" + +#define NUM_BR 3 +#define NUM_PRF 2 +#define NUM_PACS 4 +#define NUM_BW 2 //2 bandwidths are supported +#define NUM_SFD 2 //supported number of SFDs - standard = 0, non-standard = 1 +#define NUM_CH 6 //supported channels are 1, 2, 3, 4, 5, 7 +#define NUM_CH_SUPPORTED 8 //supported channels are '0', 1, 2, 3, 4, 5, '6', 7 +#define PCODES 25 //supported preamble codes + + +typedef struct { + uint32 lo32; + uint16 target[NUM_PRF]; +} agc_cfg_struct ; + +extern const agc_cfg_struct agc_config ; + +//SFD threshold settings for 110k, 850k, 6.8Mb standard and non-standard +extern const uint16 sftsh[NUM_BR][NUM_SFD]; + +extern const uint16 dtune1[NUM_PRF]; + +#define XMLPARAMS_VERSION (1.17f) + +extern const uint32 fs_pll_cfg[NUM_CH]; +extern const uint8 fs_pll_tune[NUM_CH]; +extern const uint8 rx_config[NUM_BW]; +extern const uint32 tx_config[NUM_CH]; +extern const uint8 dwnsSFDlen[NUM_BR]; //length of SFD for each of the bitrates +extern const uint32 digital_bb_config[NUM_PRF][NUM_PACS]; +extern const uint8 chan_idx[NUM_CH_SUPPORTED]; + +#define PEAK_MULTPLIER (0x60) //3 -> (0x3 * 32) & 0x00E0 +#define N_STD_FACTOR (13) +#define LDE_PARAM1 (PEAK_MULTPLIER | N_STD_FACTOR) + +#define LDE_PARAM3_16 (0x1607) +#define LDE_PARAM3_64 (0x0607) + +extern const uint16 lde_replicaCoeff[PCODES]; + +#ifdef __cplusplus +} +#endif + +#endif + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/decadriver/deca_params_init.c Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,149 @@ +/*! ---------------------------------------------------------------------------- + * @file deca_params_init.c + * @brief DW1000 configuration parameters + * + * @attention + * + * Copyright 2013 (c) Decawave Ltd, Dublin, Ireland. + * + * All rights reserved. + * + * + * ------------------------------------------------------------------------------------------------------------------- +**/ +#include <stdio.h> +#include <stdlib.h> + +#include "deca_regs.h" +#include "deca_device_api.h" +#include "deca_param_types.h" + + +//----------------------------------------- +// map the channel number to the index in the configuration arrays below +// 0th element is chan 1, 1st is chan 2, 2nd is chan 3, 3rd is chan 4, 4th is chan 5, 5th is chan 7 +const uint8 chan_idx[NUM_CH_SUPPORTED] = {0, 0, 1, 2, 3, 4, 0, 5}; + +//----------------------------------------- +const uint32 tx_config[NUM_CH] = +{ + RF_TXCTRL_CH1, + RF_TXCTRL_CH2, + RF_TXCTRL_CH3, + RF_TXCTRL_CH4, + RF_TXCTRL_CH5, + RF_TXCTRL_CH7, +}; + +//Frequency Synthesiser - PLL configuration +const uint32 fs_pll_cfg[NUM_CH] = +{ + FS_PLLCFG_CH1, + FS_PLLCFG_CH2, + FS_PLLCFG_CH3, + FS_PLLCFG_CH4, + FS_PLLCFG_CH5, + FS_PLLCFG_CH7 +}; + +//Frequency Synthesiser - PLL tuning +const uint8 fs_pll_tune[NUM_CH] = +{ + FS_PLLTUNE_CH1, + FS_PLLTUNE_CH2, + FS_PLLTUNE_CH3, + FS_PLLTUNE_CH4, + FS_PLLTUNE_CH5, + FS_PLLTUNE_CH7 +}; + +//bandwidth configuration +const uint8 rx_config[NUM_BW] = +{ + RF_RXCTRLH_NBW, + RF_RXCTRLH_WBW +}; + + +const agc_cfg_struct agc_config = +{ + AGC_TUNE2_VAL, + { AGC_TUNE1_16M , AGC_TUNE1_64M } //adc target +}; + +//DW non-standard SFD length for 110k, 850k and 6.81M +const uint8 dwnsSFDlen[NUM_BR] = +{ + DW_NS_SFD_LEN_110K, + DW_NS_SFD_LEN_850K, + DW_NS_SFD_LEN_6M8 +}; + +// SFD Threshold +const uint16 sftsh[NUM_BR][NUM_SFD] = +{ + { + DRX_TUNE0b_110K_STD, + DRX_TUNE0b_110K_NSTD + }, + { + DRX_TUNE0b_850K_STD, + DRX_TUNE0b_850K_NSTD + }, + { + DRX_TUNE0b_6M8_STD, + DRX_TUNE0b_6M8_NSTD + } +}; + +const uint16 dtune1[NUM_PRF] = +{ + DRX_TUNE1a_PRF16, + DRX_TUNE1a_PRF64 +}; + +const uint32 digital_bb_config[NUM_PRF][NUM_PACS] = +{ + { + DRX_TUNE2_PRF16_PAC8, + DRX_TUNE2_PRF16_PAC16, + DRX_TUNE2_PRF16_PAC32, + DRX_TUNE2_PRF16_PAC64 + }, + { + DRX_TUNE2_PRF64_PAC8, + DRX_TUNE2_PRF64_PAC16, + DRX_TUNE2_PRF64_PAC32, + DRX_TUNE2_PRF64_PAC64 + } +}; + +const uint16 lde_replicaCoeff[PCODES] = +{ + 0, // No preamble code 0 + LDE_REPC_PCODE_1, + LDE_REPC_PCODE_2, + LDE_REPC_PCODE_3, + LDE_REPC_PCODE_4, + LDE_REPC_PCODE_5, + LDE_REPC_PCODE_6, + LDE_REPC_PCODE_7, + LDE_REPC_PCODE_8, + LDE_REPC_PCODE_9, + LDE_REPC_PCODE_10, + LDE_REPC_PCODE_11, + LDE_REPC_PCODE_12, + LDE_REPC_PCODE_13, + LDE_REPC_PCODE_14, + LDE_REPC_PCODE_15, + LDE_REPC_PCODE_16, + LDE_REPC_PCODE_17, + LDE_REPC_PCODE_18, + LDE_REPC_PCODE_19, + LDE_REPC_PCODE_20, + LDE_REPC_PCODE_21, + LDE_REPC_PCODE_22, + LDE_REPC_PCODE_23, + LDE_REPC_PCODE_24 +}; +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/decadriver/deca_regs.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,1350 @@ +/*! ------------------------------------------------------------------------------------------------------------------ + * @file deca_regs.h + * @brief DW1000 Register Definitions + * This file supports assembler and C development for DW1000 enabled devices + * + * @attention + * + * Copyright 2013 (c) Decawave Ltd, Dublin, Ireland. + * + * All rights reserved. + * + */ + +#ifndef _DECA_REGS_H_ +#define _DECA_REGS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "deca_version.h" + + +/****************************************************************************//** + * @brief Bit definitions for register DEV_ID +**/ +#define DEV_ID_ID 0x00 /* Device ID register, includes revision info (0xDECA0130) */ +#define DEV_ID_LEN (4) +/* mask and shift */ +#define DEV_ID_REV_MASK 0x0000000FUL /* Revision */ +#define DEV_ID_VER_MASK 0x000000F0UL /* Version */ +#define DEV_ID_MODEL_MASK 0x0000FF00UL /* The MODEL identifies the device. The DW1000 is device type 0x01 */ +#define DEV_ID_RIDTAG_MASK 0xFFFF0000UL /* Register Identification Tag 0XDECA */ + +/****************************************************************************//** + * @brief Bit definitions for register EUI_64 +**/ +#define EUI_64_ID 0x01 /* IEEE Extended Unique Identifier (63:0) */ +#define EUI_64_OFFSET 0x00 +#define EUI_64_LEN (8) + +/****************************************************************************//** + * @brief Bit definitions for register PANADR +**/ +#define PANADR_ID 0x03 /* PAN ID (31:16) and Short Address (15:0) */ +#define PANADR_LEN (4) +/*mask and shift */ +#define PANADR_SHORT_ADDR_OFFSET 0 /* In bytes */ +#define PANADR_SHORT_ADDR_MASK 0x0000FFFFUL /* Short Address */ +#define PANADR_PAN_ID_OFFSET 2 /* In bytes */ +#define PANADR_PAN_ID_MASK 0xFFFF00F0UL /* PAN Identifier */ + +/****************************************************************************//** + * @brief Bit definitions for register 0x05 +**/ +#define REG_05_ID_RESERVED 0x05 + +/****************************************************************************//** + * @brief Bit definitions for register SYS_CFG +**/ +#define SYS_CFG_ID 0x04 /* System Configuration (31:0) */ +#define SYS_CFG_LEN (4) +/*mask and shift */ +#define SYS_CFG_MASK 0xF047FFFFUL /* access mask to SYS_CFG_ID */ +#define SYS_CFG_FF_ALL_EN 0x000001FEUL /* Frame filtering options all frames allowed */ +/*offset 0 */ +#define SYS_CFG_FFE 0x00000001UL /* Frame Filtering Enable. This bit enables the frame filtering functionality */ +#define SYS_CFG_FFBC 0x00000002UL /* Frame Filtering Behave as a Co-ordinator */ +#define SYS_CFG_FFAB 0x00000004UL /* Frame Filtering Allow Beacon frame reception */ +#define SYS_CFG_FFAD 0x00000008UL /* Frame Filtering Allow Data frame reception */ +#define SYS_CFG_FFAA 0x00000010UL /* Frame Filtering Allow Acknowledgment frame reception */ +#define SYS_CFG_FFAM 0x00000020UL /* Frame Filtering Allow MAC command frame reception */ +#define SYS_CFG_FFAR 0x00000040UL /* Frame Filtering Allow Reserved frame types */ +#define SYS_CFG_FFA4 0x00000080UL /* Frame Filtering Allow frames with frame type field of 4, (binary 100) */ +/*offset 8 */ +#define SYS_CFG_FFA5 0x00000100UL /* Frame Filtering Allow frames with frame type field of 5, (binary 101) */ +#define SYS_CFG_HIRQ_POL 0x00000200UL /* Host interrupt polarity */ +#define SYS_CFG_SPI_EDGE 0x00000400UL /* SPI data launch edge */ +#define SYS_CFG_DIS_FCE 0x00000800UL /* Disable frame check error handling */ +#define SYS_CFG_DIS_DRXB 0x00001000UL /* Disable Double RX Buffer */ +#define SYS_CFG_DIS_PHE 0x00002000UL /* Disable receiver abort on PHR error */ +#define SYS_CFG_DIS_RSDE 0x00004000UL /* Disable Receiver Abort on RSD error */ +#define SYS_CFG_FCS_INIT2F 0x00008000UL /* initial seed value for the FCS generation and checking function */ +/*offset 16 */ +#define SYS_CFG_PHR_MODE_SHFT 16 +#define SYS_CFG_PHR_MODE_00 0x00000000UL /* Standard Frame mode */ +#define SYS_CFG_PHR_MODE_11 0x00030000UL /* Long Frames mode */ +#define SYS_CFG_DIS_STXP 0x00040000UL /* Disable Smart TX Power control */ +#define SYS_CFG_RXM110K 0x00400000UL /* Receiver Mode 110 kbps data rate */ +/*offset 24 */ +#define SYS_CFG_RXWTOE 0x10000000UL /* Receive Wait Timeout Enable. */ +#define SYS_CFG_RXAUTR 0x20000000UL /* Receiver Auto-Re-enable. This bit is used to cause the receiver to re-enable automatically */ +#define SYS_CFG_AUTOACK 0x40000000UL /* Automatic Acknowledgement Enable */ +#define SYS_CFG_AACKPEND 0x80000000UL /* Automatic Acknowledgement Pending bit control */ + + +/****************************************************************************//** + * @brief Bit definitions for register SYS_TIME +**/ +#define SYS_TIME_ID 0x06 /* System Time Counter (40-bit) */ +#define SYS_TIME_OFFSET 0x00 +#define SYS_TIME_LEN (5) /* Note 40 bit register */ + + +/****************************************************************************//** + * @brief Bit definitions for register 0x07 +**/ +#define REG_07_ID_RESERVED 0x07 + +/****************************************************************************//** + * @brief Bit definitions for register TX_FCTRL +**/ +#define TX_FCTRL_ID 0x08 /* Transmit Frame Control */ +#define TX_FCTRL_LEN (5) /* Note 40 bit register */ +/*masks (low 32 bit) */ +#define TX_FCTRL_TFLEN_MASK 0x0000007FUL /* bit mask to access Transmit Frame Length */ +#define TX_FCTRL_TFLE_MASK 0x00000380UL /* bit mask to access Transmit Frame Length Extension */ +#define TX_FCTRL_FLE_MASK 0x000003FFUL /* bit mask to access Frame Length field */ +#define TX_FCTRL_TXBR_MASK 0x00006000UL /* bit mask to access Transmit Bit Rate */ +#define TX_FCTRL_TXPRF_MASK 0x00030000UL /* bit mask to access Transmit Pulse Repetition Frequency */ +#define TX_FCTRL_TXPSR_MASK 0x000C0000UL /* bit mask to access Transmit Preamble Symbol Repetitions (PSR). */ +#define TX_FCTRL_PE_MASK 0x00300000UL /* bit mask to access Preamble Extension */ +#define TX_FCTRL_TXPSR_PE_MASK 0x003C0000UL /* bit mask to access Transmit Preamble Symbol Repetitions (PSR). */ +#define TX_FCTRL_SAFE_MASK_32 0xFFFFE3FFUL /* FSCTRL has fields which should always be writen zero */ +/*offset 0 */ +/*offset 8 */ +#define TX_FCTRL_TXBR_110k 0x00000000UL /* Transmit Bit Rate = 110k */ +#define TX_FCTRL_TXBR_850k 0x00002000UL /* Transmit Bit Rate = 850k */ +#define TX_FCTRL_TXBR_6M 0x00004000UL /* Transmit Bit Rate = 6.8M */ +#define TX_FCTRL_TXBR_SHFT (13) /* shift to access Data Rate field */ +#define TX_FCTRL_TR 0x00008000UL /* Transmit Ranging enable */ +#define TX_FCTRL_TR_SHFT (15) /* shift to access Ranging bit */ +/*offset 16 */ +#define TX_FCTRL_TXPRF_SHFT (16) /* shift to access Pulse Repetition Frequency field */ +#define TX_FCTRL_TXPRF_4M 0x00000000UL /* Transmit Pulse Repetition Frequency = 4 Mhz */ +#define TX_FCTRL_TXPRF_16M 0x00010000UL /* Transmit Pulse Repetition Frequency = 16 Mhz */ +#define TX_FCTRL_TXPRF_64M 0x00020000UL /* Transmit Pulse Repetition Frequency = 64 Mhz */ +#define TX_FCTRL_TXPSR_SHFT (18) /* shift to access Preamble Symbol Repetitions field */ +#define TX_FCTRL_PE_SHFT (20) /* shift to access Preamble length Extension to allow specification of non-standard values */ +#define TX_FCTRL_TXPSR_PE_16 0x00000000UL /* bit mask to access Preamble Extension = 16 */ +#define TX_FCTRL_TXPSR_PE_64 0x00040000UL /* bit mask to access Preamble Extension = 64 */ +#define TX_FCTRL_TXPSR_PE_128 0x00140000UL /* bit mask to access Preamble Extension = 128 */ +#define TX_FCTRL_TXPSR_PE_256 0x00240000UL /* bit mask to access Preamble Extension = 256 */ +#define TX_FCTRL_TXPSR_PE_512 0x00340000UL /* bit mask to access Preamble Extension = 512 */ +#define TX_FCTRL_TXPSR_PE_1024 0x00080000UL /* bit mask to access Preamble Extension = 1024 */ +#define TX_FCTRL_TXPSR_PE_1536 0x00180000UL /* bit mask to access Preamble Extension = 1536 */ +#define TX_FCTRL_TXPSR_PE_2048 0x00280000UL /* bit mask to access Preamble Extension = 2048 */ +#define TX_FCTRL_TXPSR_PE_4096 0x000C0000UL /* bit mask to access Preamble Extension = 4096 */ +/*offset 22 */ +#define TX_FCTRL_TXBOFFS_SHFT (22) /* Shift to access transmit buffer index offset */ +#define TX_FCTRL_TXBOFFS_MASK 0xFFC00000UL /* bit mask to access Transmit buffer index offset 10-bit field */ +/*offset 32 */ +#define TX_FCTRL_IFSDELAY_MASK 0xFF00000000ULL /* bit mask to access Inter-Frame Spacing field */ + +/****************************************************************************//** + * @brief Bit definitions for register TX_BUFFER +**/ +#define TX_BUFFER_ID 0x09 /* Transmit Data Buffer */ +#define TX_BUFFER_LEN (1024) + +/****************************************************************************//** + * @brief Bit definitions for register DX_TIME +**/ +#define DX_TIME_ID 0x0A /* Delayed Send or Receive Time (40-bit) */ +#define DX_TIME_LEN (5) + +/****************************************************************************//** + * @brief Bit definitions for register 0x08 +**/ +#define REG_0B_ID_RESERVED 0x0B + +/****************************************************************************//** + * @brief Bit definitions for register RX_FWTO +**/ +#define RX_FWTO_ID 0x0C /* Receive Frame Wait Timeout Period */ +#define RX_FWTO_OFFSET 0x00 +#define RX_FWTO_LEN (2) /* doc bug*/ +/*mask and shift */ +#define RX_FWTO_MASK 0xFFFF + +/****************************************************************************//** + * @brief Bit definitions for register SYS_CTRL +**/ +#define SYS_CTRL_ID 0x0D /* System Control Register */ +#define SYS_CTRL_OFFSET 0x00 +#define SYS_CTRL_LEN (4) +/*masks */ +#define SYS_CTRL_MASK_32 0x010003CFUL /* System Control Register access mask (all unused fields should always be writen as zero) */ +/*offset 0 */ +#define SYS_CTRL_SFCST 0x00000001UL /* Suppress Auto-FCS Transmission (on this frame) */ +#define SYS_CTRL_TXSTRT 0x00000002UL /* Start Transmitting Now */ +#define SYS_CTRL_TXDLYS 0x00000004UL /* Transmitter Delayed Sending (initiates sending when SYS_TIME == TXD_TIME */ +#define SYS_CTRL_CANSFCS 0x00000008UL /* Cancel Suppression of auto-FCS transmission (on the current frame) */ +#define SYS_CTRL_TRXOFF 0x00000040UL /* Transceiver Off. Force Transciever OFF abort TX or RX immediately */ +#define SYS_CTRL_WAIT4RESP 0x00000080UL /* Wait for Response */ +/*offset 8 */ +#define SYS_CTRL_RXENAB 0x00000100UL /* Enable Receiver Now */ +#define SYS_CTRL_RXDLYE 0x00000200UL /* Receiver Delayed Enable (Enables Receiver when SY_TIME[0x??] == RXD_TIME[0x??] CHECK comment*/ +/*offset 16 */ +/*offset 24 */ +#define SYS_CTRL_HSRBTOGGLE 0x01000000UL /* Host side receiver buffer pointer toggle - toggles 0/1 host side data set pointer */ +#define SYS_CTRL_HRBT (SYS_CTRL_HSRBTOGGLE) +#define SYS_CTRL_HRBT_OFFSET (3) + +/****************************************************************************//** + * @brief Bit definitions for register SYS_MASK +**/ +#define SYS_MASK_ID 0x0E /* System Event Mask Register */ +#define SYS_MASK_LEN (4) +/*masks */ +#define SYS_MASK_MASK_32 0x3FF7FFFEUL /* System Event Mask Register access mask (all unused fields should always be writen as zero) */ +/*offset 0 */ +#define SYS_MASK_MCPLOCK 0x00000002UL /* Mask clock PLL lock event */ +#define SYS_MASK_MESYNCR 0x00000004UL /* Mask clock PLL lock event */ +#define SYS_MASK_MAAT 0x00000008UL /* Mask automatic acknowledge trigger event */ +#define SYS_MASK_MTXFRB 0x00000010UL /* Mask transmit frame begins event */ +#define SYS_MASK_MTXPRS 0x00000020UL /* Mask transmit preamble sent event */ +#define SYS_MASK_MTXPHS 0x00000040UL /* Mask transmit PHY Header Sent event */ +#define SYS_MASK_MTXFRS 0x00000080UL /* Mask transmit frame sent event */ +/*offset 8 */ +#define SYS_MASK_MRXPRD 0x00000100UL /* Mask receiver preamble detected event */ +#define SYS_MASK_MRXSFDD 0x00000200UL /* Mask receiver SFD detected event */ +#define SYS_MASK_MLDEDONE 0x00000400UL /* Mask LDE processing done event */ +#define SYS_MASK_MRXPHD 0x00000800UL /* Mask receiver PHY header detect event */ +#define SYS_MASK_MRXPHE 0x00001000UL /* Mask receiver PHY header error event */ +#define SYS_MASK_MRXDFR 0x00002000UL /* Mask receiver data frame ready event */ +#define SYS_MASK_MRXFCG 0x00004000UL /* Mask receiver FCS good event */ +#define SYS_MASK_MRXFCE 0x00008000UL /* Mask receiver FCS error event */ +/*offset 16 */ +#define SYS_MASK_MRXRFSL 0x00010000UL /* Mask receiver Reed Solomon Frame Sync Loss event */ +#define SYS_MASK_MRXRFTO 0x00020000UL /* Mask Receive Frame Wait Timeout event */ +#define SYS_MASK_MLDEERR 0x00040000UL /* Mask leading edge detection processing error event */ +#define SYS_MASK_MRXOVRR 0x00100000UL /* Mask Receiver Overrun event */ +#define SYS_MASK_MRXPTO 0x00200000UL /* Mask Preamble detection timeout event */ +#define SYS_MASK_MGPIOIRQ 0x00400000UL /* Mask GPIO interrupt event */ +#define SYS_MASK_MSLP2INIT 0x00800000UL /* Mask SLEEP to INIT event */ +/*offset 24*/ +#define SYS_MASK_MRFPLLLL 0x01000000UL /* Mask RF PLL Loosing Lock warning event */ +#define SYS_MASK_MCPLLLL 0x02000000UL /* Mask Clock PLL Loosing Lock warning event */ +#define SYS_MASK_MRXSFDTO 0x04000000UL /* Mask Receive SFD timeout event */ +#define SYS_MASK_MHPDWARN 0x08000000UL /* Mask Half Period Delay Warning event */ +#define SYS_MASK_MTXBERR 0x10000000UL /* Mask Transmit Buffer Error event */ +#define SYS_MASK_MAFFREJ 0x20000000UL /* Mask Automatic Frame Filtering rejection event */ + +/****************************************************************************//** + * @brief Bit definitions for register SYS_STATUS +**/ +#define SYS_STATUS_ID 0x0F /* System event Status Register */ +#define SYS_STATUS_OFFSET 0x00 +#define SYS_STATUS_LEN (5) /* Note 40 bit register */ +/*masks */ +#define SYS_STATUS_MASK_32 0xFFF7FFFFUL /* System event Status Register access mask (all unused fields should always be writen as zero) */ +/*offset 0 */ +#define SYS_STATUS_IRQS 0x00000001UL /* Interrupt Request Status READ ONLY */ +#define SYS_STATUS_CPLOCK 0x00000002UL /* Clock PLL Lock */ +#define SYS_STATUS_ESYNCR 0x00000004UL /* External Sync Clock Reset */ +#define SYS_STATUS_AAT 0x00000008UL /* Automatic Acknowledge Trigger */ +#define SYS_STATUS_TXFRB 0x00000010UL /* Transmit Frame Begins */ +#define SYS_STATUS_TXPRS 0x00000020UL /* Transmit Preamble Sent */ +#define SYS_STATUS_TXPHS 0x00000040UL /* Transmit PHY Header Sent */ +#define SYS_STATUS_TXFRS 0x00000080UL /* Transmit Frame Sent: This is set when the transmitter has completed the sending of a frame */ +/*offset 8 */ +#define SYS_STATUS_RXPRD 0x00000100UL /* Receiver Preamble Detected status */ +#define SYS_STATUS_RXSFDD 0x00000200UL /* Receiver Start Frame Delimiter Detected. */ +#define SYS_STATUS_LDEDONE 0x00000400UL /* LDE processing done */ +#define SYS_STATUS_RXPHD 0x00000800UL /* Receiver PHY Header Detect */ +#define SYS_STATUS_RXPHE 0x00001000UL /* Receiver PHY Header Error */ +#define SYS_STATUS_RXDFR 0x00002000UL /* Receiver Data Frame Ready */ +#define SYS_STATUS_RXFCG 0x00004000UL /* Receiver FCS Good */ +#define SYS_STATUS_RXFCE 0x00008000UL /* Receiver FCS Error */ +/*offset 16 */ +#define SYS_STATUS_RXRFSL 0x00010000UL /* Receiver Reed Solomon Frame Sync Loss */ +#define SYS_STATUS_RXRFTO 0x00020000UL /* Receive Frame Wait Timeout */ +#define SYS_STATUS_LDEERR 0x00040000UL /* Leading edge detection processing error */ +#define SYS_STATUS_reserved 0x00080000UL /* bit19 reserved */ +#define SYS_STATUS_RXOVRR 0x00100000UL /* Receiver Overrun */ +#define SYS_STATUS_RXPTO 0x00200000UL /* Preamble detection timeout */ +#define SYS_STATUS_GPIOIRQ 0x00400000UL /* GPIO interrupt */ +#define SYS_STATUS_SLP2INIT 0x00800000UL /* SLEEP to INIT */ +/*offset 24 */ +#define SYS_STATUS_RFPLL_LL 0x01000000UL /* RF PLL Losing Lock */ +#define SYS_STATUS_CLKPLL_LL 0x02000000UL /* Clock PLL Losing Lock */ +#define SYS_STATUS_RXSFDTO 0x04000000UL /* Receive SFD timeout */ +#define SYS_STATUS_HPDWARN 0x08000000UL /* Half Period Delay Warning */ +#define SYS_STATUS_TXBERR 0x10000000UL /* Transmit Buffer Error */ +#define SYS_STATUS_AFFREJ 0x20000000UL /* Automatic Frame Filtering rejection */ +#define SYS_STATUS_HSRBP 0x40000000UL /* Host Side Receive Buffer Pointer */ +#define SYS_STATUS_ICRBP 0x80000000UL /* IC side Receive Buffer Pointer READ ONLY */ +/*offset 32 */ +#define SYS_STATUS_RXRSCS 0x0100000000ULL /* Receiver Reed-Solomon Correction Status */ +#define SYS_STATUS_RXPREJ 0x0200000000ULL /* Receiver Preamble Rejection */ +#define SYS_STATUS_TXPUTE 0x0400000000ULL /* Transmit power up time error */ + +#define SYS_STATUS_TXERR (0x0408) /* These bits are the 16 high bits of status register TXPUTE and HPDWARN flags */ + +/* All RX events after a correct packet reception mask. */ +#define SYS_STATUS_ALL_RX_GOOD (SYS_STATUS_RXDFR | SYS_STATUS_RXFCG | SYS_STATUS_RXPRD | \ + SYS_STATUS_RXSFDD | SYS_STATUS_RXPHD | SYS_STATUS_LDEDONE) + +/* All double buffer events mask. */ +#define SYS_STATUS_ALL_DBLBUFF (SYS_STATUS_RXDFR | SYS_STATUS_RXFCG) + +/* All RX errors mask. */ +#define SYS_STATUS_ALL_RX_ERR (SYS_STATUS_RXPHE | SYS_STATUS_RXFCE | SYS_STATUS_RXRFSL | SYS_STATUS_RXSFDTO \ + | SYS_STATUS_AFFREJ | SYS_STATUS_LDEERR) + +/* User defined RX timeouts (frame wait timeout and preamble detect timeout) mask. */ +#define SYS_STATUS_ALL_RX_TO (SYS_STATUS_RXRFTO | SYS_STATUS_RXPTO) + +/* All TX events mask. */ +#define SYS_STATUS_ALL_TX (SYS_STATUS_AAT | SYS_STATUS_TXFRB | SYS_STATUS_TXPRS | \ + SYS_STATUS_TXPHS | SYS_STATUS_TXFRS ) + + +/****************************************************************************//** + * @brief Bit definitions for register RX_FINFO +**/ +#define RX_FINFO_ID 0x10 /* RX Frame Information (in double buffer set) */ +#define RX_FINFO_OFFSET 0x00 +#define RX_FINFO_LEN (4) +/*mask and shift */ +#define RX_FINFO_MASK_32 0xFFFFFBFFUL /* System event Status Register access mask (all unused fields should always be writen as zero) */ +#define RX_FINFO_RXFLEN_MASK 0x0000007FUL /* Receive Frame Length (0 to 127) */ +#define RX_FINFO_RXFLE_MASK 0x00000380UL /* Receive Frame Length Extension (0 to 7)<<7 */ +#define RX_FINFO_RXFL_MASK_1023 0x000003FFUL /* Receive Frame Length Extension (0 to 1023) */ + +#define RX_FINFO_RXNSPL_MASK 0x00001800UL /* Receive Non-Standard Preamble Length */ +#define RX_FINFO_RXPSR_MASK 0x000C0000UL /* RX Preamble Repetition. 00 = 16 symbols, 01 = 64 symbols, 10 = 1024 symbols, 11 = 4096 symbols */ + +#define RX_FINFO_RXPEL_MASK 0x000C1800UL /* Receive Preamble Length = RXPSR+RXNSPL */ +#define RX_FINFO_RXPEL_64 0x00040000UL /* Receive Preamble length = 64 */ +#define RX_FINFO_RXPEL_128 0x00040800UL /* Receive Preamble length = 128 */ +#define RX_FINFO_RXPEL_256 0x00041000UL /* Receive Preamble length = 256 */ +#define RX_FINFO_RXPEL_512 0x00041800UL /* Receive Preamble length = 512 */ +#define RX_FINFO_RXPEL_1024 0x00080000UL /* Receive Preamble length = 1024 */ +#define RX_FINFO_RXPEL_1536 0x00080800UL /* Receive Preamble length = 1536 */ +#define RX_FINFO_RXPEL_2048 0x00081000UL /* Receive Preamble length = 2048 */ +#define RX_FINFO_RXPEL_4096 0x000C0000UL /* Receive Preamble length = 4096 */ + +#define RX_FINFO_RXBR_MASK 0x00006000UL /* Receive Bit Rate report. This field reports the received bit rate */ +#define RX_FINFO_RXBR_110k 0x00000000UL /* Received bit rate = 110 kbps */ +#define RX_FINFO_RXBR_850k 0x00002000UL /* Received bit rate = 850 kbps */ +#define RX_FINFO_RXBR_6M 0x00004000UL /* Received bit rate = 6.8 Mbps */ +#define RX_FINFO_RXBR_SHIFT (13) + +#define RX_FINFO_RNG 0x00008000UL /* Receiver Ranging. Ranging bit in the received PHY header identifying the frame as a ranging packet. */ +#define RX_FINFO_RNG_SHIFT (15) + +#define RX_FINFO_RXPRF_MASK 0x00030000UL /* RX Pulse Repetition Rate report */ +#define RX_FINFO_RXPRF_16M 0x00010000UL /* PRF being employed in the receiver = 16M */ +#define RX_FINFO_RXPRF_64M 0x00020000UL /* PRF being employed in the receiver = 64M */ +#define RX_FINFO_RXPRF_SHIFT (16) + +#define RX_FINFO_RXPACC_MASK 0xFFF00000UL /* Preamble Accumulation Count */ +#define RX_FINFO_RXPACC_SHIFT (20) + + +/****************************************************************************//** + * @brief Bit definitions for register RX_BUFFER +**/ +#define RX_BUFFER_ID 0x11 /* Receive Data Buffer (in double buffer set) */ +#define RX_BUFFER_LEN (1024) + + +/****************************************************************************//** + * @brief Bit definitions for register RX_FQUAL +**/ +#define RX_FQUAL_ID 0x12 /* Rx Frame Quality information (in double buffer set) */ +#define RX_FQUAL_LEN (8) /* note 64 bit register*/ +/*mask and shift */ +/*offset 0 */ +#define RX_EQUAL_STD_NOISE_MASK 0x0000FFFFULL /* Standard Deviation of Noise */ +#define RX_EQUAL_STD_NOISE_SHIFT (0) +#define STD_NOISE_MASK RX_EQUAL_STD_NOISE_MASK +#define STD_NOISE_SHIFT RX_EQUAL_STD_NOISE_SHIFT +/*offset 16 */ +#define RX_EQUAL_FP_AMPL2_MASK 0xFFFF0000ULL /* First Path Amplitude point 2 */ +#define RX_EQUAL_FP_AMPL2_SHIFT (16) +#define FP_AMPL2_MASK RX_EQUAL_FP_AMPL2_MASK +#define FP_AMPL2_SHIFT RX_EQUAL_FP_AMPL2_SHIFT +/*offset 32*/ +#define RX_EQUAL_PP_AMPL3_MASK 0x0000FFFF00000000ULL /* First Path Amplitude point 3 */ +#define RX_EQUAL_PP_AMPL3_SHIFT (32) +#define PP_AMPL3_MASK RX_EQUAL_PP_AMPL3_MASK +#define PP_AMPL3_SHIFT RX_EQUAL_PP_AMPL3_SHIFT +/*offset 48*/ +#define RX_EQUAL_CIR_MXG_MASK 0xFFFF000000000000ULL /* Channel Impulse Response Max Growth */ +#define RX_EQUAL_CIR_MXG_SHIFT (48) +#define CIR_MXG_MASK RX_EQUAL_CIR_MXG_MASK +#define CIR_MXG_SHIFT RX_EQUAL_CIR_MXG_SHIFT + + + +/****************************************************************************//** + * @brief Bit definitions for register RX_TTCKI + * The value here is the interval over which the timing offset reported + * in the RXTOFS field of Register file: 0x14 RX_TTCKO is measured. + * The clock offset is calculated by dividing RXTTCKI by RXTOFS. + * The value in RXTTCKI will take just one of two values depending on the PRF: 0x01F00000 @ 16 MHz PRF, + * and 0x01FC0000 @ 64 MHz PRF. +**/ +#define RX_TTCKI_ID 0x13 /* Receiver Time Tracking Interval (in double buffer set) */ +#define RX_TTCKI_LEN (4) + +/****************************************************************************//** + * @brief Bit definitions for register RX_TTCKO +**/ +#define RX_TTCKO_ID 0x14 /* Receiver Time Tracking Offset (in double buffer set) */ +#define RX_TTCKO_LEN (5) /* Note 40 bit register */ +/*mask and shift */ +#define RX_TTCKO_MASK_32 0xFF07FFFFUL /* Receiver Time Tracking Offset access mask (all unused fields should always be writen as zero) */ +/*offset 0 */ +#define RX_TTCKO_RXTOFS_MASK 0x0007FFFFUL /* RX time tracking offset. This RXTOFS value is a 19-bit signed quantity*/ +/*offset 24 */ +#define RX_TTCKO_RSMPDEL_MASK 0xFF000000UL /* This 8-bit field reports an internal re-sampler delay value */ +/*offset 32 */ +#define RX_TTCKO_RCPHASE_MASK 0x7F0000000000ULL /* This 7-bit field reports the receive carrier phase adjustment at time the ranging timestamp is made. */ + + +/****************************************************************************//** + * @brief Bit definitions for register RX_TIME +**/ +#define RX_TIME_ID 0x15 /* Receive Message Time of Arrival (in double buffer set) */ +#define RX_TIME_LLEN (14) +#define RX_TIME_RX_STAMP_LEN (5) /* read only 5 bytes (the adjusted timestamp (40:0)) */ +#define RX_STAMP_LEN RX_TIME_RX_STAMP_LEN +/*mask and shift */ +#define RX_TIME_RX_STAMP_OFFSET (0) /* byte 0..4 40 bit Reports the fully adjusted time of reception. */ +#define RX_TIME_FP_INDEX_OFFSET (5) /* byte 5..6 16 bit First path index. */ +#define RX_TIME_FP_AMPL1_OFFSET (7) /* byte 7..8 16 bit First Path Amplitude point 1 */ /* doc bug */ +#define RX_TIME_FP_RAWST_OFFSET (9) /* byte 9..13 40 bit Raw Timestamp for the frame */ + + +/****************************************************************************//** + * @brief Bit definitions for register +**/ +#define REG_16_ID_RESERVED 0x16 + + +/****************************************************************************//** + * @brief Bit definitions for register +**/ +#define TX_TIME_ID 0x17 /* Transmit Message Time of Sending */ +#define TX_TIME_LLEN (10) +#define TX_TIME_TX_STAMP_LEN (5) /* 40-bits = 5 bytes */ +#define TX_STAMP_LEN TX_TIME_TX_STAMP_LEN +/*mask and shift */ +#define TX_TIME_TX_STAMP_OFFSET (0) /* byte 0..4 40 bit Reports the fully adjusted time of transmission */ +#define TX_TIME_TX_RAWST_OFFSET (5) /* byte 5..9 40 bit Raw Timestamp for the frame */ + + + + +/****************************************************************************//** + * @brief Bit definitions for register TX_ANTD +**/ +#define TX_ANTD_ID 0x18 /* 16-bit Delay from Transmit to Antenna */ +#define TX_ANTD_OFFSET 0x00 +#define TX_ANTD_LEN (2) + + + + +/****************************************************************************//** + * @brief Bit definitions for register SYS_STATES + * Register map register file 0x19 is reserved + * +**/ +#define SYS_STATE_ID 0x19 /* System State information READ ONLY */ +#define SYS_STATE_LEN (5) + +/****************************************************************************//** + * @brief Bit definitions for register ACK_RESP_T +**/ +/* Acknowledge (31:24 preamble symbol delay before auto ACK is sent) and respose (19:0 - unit 1us) timer */ +#define ACK_RESP_T_ID 0x1A /* Acknowledgement Time and Response Time */ +#define ACK_RESP_T_LEN (4) +/*mask and shift */ +#define ACK_RESP_T_MASK 0xFF0FFFFFUL /* Acknowledgement Time and Response access mask */ +#define ACK_RESP_T_W4R_TIM_OFFSET 0 /* In bytes */ +#define ACK_RESP_T_W4R_TIM_MASK 0x000FFFFFUL /* Wait-for-Response turn-around Time 20 bit field */ +#define W4R_TIM_MASK ACK_RESP_T_W4R_TIM_MASK +#define ACK_RESP_T_ACK_TIM_OFFSET 3 /* In bytes */ +#define ACK_RESP_T_ACK_TIM_MASK 0xFF000000UL /* Auto-Acknowledgement turn-around Time */ +#define ACK_TIM_MASK ACK_RESP_T_ACK_TIM_MASK + + + +/****************************************************************************//** + * @brief Bit definitions for register 0x1B 0x1C +**/ +#define REG_1B_ID_RESERVED 0x1B +#define REG_1C_ID_RESERVED 0x1C + +/****************************************************************************//** + * @brief Bit definitions for register RX_SNIFF + * Sniff Mode Configuration or Pulsed Preamble Reception Configuration +**/ +#define RX_SNIFF_ID 0x1D /* Sniff Mode Configuration */ +#define RX_SNIFF_OFFSET 0x00 +#define RX_SNIFF_LEN (4) +/*mask and shift */ +#define RX_SNIFF_MASK 0x0000FF0FUL /* */ +#define RX_SNIFF_SNIFF_ONT_MASK 0x0000000FUL /* SNIFF Mode ON time. Specified in units of PAC */ +#define SNIFF_ONT_MASK RX_SNIFF_SNIFF_ONT_MASK +#define RX_SNIFF_SNIFF_OFFT_MASK 0x0000FF00UL /* SNIFF Mode OFF time specified in units of approximately 1mkS, or 128 system clock cycles.*/ +#define SNIFF_OFFT_MASK RX_SNIFF_SNIFF_OFFT_MASK + + + +/****************************************************************************//** + * @brief Bit definitions for register TX_POWER +**/ +#define TX_POWER_ID 0x1E /* TX Power Control */ +#define TX_POWER_LEN (4) +/*mask and shift definition for Smart Transmit Power Control*/ +#define TX_POWER_BOOSTNORM_MASK 0x00000000UL /* This is the normal power setting used for frames that do not fall */ +#define BOOSTNORM_MASK TX_POWER_BOOSTNORM_MASK +#define TX_POWER_BOOSTNORM_SHIFT (0) +#define TX_POWER_BOOSTP500_MASK 0x00000000UL /* This value sets the power applied during transmission at the 6.8 Mbps data rate frames that are less than 0.5 ms duration */ +#define BOOSTP500_MASK TX_POWER_BOOSTP500_MASK +#define TX_POWER_BOOSTP500_SHIFT (8) +#define TX_POWER_BOOSTP250_MASK 0x00000000UL /* This value sets the power applied during transmission at the 6.8 Mbps data rate frames that are less than 0.25 ms duration */ +#define BOOSTP250_MASK TX_POWER_BOOSTP250_MASK +#define TX_POWER_BOOSTP250_SHIFT (16) +#define TX_POWER_BOOSTP125_MASK 0x00000000UL /* This value sets the power applied during transmission at the 6.8 Mbps data rate frames that are less than 0.125 ms */ +#define BOOSTP125_MASK TX_POWER_BOOSTP125_MASK +#define TX_POWER_BOOSTP125_SHIFT (24) +/*mask and shift definition for Manual Transmit Power Control (DIS_STXP=1 in SYS_CFG)*/ +#define TX_POWER_MAN_DEFAULT 0x0E080222UL +#define TX_POWER_TXPOWPHR_MASK 0x0000FF00UL /* This power setting is applied during the transmission of the PHY header (PHR) portion of the frame. */ +#define TX_POWER_TXPOWSD_MASK 0x00FF0000UL /* This power setting is applied during the transmission of the synchronisation header (SHR) and data portions of the frame. */ + + +/****************************************************************************//** + * @brief Bit definitions for register CHAN_CTRL +**/ +#define CHAN_CTRL_ID 0x1F /* Channel Control */ +#define CHAN_CTRL_LEN (4) +/*mask and shift */ +#define CHAN_CTRL_MASK 0xFFFF00FFUL /* Channel Control Register access mask */ +#define CHAN_CTRL_TX_CHAN_MASK 0x0000000FUL /* Supported channels are 1, 2, 3, 4, 5, and 7.*/ +#define CHAN_CTRL_TX_CHAN_SHIFT (0) /* Bits 0..3 TX channel number 0-15 selection */ + +#define CHAN_CTRL_RX_CHAN_MASK 0x000000F0UL +#define CHAN_CTRL_RX_CHAN_SHIFT (4) /* Bits 4..7 RX channel number 0-15 selection */ + +#define CHAN_CTRL_RXFPRF_MASK 0x000C0000UL /* Bits 18..19 Specify (Force) RX Pulse Repetition Rate: 00 = 4 MHz, 01 = 16 MHz, 10 = 64MHz. */ +#define CHAN_CTRL_RXFPRF_SHIFT (18) +/* Specific RXFPRF configuration */ +#define CHAN_CTRL_RXFPRF_4 0x00000000UL /* Specify (Force) RX Pulse Repetition Rate: 00 = 4 MHz, 01 = 16 MHz, 10 = 64MHz. */ +#define CHAN_CTRL_RXFPRF_16 0x00040000UL /* Specify (Force) RX Pulse Repetition Rate: 00 = 4 MHz, 01 = 16 MHz, 10 = 64MHz. */ +#define CHAN_CTRL_RXFPRF_64 0x00080000UL /* Specify (Force) RX Pulse Repetition Rate: 00 = 4 MHz, 01 = 16 MHz, 10 = 64MHz. */ +#define CHAN_CTRL_TX_PCOD_MASK 0x07C00000UL /* Bits 22..26 TX Preamble Code selection, 1 to 24. */ +#define CHAN_CTRL_TX_PCOD_SHIFT (22) +#define CHAN_CTRL_RX_PCOD_MASK 0xF8000000UL /* Bits 27..31 RX Preamble Code selection, 1 to 24. */ +#define CHAN_CTRL_RX_PCOD_SHIFT (27) +/*offset 16 */ +#define CHAN_CTRL_DWSFD 0x00020000UL /* Bit 17 This bit enables a non-standard DecaWave proprietary SFD sequence. */ +#define CHAN_CTRL_DWSFD_SHIFT (17) +#define CHAN_CTRL_TNSSFD 0x00100000UL /* Bit 20 This bit enables the use of user-defined SFD when transmitting */ +#define CHAN_CTRL_TNSSFD_SHIFT (20) +#define CHAN_CTRL_RNSSFD 0x00200000UL /* Bit 21 This bit enables the use of user-defined SFD when receiving */ +#define CHAN_CTRL_RNSSFD_SHIFT (21) + + + + +/****************************************************************************//** + * @brief Bit definitions for register 0x20 +**/ +#define REG_20_ID_RESERVED 0x20 + +/****************************************************************************//** + * @brief Bit definitions for register USR_SFD + * Please read User Manual : User defined SFD sequence +**/ +#define USR_SFD_ID 0x21 /* User-specified short/long TX/RX SFD sequences */ +#define USR_SFD_LEN (41) +#define DW_NS_SFD_LEN_110K 64 /* Decawave non-standard SFD length for 110 kbps */ +#define DW_NS_SFD_LEN_850K 16 /* Decawave non-standard SFD length for 850 kbps */ +#define DW_NS_SFD_LEN_6M8 8 /* Decawave non-standard SFD length for 6.8 Mbps */ + + +/****************************************************************************//** + * @brief Bit definitions for register +**/ +#define REG_22_ID_RESERVED 0x22 + +/****************************************************************************//** + * @brief Bit definitions for register AGC_CTRL + * Please take care to write to this register as doing so may cause the DW1000 to malfunction +**/ +#define AGC_CTRL_ID 0x23 /* Automatic Gain Control configuration */ +#define AGC_CTRL_LEN (32) +#define AGC_CFG_STS_ID AGC_CTRL_ID +/* offset from AGC_CTRL_ID in bytes */ +#define AGC_CTRL1_OFFSET (0x02) +#define AGC_CTRL1_LEN (2) +#define AGC_CTRL1_MASK 0x0001 /* access mask to AGC configuration and control register */ +#define AGC_CTRL1_DIS_AM 0x0001 /* Disable AGC Measurement. The DIS_AM bit is set by default. */ +/* offset from AGC_CTRL_ID in bytes */ +/* Please take care not to write other values to this register as doing so may cause the DW1000 to malfunction */ +#define AGC_TUNE1_OFFSET (0x04) +#define AGC_TUNE1_LEN (2) +#define AGC_TUNE1_MASK 0xFFFF /* It is a 16-bit tuning register for the AGC. */ +#define AGC_TUNE1_16M 0x8870 +#define AGC_TUNE1_64M 0x889B +/* offset from AGC_CTRL_ID in bytes */ +/* Please take care not to write other values to this register as doing so may cause the DW1000 to malfunction */ +#define AGC_TUNE2_OFFSET (0x0C) +#define AGC_TUNE2_LEN (4) +#define AGC_TUNE2_MASK 0xFFFFFFFFUL +#define AGC_TUNE2_VAL 0X2502A907UL +/* offset from AGC_CTRL_ID in bytes */ +/* Please take care not to write other values to this register as doing so may cause the DW1000 to malfunction */ +#define AGC_TUNE3_OFFSET (0x12) +#define AGC_TUNE3_LEN (2) +#define AGC_TUNE3_MASK 0xFFFF +#define AGC_TUNE3_VAL 0X0055 +/* offset from AGC_CTRL_ID in bytes */ +#define AGC_STAT1_OFFSET (0x1E) +#define AGC_STAT1_LEN (3) +#define AGC_STAT1_MASK 0x0FFFFF +#define AGC_STAT1_EDG1_MASK 0x0007C0 /* This 5-bit gain value relates to input noise power measurement. */ +#define AGC_STAT1_EDG2_MASK 0x0FF800 /* This 9-bit value relates to the input noise power measurement. */ + +/****************************************************************************//** + * @brief Bit definitions for register EXT_SYNC +**/ +#define EXT_SYNC_ID 0x24 /* External synchronisation control */ +#define EXT_SYNC_LEN (12) +/* offset from EXT_SYNC_ID in bytes */ +#define EC_CTRL_OFFSET (0x00) +#define EC_CTRL_LEN (4) +#define EC_CTRL_MASK 0x00000FFBUL /* sub-register 0x00 is the External clock synchronisation counter configuration register */ +#define EC_CTRL_OSTSM 0x00000001UL /* External transmit synchronisation mode enable */ +#define EC_CTRL_OSRSM 0x00000002UL /* External receive synchronisation mode enable */ +#define EC_CTRL_PLLLCK 0x04 /* PLL lock detect enable */ +#define EC_CTRL_OSTRM 0x00000800UL /* External timebase reset mode enable */ +#define EC_CTRL_WAIT_MASK 0x000007F8UL /* Wait counter used for external transmit synchronisation and external timebase reset */ +/* offset from EXT_SYNC_ID in bytes */ +#define EC_RXTC_OFFSET (0x04) +#define EC_RXTC_LEN (4) +#define EC_RXTC_MASK 0xFFFFFFFFUL /* External clock synchronisation counter captured on RMARKER */ +/* offset from EXT_SYNC_ID in bytes */ +#define EC_GOLP (0x08) +#define EC_GOLP_LEN (4) +#define EC_GOLP_MASK 0x0000003FUL /* sub-register 0x08 is the External clock offset to first path 1 GHz counter, EC_GOLP */ +#define EC_GOLP_OFFSET_EXT_MASK 0x0000003FUL /* This register contains the 1 GHz count from the arrival of the RMARKER and the next edge of the external clock. */ + + +/****************************************************************************//** + * @brief Bit definitions for register ACC_MEM +**/ +#define ACC_MEM_ID 0x25 /* Read access to accumulator data */ +#define ACC_MEM_LEN (4064) + + +/****************************************************************************//** + * @brief Bit definitions for register GPIO_CTRL +**/ +#define GPIO_CTRL_ID 0x26 /* Peripheral register bus 1 access - GPIO control */ +#define GPIO_CTRL_LEN (44) + +/* offset from GPIO_CTRL in bytes */ +#define GPIO_MODE_OFFSET 0x00 /* sub-register 0x00 is the GPIO Mode Control Register */ +#define GPIO_MODE_LEN (4) +#define GPIO_MODE_MASK 0x00FFFFC0UL + +#define GPIO_MSGP0_MASK 0x000000C0UL /* Mode Selection for GPIO0/RXOKLED */ +#define GPIO_MSGP1_MASK 0x00000300UL /* Mode Selection for GPIO1/SFDLED */ +#define GPIO_MSGP2_MASK 0x00000C00UL /* Mode Selection for GPIO2/RXLED */ +#define GPIO_MSGP3_MASK 0x00003000UL /* Mode Selection for GPIO3/TXLED */ +#define GPIO_MSGP4_MASK 0x0000C000UL /* Mode Selection for GPIO4/EXTPA */ +#define GPIO_MSGP5_MASK 0x00030000UL /* Mode Selection for GPIO5/EXTTXE */ +#define GPIO_MSGP6_MASK 0x000C0000UL /* Mode Selection for GPIO6/EXTRXE */ +#define GPIO_MSGP7_MASK 0x00300000UL /* Mode Selection for SYNC/GPIO7 */ +#define GPIO_MSGP8_MASK 0x00C00000UL /* Mode Selection for IRQ/GPIO8 */ + +#define GPIO_PIN2_RXLED 0x00000400UL /* The pin operates as the RXLED output */ +#define GPIO_PIN3_TXLED 0x00001000UL /* The pin operates as the TXLED output */ +#define GPIO_PIN4_EXTPA 0x00004000UL /* The pin operates as the EXTPA output */ +#define GPIO_PIN5_EXTTXE 0x00010000UL /* The pin operates as the EXTTXE output */ +#define GPIO_PIN6_EXTRXE 0x00040000UL /* The pin operates as the EXTRXE output */ + +/* offset from GPIO_CTRL in bytes */ +#define GPIO_DIR_OFFSET 0x08 /* sub-register 0x08 is the GPIO Direction Control Register */ +#define GPIO_DIR_LEN (3) +#define GPIO_DIR_MASK 0x0011FFFFUL + +#define GxP0 0x00000001UL /* GPIO0 Only changed if the GxM0 mask bit has a value of 1 for the write operation*/ +#define GxP1 0x00000002UL /* GPIO1. (See GDP0). */ +#define GxP2 0x00000004UL /* GPIO2. (See GDP0). */ +#define GxP3 0x00000008UL /* GPIO3. (See GDP0). */ +#define GxP4 0x00000100UL /* GPIO4. (See GDP0). */ +#define GxP5 0x00000200UL /* GPIO5. (See GDP0). */ +#define GxP6 0x00000400UL /* GPIO6. (See GDP0). */ +#define GxP7 0x00000800UL /* GPIO7. (See GDP0). */ +#define GxP8 0x00010000UL /* GPIO8 */ + +#define GxM0 0x00000010UL /* Mask for GPIO0 */ +#define GxM1 0x00000020UL /* Mask for GPIO1. (See GDM0). */ +#define GxM2 0x00000040UL /* Mask for GPIO2. (See GDM0). */ +#define GxM3 0x00000080UL /* Mask for GPIO3. (See GDM0). */ +#define GxM4 0x00001000UL /* Mask for GPIO4. (See GDM0). */ +#define GxM5 0x00002000UL /* Mask for GPIO5. (See GDM0). */ +#define GxM6 0x00004000UL /* Mask for GPIO6. (See GDM0). */ +#define GxM7 0x00008000UL /* Mask for GPIO7. (See GDM0). */ +#define GxM8 0x00100000UL /* Mask for GPIO8. (See GDM0). */ + +#define GDP0 GxP0 /* Direction Selection for GPIO0. 1 = input, 0 = output. Only changed if the GDM0 mask bit has a value of 1 for the write operation*/ +#define GDP1 GxP1 /* Direction Selection for GPIO1. (See GDP0). */ +#define GDP2 GxP2 /* Direction Selection for GPIO2. (See GDP0). */ +#define GDP3 GxP3 /* Direction Selection for GPIO3. (See GDP0). */ +#define GDP4 GxP4 /* Direction Selection for GPIO4. (See GDP0). */ +#define GDP5 GxP5 /* Direction Selection for GPIO5. (See GDP0). */ +#define GDP6 GxP6 /* Direction Selection for GPIO6. (See GDP0). */ +#define GDP7 GxP7 /* Direction Selection for GPIO7. (See GDP0). */ +#define GDP8 GxP8 /* Direction Selection for GPIO8 */ + +#define GDM0 GxM0 /* Mask for setting the direction of GPIO0 */ +#define GDM1 GxM1 /* Mask for setting the direction of GPIO1. (See GDM0). */ +#define GDM2 GxM2 /* Mask for setting the direction of GPIO2. (See GDM0). */ +#define GDM3 GxM3 /* Mask for setting the direction of GPIO3. (See GDM0). */ +#define GDM4 GxM4 /* Mask for setting the direction of GPIO4. (See GDM0). */ +#define GDM5 GxM5 /* Mask for setting the direction of GPIO5. (See GDM0). */ +#define GDM6 GxM6 /* Mask for setting the direction of GPIO6. (See GDM0). */ +#define GDM7 GxM7 /* Mask for setting the direction of GPIO7. (See GDM0). */ +#define GDM8 GxM8 /* Mask for setting the direction of GPIO8. (See GDM0). */ + +/* offset from GPIO_CTRL in bytes */ +#define GPIO_DOUT_OFFSET 0x0C /* sub-register 0x0C is the GPIO data output register. */ +#define GPIO_DOUT_LEN (3) +#define GPIO_DOUT_MASK GPIO_DIR_MASK + +/* offset from GPIO_CTRL in bytes */ +#define GPIO_IRQE_OFFSET 0x10 /* sub-register 0x10 is the GPIO interrupt enable register */ +#define GPIO_IRQE_LEN (4) +#define GPIO_IRQE_MASK 0x000001FFUL +#define GIRQx0 0x00000001UL /* IRQ bit0 */ +#define GIRQx1 0x00000002UL /* IRQ bit1 */ +#define GIRQx2 0x00000004UL /* IRQ bit2 */ +#define GIRQx3 0x00000008UL /* IRQ bit3 */ +#define GIRQx4 0x00000010UL /* IRQ bit4 */ +#define GIRQx5 0x00000020UL /* IRQ bit5 */ +#define GIRQx6 0x00000040UL /* IRQ bit6 */ +#define GIRQx7 0x00000080UL /* IRQ bit7 */ +#define GIRQx8 0x00000100UL /* IRQ bit8 */ +#define GIRQE0 GIRQx0 /* GPIO IRQ Enable for GPIO0 input. Value 1 = enable, 0 = disable*/ +#define GIRQE1 GIRQx1 /* */ +#define GIRQE2 GIRQx2 /* */ +#define GIRQE3 GIRQx3 /* */ +#define GIRQE4 GIRQx4 /* */ +#define GIRQE5 GIRQx5 /* */ +#define GIRQE6 GIRQx6 /* */ +#define GIRQE7 GIRQx7 /* */ +#define GIRQE8 GIRQx8 /* Value 1 = enable, 0 = disable */ + +/* offset from GPIO_CTRL in bytes */ +#define GPIO_ISEN_OFFSET 0x14 /* sub-register 0x14 is the GPIO interrupt sense selection register */ +#define GPIO_ISEN_LEN (4) +#define GPIO_ISEN_MASK GPIO_IRQE_MASK +#define GISEN0 GIRQx0 /* GPIO IRQ Sense selection GPIO0 input. Value 0 = High or Rising-Edge, 1 = Low or falling-edge.*/ +#define GISEN1 GIRQx1 /* */ +#define GISEN2 GIRQx2 /* */ +#define GISEN3 GIRQx3 /* */ +#define GISEN4 GIRQx4 /* */ +#define GISEN5 GIRQx5 /* */ +#define GISEN6 GIRQx6 /* */ +#define GISEN7 GIRQx7 /* */ +#define GISEN8 GIRQx8 /* Value 0 = High or Rising-Edge, 1 = Low or falling-edge */ + +/* offset from GPIO_CTRL in bytes */ +#define GPIO_IMODE_OFFSET 0x18 /* sub-register 0x18 is the GPIO interrupt mode selection register */ +#define GPIO_IMODE_LEN (4) +#define GPIO_IMODE_MASK GPIO_IRQE_MASK +#define GIMOD0 GIRQx0 /* GPIO IRQ Mode selection for GPIO0 input. Value 0 = Level sensitive interrupt. Value 1 = Edge triggered interrupt */ +#define GIMOD1 GIRQx1 /* */ +#define GIMOD2 GIRQx2 /* */ +#define GIMOD3 GIRQx3 /* */ +#define GIMOD4 GIRQx4 /* */ +#define GIMOD5 GIRQx5 /* */ +#define GIMOD6 GIRQx6 /* */ +#define GIMOD7 GIRQx7 /* */ +#define GIMOD8 GIRQx8 /* Value 0 = Level, 1 = Edge. */ + +/* offset from EXT_SYNC_ID in bytes */ +#define GPIO_IBES_OFFSET 0x1C /* sub-register 0x1C is the GPIO interrupt Both Edge selection register */ +#define GPIO_IBES_LEN (4) +#define GPIO_IBES_MASK GPIO_IRQE_MASK /* */ +#define GIBES0 GIRQx0 /* GPIO IRQ Both Edge selection for GPIO0 input. Value 0 = GPIO_IMODE register selects the edge. Value 1 = Both edges trigger the interrupt. */ +#define GIBES1 GIRQx1 /* */ +#define GIBES2 GIRQx2 /* */ +#define GIBES3 GIRQx3 /* */ +#define GIBES4 GIRQx4 /* */ +#define GIBES5 GIRQx5 /* */ +#define GIBES6 GIRQx6 /* */ +#define GIBES7 GIRQx7 /* */ +#define GIBES8 GIRQx8 /* Value 0 = use GPIO_IMODE, 1 = Both Edges */ + +/* offset from GPIO_CTRL in bytes */ +#define GPIO_ICLR_OFFSET 0x20 /* sub-register 0x20 is the GPIO interrupt clear register */ +#define GPIO_ICLR_LEN (4) +#define GPIO_ICLR_MASK GPIO_IRQE_MASK /* */ +#define GICLR0 GIRQx0 /* GPIO IRQ latch clear for GPIO0 input. Write 1 to clear the GPIO0 interrupt latch. Writing 0 has no effect. Reading returns zero */ +#define GICLR1 GIRQx1 /* */ +#define GICLR2 GIRQx2 /* */ +#define GICLR3 GIRQx3 /* */ +#define GICLR4 GIRQx4 /* */ +#define GICLR5 GIRQx5 /* */ +#define GICLR6 GIRQx6 /* */ +#define GICLR7 GIRQx7 /* */ +#define GICLR8 GIRQx8 /* Write 1 to clear the interrupt latch */ + +/* offset from GPIO_CTRL in bytes */ +#define GPIO_IDBE_OFFSET 0x24 /* sub-register 0x24 is the GPIO interrupt de-bounce enable register */ +#define GPIO_IDBE_LEN (4) +#define GPIO_IDBE_MASK GPIO_IRQE_MASK +#define GIDBE0 GIRQx0 /* GPIO IRQ de-bounce enable for GPIO0. Value 1 = de-bounce enabled. Value 0 = de-bounce disabled */ +#define GIDBE1 GIRQx1 /* */ +#define GIDBE2 GIRQx2 /* */ +#define GIDBE3 GIRQx3 /* */ +#define GIDBE4 GIRQx4 /* */ +#define GIDBE5 GIRQx5 /* */ +#define GIDBE6 GIRQx6 /* */ +#define GIDBE7 GIRQx7 /* */ +#define GIDBE8 GIRQx8 /* Value 1 = de-bounce enabled, 0 = de-bounce disabled */ + +/* offset from GPIO_CTRL in bytes */ +#define GPIO_RAW_OFFSET 0x28 /* sub-register 0x28 allows the raw state of the GPIO pin to be read. */ +#define GPIO_RAW_LEN (4) +#define GPIO_RAW_MASK GPIO_IRQE_MASK +#define GRAWP0 GIRQx0 /* This bit reflects the raw state of GPIO0 */ +#define GRAWP1 GIRQx1 /* */ +#define GRAWP2 GIRQx2 /* */ +#define GRAWP3 GIRQx3 /* */ +#define GRAWP4 GIRQx4 /* */ +#define GRAWP5 GIRQx5 /* */ +#define GRAWP6 GIRQx6 /* */ +#define GRAWP7 GIRQx7 /* */ +#define GRAWP8 GIRQx8 /* This bit reflects the raw state of GPIO8 */ + +/****************************************************************************//** + * @brief Bit definitions for register DRX_CONF + * Digital Receiver configuration block +**/ +#define DRX_CONF_ID 0x27 /* Digital Receiver configuration */ +#define DRX_CONF_LEN (44) +/* offset from DRX_CONF_ID in bytes */ +#define DRX_TUNE0b_OFFSET (0x02) /* sub-register 0x02 is a 16-bit tuning register. */ +#define DRX_TUNE0b_LEN (2) +#define DRX_TUNE0b_MASK 0xFFFF /* 7.2.40.2 Sub-Register 0x27:02 DRX_TUNE0b */ +#define DRX_TUNE0b_110K_STD 0x000A +#define DRX_TUNE0b_110K_NSTD 0x0016 +#define DRX_TUNE0b_850K_STD 0x0001 +#define DRX_TUNE0b_850K_NSTD 0x0006 +#define DRX_TUNE0b_6M8_STD 0x0001 +#define DRX_TUNE0b_6M8_NSTD 0x0002 + +/* offset from DRX_CONF_ID in bytes */ +#define DRX_TUNE1a_OFFSET 0x04 /* 7.2.40.3 Sub-Register 0x27:04 DRX_TUNE1a */ +#define DRX_TUNE1a_LEN (2) +#define DRX_TUNE1a_MASK 0xFFFF +#define DRX_TUNE1a_PRF16 0x0087 +#define DRX_TUNE1a_PRF64 0x008D + +/* offset from DRX_CONF_ID in bytes */ +#define DRX_TUNE1b_OFFSET 0x06 /* 7.2.40.4 Sub-Register 0x27:06 DRX_TUNE1b */ +#define DRX_TUNE1b_LEN (2) +#define DRX_TUNE1b_MASK 0xFFFF +#define DRX_TUNE1b_110K 0x0064 +#define DRX_TUNE1b_850K_6M8 0x0020 +#define DRX_TUNE1b_6M8_PRE64 0x0010 + +/* offset from DRX_CONF_ID in bytes */ +#define DRX_TUNE2_OFFSET 0x08 /* 7.2.40.5 Sub-Register 0x27:08 DRX_TUNE2 */ +#define DRX_TUNE2_LEN (4) +#define DRX_TUNE2_MASK 0xFFFFFFFFUL +#define DRX_TUNE2_PRF16_PAC8 0x311A002DUL +#define DRX_TUNE2_PRF16_PAC16 0x331A0052UL +#define DRX_TUNE2_PRF16_PAC32 0x351A009AUL +#define DRX_TUNE2_PRF16_PAC64 0x371A011DUL +#define DRX_TUNE2_PRF64_PAC8 0x313B006BUL +#define DRX_TUNE2_PRF64_PAC16 0x333B00BEUL +#define DRX_TUNE2_PRF64_PAC32 0x353B015EUL +#define DRX_TUNE2_PRF64_PAC64 0x373B0296UL + +/* offset from DRX_CONF_ID in bytes */ +/* WARNING: Please do NOT set DRX_SFDTOC to zero (disabling SFD detection timeout) + * since this risks IC malfunction due to prolonged receiver activity in the event of false preamble detection. + */ +#define DRX_SFDTOC_OFFSET 0x20 /* 7.2.40.7 Sub-Register 0x27:20 DRX_SFDTOC */ +#define DRX_SFDTOC_LEN (2) +#define DRX_SFDTOC_MASK 0xFFFF + +/* offset from DRX_CONF_ID in bytes */ +#define DRX_PRETOC_OFFSET 0x24 /* 7.2.40.9 Sub-Register 0x27:24 DRX_PRETOC */ +#define DRX_PRETOC_LEN (2) +#define DRX_PRETOC_MASK 0xFFFF + +/* offset from DRX_CONF_ID in bytes */ +#define DRX_TUNE4H_OFFSET 0x26 /* 7.2.40.10 Sub-Register 0x27:26 DRX_TUNE4H */ +#define DRX_TUNE4H_LEN (2) +#define DRX_TUNE4H_MASK 0xFFFF +#define DRX_TUNE4H_PRE64 0x0010 +#define DRX_TUNE4H_PRE128PLUS 0x0028 + + +/****************************************************************************//** + * @brief Bit definitions for register RF_CONF + * Analog RF Configuration block + * Refer to section 7.2.41 Register file: 0x28 Analog RF configuration block +**/ +#define RF_CONF_ID 0x28 /* Analog RF Configuration */ +#define RF_CONF_LEN (58) +#define RF_CONF_TXEN_MASK 0x00400000UL /* TX enable */ +#define RF_CONF_RXEN_MASK 0x00200000UL /* RX enable */ +#define RF_CONF_TXPOW_MASK 0x001F0000UL /* turn on power all LDOs */ +#define RF_CONF_PLLEN_MASK 0x0000E000UL /* enable PLLs */ +#define RF_CONF_TXBLOCKSEN_MASK 0x00001F00UL /* enable TX blocks */ +#define RF_CONF_TXPLLPOWEN_MASK (RF_CONF_PLLEN_MASK | RF_CONF_TXPOW_MASK) +#define RF_CONF_TXALLEN_MASK (RF_CONF_TXEN_MASK | RF_CONF_TXPOW_MASK | RF_CONF_PLLEN_MASK | RF_CONF_TXBLOCKSEN_MASK) +/* offset from TX_CAL_ID in bytes */ +#define RF_RXCTRLH_OFFSET 0x0B /* Analog RX Control Register */ +#define RF_RXCTRLH_LEN (1) +#define RF_RXCTRLH_NBW 0xD8 /* RXCTRLH value for narrow bandwidth channels */ +#define RF_RXCTRLH_WBW 0xBC /* RXCTRLH value for wide bandwidth channels */ +/* offset from TX_CAL_ID in bytes */ +#define RF_TXCTRL_OFFSET 0x0C /* Analog TX Control Register */ +#define RF_TXCTRL_LEN (4) +#define RF_TXCTRL_TXMTUNE_MASK 0x000001E0UL /* Transmit mixer tuning register */ +#define RF_TXCTRL_TXTXMQ_MASK 0x00000E00UL /* Transmit mixer Q-factor tuning register */ +#define RF_TXCTRL_CH1 0x00005C40UL /* 32-bit value to program to Sub-Register 0x28:0C RF_TXCTRL */ +#define RF_TXCTRL_CH2 0x00045CA0UL /* 32-bit value to program to Sub-Register 0x28:0C RF_TXCTRL */ +#define RF_TXCTRL_CH3 0x00086CC0UL /* 32-bit value to program to Sub-Register 0x28:0C RF_TXCTRL */ +#define RF_TXCTRL_CH4 0x00045C80UL /* 32-bit value to program to Sub-Register 0x28:0C RF_TXCTRL */ +#define RF_TXCTRL_CH5 0x001E3FE0UL /* 32-bit value to program to Sub-Register 0x28:0C RF_TXCTRL */ +#define RF_TXCTRL_CH7 0x001E7DE0UL /* 32-bit value to program to Sub-Register 0x28:0C RF_TXCTRL */ + +/* offset from TX_CAL_ID in bytes */ +#define RF_STATUS_OFFSET 0x2C + +/****************************************************************************//** + * @brief Bit definitions for register +**/ +#define REG_29_ID_RESERVED 0x29 + +/****************************************************************************//** + * @brief Bit definitions for register TX_CAL + * Refer to section 7.2.43 Register file: 0x2A Transmitter Calibration block +**/ +#define TX_CAL_ID 0x2A /* Transmitter calibration block */ +#define TX_CAL_LEN (52) +/* offset from TX_CAL_ID in bytes */ +#define TC_SARL_SAR_C (0) /* SAR control */ +/*cause bug in register block TX_CAL, we need to read 1 byte in a time*/ +#define TC_SARL_SAR_LVBAT_OFFSET (3) /* Latest SAR reading for Voltage level */ +#define TC_SARL_SAR_LTEMP_OFFSET (4) /* Latest SAR reading for Temperature level */ +#define TC_SARW_SAR_WTEMP_OFFSET 0x06 /* SAR reading of Temperature level taken at last wakeup event */ +#define TC_SARW_SAR_WVBAT_OFFSET 0x07 /* SAR reading of Voltage level taken at last wakeup event */ +/* offset from TX_CAL_ID in bytes */ +#define TC_PGDELAY_OFFSET 0x0B /* Transmitter Calibration Pulse Generator Delay */ +#define TC_PGDELAY_LEN (1) +#define TC_PGDELAY_CH1 0xC9 /* Recommended value for channel 1 */ +#define TC_PGDELAY_CH2 0xC2 /* Recommended value for channel 2 */ +#define TC_PGDELAY_CH3 0xC5 /* Recommended value for channel 3 */ +#define TC_PGDELAY_CH4 0x95 /* Recommended value for channel 4 */ +#define TC_PGDELAY_CH5 0xC0 /* Recommended value for channel 5 */ +#define TC_PGDELAY_CH7 0x93 /* Recommended value for channel 7 */ +/* offset from TX_CAL_ID in bytes */ +#define TC_PGTEST_OFFSET 0x0C /* Transmitter Calibration Pulse Generator Test */ +#define TC_PGTEST_LEN (1) +#define TC_PGTEST_NORMAL 0x00 /* Normal operation */ +#define TC_PGTEST_CW 0x13 /* Continuous Wave (CW) Test Mode */ + +/****************************************************************************//** + * @brief Bit definitions for register + * Refer to section 7.2.44 Register file: 0x2B Frequency synthesiser control block +**/ +#define FS_CTRL_ID 0x2B /* Frequency synthesiser control block */ +#define FS_CTRL_LEN (21) +/* offset from FS_CTRL_ID in bytes */ +#define FS_RES1_OFFSET 0x00 /* reserved area. Please take care not to write to this area as doing so may cause the DW1000 to malfunction. */ +#define FS_RES1_LEN (7) +/* offset from FS_CTRL_ID in bytes */ +#define FS_PLLCFG_OFFSET 0x07 /* Frequency synthesiser PLL configuration */ +#define FS_PLLCFG_LEN (5) +#define FS_PLLCFG_CH1 0x09000407UL /* Operating Channel 1 */ +#define FS_PLLCFG_CH2 0x08400508UL /* Operating Channel 2 */ +#define FS_PLLCFG_CH3 0x08401009UL /* Operating Channel 3 */ +#define FS_PLLCFG_CH4 FS_PLLCFG_CH2 /* Operating Channel 4 (same as 2) */ +#define FS_PLLCFG_CH5 0x0800041DUL /* Operating Channel 5 */ +#define FS_PLLCFG_CH7 FS_PLLCFG_CH5 /* Operating Channel 7 (same as 5) */ +/* offset from FS_CTRL_ID in bytes */ +#define FS_PLLTUNE_OFFSET 0x0B /* Frequency synthesiser PLL Tuning */ +#define FS_PLLTUNE_LEN (1) +#define FS_PLLTUNE_CH1 0x1E /* Operating Channel 1 */ +#define FS_PLLTUNE_CH2 0x26 /* Operating Channel 2 */ +#define FS_PLLTUNE_CH3 0x56 /* Operating Channel 3 */ +#define FS_PLLTUNE_CH4 FS_PLLTUNE_CH2 /* Operating Channel 4 (same as 2) */ +#define FS_PLLTUNE_CH5 0xBE /* Operating Channel 5 */ +#define FS_PLLTUNE_CH7 FS_PLLTUNE_CH5 /* Operating Channel 7 (same as 5) */ +/* offset from FS_CTRL_ID in bytes */ +#define FS_RES2_OFFSET 0x0C /* reserved area. Please take care not to write to this area as doing so may cause the DW1000 to malfunction. */ +#define FS_RES2_LEN (2) +/* offset from FS_CTRL_ID in bytes */ +#define FS_XTALT_OFFSET 0x0E /* Frequency synthesiser Crystal trim */ +#define FS_XTALT_LEN (1) +#define FS_XTALT_MASK 0x1F /* Crystal Trim. Crystals may be trimmed using this register setting to tune out errors, see 8.1 IC Calibration Crystal Oscillator Trim. */ +#define FS_XTALT_MIDRANGE 0x10 +/* offset from FS_CTRL_ID in bytes */ +#define FS_RES3_OFFSET 0x0F /* reserved area. Please take care not to write to this area as doing so may cause the DW1000 to malfunction. */ +#define FS_RES3_LEN (6) + +/****************************************************************************//** + * @brief Bit definitions for register +**/ +#define AON_ID 0x2C /* Always-On register set */ +#define AON_LEN (12) +/* offset from AON_ID in bytes */ +#define AON_WCFG_OFFSET 0x00 /* used to control what the DW1000 IC does as it wakes up from low-power SLEEP or DEEPSLEEPstates. */ +#define AON_WCFG_LEN (2) +#define AON_WCFG_MASK 0x09CB /* access mask to AON_WCFG register*/ +#define AON_WCFG_ONW_RADC 0x0001 /* On Wake-up Run the (temperature and voltage) Analog-to-Digital Convertors */ +#define AON_WCFG_ONW_RX 0x0002 /* On Wake-up turn on the Receiver */ +#define AON_WCFG_ONW_LEUI 0x0008 /* On Wake-up load the EUI from OTP memory into Register file: 0x01 Extended Unique Identifier. */ +#define AON_WCFG_ONW_LDC 0x0040 /* On Wake-up load configurations from the AON memory into the host interface register set */ +#define AON_WCFG_ONW_L64P 0x0080 /* On Wake-up load the Length64 receiver operating parameter set */ +#define AON_WCFG_PRES_SLEEP 0x0100 /* Preserve Sleep. This bit determines what the DW1000 does with respect to the ARXSLP and ATXSLP sleep controls */ +#define AON_WCFG_ONW_LLDE 0x0800 /* On Wake-up load the LDE microcode. */ +#define AON_WCFG_ONW_LLDO 0x1000 /* On Wake-up load the LDO tune value. */ +/* offset from AON_ID in bytes */ +#define AON_CTRL_OFFSET 0x02 /* The bits in this register in general cause direct activity within the AON block with respect to the stored AON memory */ +#define AON_CTRL_LEN (1) +#define AON_CTRL_MASK 0x8F /* access mask to AON_CTRL register */ +#define AON_CTRL_RESTORE 0x01 /* When this bit is set the DW1000 will copy the user configurations from the AON memory to the host interface register set. */ +#define AON_CTRL_SAVE 0x02 /* When this bit is set the DW1000 will copy the user configurations from the host interface register set into the AON memory */ +#define AON_CTRL_UPL_CFG 0x04 /* Upload the AON block configurations to the AON */ +#define AON_CTRL_DCA_READ 0x08 /* Direct AON memory access read */ +#define AON_CTRL_DCA_ENAB 0x80 /* Direct AON memory access enable bit */ +/* offset from AON_ID in bytes */ +#define AON_RDAT_OFFSET 0x03 /* AON Direct Access Read Data Result */ +#define AON_RDAT_LEN (1) +/* offset from AON_ID in bytes */ +#define AON_ADDR_OFFSET 0x04 /* AON Direct Access Address */ +#define AON_ADDR_LEN (1) +#define AON_ADDR_LPOSC_CAL_0 117 /* Address of low-power oscillator calibration value (lower byte) */ +#define AON_ADDR_LPOSC_CAL_1 118 /* Address of low-power oscillator calibration value (lower byte) */ + +/* offset from AON_ID in bytes */ +#define AON_CFG0_OFFSET 0x06 /* 32-bit configuration register for the always on block. */ +#define AON_CFG0_LEN (4) +#define AON_CFG0_SLEEP_EN 0x00000001UL /* This is the sleep enable configuration bit */ +#define AON_CFG0_WAKE_PIN 0x00000002UL /* Wake using WAKEUP pin */ +#define AON_CFG0_WAKE_SPI 0x00000004UL /* Wake using SPI access SPICSn */ +#define AON_CFG0_WAKE_CNT 0x00000008UL /* Wake when sleep counter elapses */ +#define AON_CFG0_LPDIV_EN 0x00000010UL /* Low power divider enable configuration */ +#define AON_CFG0_LPCLKDIVA_MASK 0x0000FFE0UL /* divider count for dividing the raw DW1000 XTAL oscillator frequency to set an LP clock frequency */ +#define AON_CFG0_LPCLKDIVA_SHIFT (5) +#define AON_CFG0_SLEEP_TIM 0xFFFF0000UL /* Sleep time. This field configures the sleep time count elapse value */ +#define AON_CFG0_SLEEP_SHIFT (16) +#define AON_CFG0_SLEEP_TIM_OFFSET 2 /* In bytes */ +/* offset from AON_ID in bytes */ +#define AON_CFG1_OFFSET 0x0A +#define AON_CFG1_LEN (2) +#define AON_CFG1_MASK 0x0007 /* aceess mask to AON_CFG1 */ +#define AON_CFG1_SLEEP_CEN 0x0001 /* This bit enables the sleep counter */ +#define AON_CFG1_SMXX 0x0002 /* This bit needs to be set to 0 for correct operation in the SLEEP state within the DW1000 */ +#define AON_CFG1_LPOSC_CAL 0x0004 /* This bit enables the calibration function that measures the period of the ICs internal low powered oscillator */ + +/****************************************************************************//** + * @brief Bit definitions for register OTP_IF + * Refer to section 7.2.46 Register file: 0x2D OTP Memory Interface +**/ +#define OTP_IF_ID 0x2D /* One Time Programmable Memory Interface */ +#define OTP_IF_LEN (18) +/* offset from OTP_IF_ID in bytes */ +#define OTP_WDAT 0x00 /* 32-bit register. The data value to be programmed into an OTP location */ +#define OTP_WDAT_LEN (4) +/* offset from OTP_IF_ID in bytes */ +#define OTP_ADDR 0x04 /* 16-bit register used to select the address within the OTP memory block */ +#define OTP_ADDR_LEN (2) +#define OTP_ADDR_MASK 0x07FF /* This 11-bit field specifies the address within OTP memory that will be accessed read or written. */ +/* offset from OTP_IF_ID in bytes */ +#define OTP_CTRL 0x06 /* used to control the operation of the OTP memory */ +#define OTP_CTRL_LEN (2) +#define OTP_CTRL_MASK 0x8002 +#define OTP_CTRL_OTPRDEN 0x0001 /* This bit forces the OTP into manual read mode */ +#define OTP_CTRL_OTPREAD 0x0002 /* This bit commands a read operation from the address specified in the OTP_ADDR register */ +#define OTP_CTRL_LDELOAD 0x8000 /* This bit forces a load of LDE microcode */ +#define OTP_CTRL_OTPPROG 0x0040 /* Setting this bit will cause the contents of OTP_WDAT to be written to OTP_ADDR. */ +/* offset from OTP_IF_ID in bytes */ +#define OTP_STAT 0x08 +#define OTP_STAT_LEN (2) +#define OTP_STAT_MASK 0x0003 +#define OTP_STAT_OTPPRGD 0x0001 /* OTP Programming Done */ +#define OTP_STAT_OTPVPOK 0x0002 /* OTP Programming Voltage OK */ +/* offset from OTP_IF_ID in bytes */ +#define OTP_RDAT 0x0A /* 32-bit register. The data value read from an OTP location will appear here */ +#define OTP_RDAT_LEN (4) +/* offset from OTP_IF_ID in bytes */ +#define OTP_SRDAT 0x0E /* 32-bit register. The data value stored in the OTP SR (0x400) location will appear here after power up */ +#define OTP_SRDAT_LEN (4) +/* offset from OTP_IF_ID in bytes */ +#define OTP_SF 0x12 /*8-bit special function register used to select and load special receiver operational parameter */ +#define OTP_SF_LEN (1) +#define OTP_SF_MASK 0x63 +#define OTP_SF_OPS_KICK 0x01 /* This bit when set initiates a load of the operating parameter set selected by the OPS_SEL */ +#define OTP_SF_LDO_KICK 0x02 /* This bit when set initiates a load of the LDO tune code */ +#define OTP_SF_OPS_SEL_SHFT 5 +#define OTP_SF_OPS_SEL_MASK 0x60 +#define OTP_SF_OPS_SEL_L64 0x00 /* Operating parameter set selection: Length64 */ +#define OTP_SF_OPS_SEL_TIGHT 0x40 /* Operating parameter set selection: Tight */ + +/****************************************************************************//** + * @brief Bit definitions for register LDE_IF + * Refer to section 7.2.47 Register file: 0x2E Leading Edge Detection Interface + * PLEASE NOTE: Other areas within the address space of Register file: 0x2E Leading Edge Detection Interface + * are reserved. To ensure proper operation of the LDE algorithm (i.e. to avoid loss of performance or a malfunction), + * care must be taken not to write to any byte locations other than those defined in the sub-sections below. +**/ +#define LDE_IF_ID 0x2E /* Leading edge detection control block */ +#define LDE_IF_LEN (0) +/* offset from LDE_IF_ID in bytes */ +#define LDE_THRESH_OFFSET 0x0000 /* 16-bit status register reporting the threshold that was used to find the first path */ +#define LDE_THRESH_LEN (2) +/* offset from LDE_IF_ID in bytes */ +#define LDE_CFG1_OFFSET 0x0806 /*8-bit configuration register*/ +#define LDE_CFG1_LEN (1) +#define LDE_CFG1_NSTDEV_MASK 0x1F /* Number of Standard Deviations mask. */ +#define LDE_CFG1_PMULT_MASK 0xE0 /* Peak Multiplier mask. */ +/* offset from LDE_IF_ID in bytes */ +#define LDE_PPINDX_OFFSET 0x1000 /* reporting the position within the accumulator that the LDE algorithm has determined to contain the maximum */ +#define LDE_PPINDX_LEN (2) +/* offset from LDE_IF_ID in bytes */ +#define LDE_PPAMPL_OFFSET 0x1002 /* reporting the magnitude of the peak signal seen in the accumulator data memory */ +#define LDE_PPAMPL_LEN (2) +/* offset from LDE_IF_ID in bytes */ +#define LDE_RXANTD_OFFSET 0x1804 /* 16-bit configuration register for setting the receive antenna delay */ +#define LDE_RXANTD_LEN (2) +/* offset from LDE_IF_ID in bytes */ +#define LDE_CFG2_OFFSET 0x1806 /* 16-bit LDE configuration tuning register */ +#define LDE_CFG2_LEN (2) +/* offset from LDE_IF_ID in bytes */ +#define LDE_REPC_OFFSET 0x2804 /* 16-bit configuration register for setting the replica avoidance coefficient */ +#define LDE_REPC_LEN (2) +#define LDE_REPC_PCODE_1 0x5998 +#define LDE_REPC_PCODE_2 0x5998 +#define LDE_REPC_PCODE_3 0x51EA +#define LDE_REPC_PCODE_4 0x428E +#define LDE_REPC_PCODE_5 0x451E +#define LDE_REPC_PCODE_6 0x2E14 +#define LDE_REPC_PCODE_7 0x8000 +#define LDE_REPC_PCODE_8 0x51EA +#define LDE_REPC_PCODE_9 0x28F4 +#define LDE_REPC_PCODE_10 0x3332 +#define LDE_REPC_PCODE_11 0x3AE0 +#define LDE_REPC_PCODE_12 0x3D70 +#define LDE_REPC_PCODE_13 0x3AE0 +#define LDE_REPC_PCODE_14 0x35C2 +#define LDE_REPC_PCODE_15 0x2B84 +#define LDE_REPC_PCODE_16 0x35C2 +#define LDE_REPC_PCODE_17 0x3332 +#define LDE_REPC_PCODE_18 0x35C2 +#define LDE_REPC_PCODE_19 0x35C2 +#define LDE_REPC_PCODE_20 0x47AE +#define LDE_REPC_PCODE_21 0x3AE0 +#define LDE_REPC_PCODE_22 0x3850 +#define LDE_REPC_PCODE_23 0x30A2 +#define LDE_REPC_PCODE_24 0x3850 + +/****************************************************************************//** + * @brief Bit definitions for register DIG_DIAG + * Digital Diagnostics interface. + * It contains a number of sub-registers that give diagnostics information. +**/ +#define DIG_DIAG_ID 0x2F /* Digital Diagnostics Interface */ +#define DIG_DIAG_LEN (41) + +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_CTRL_OFFSET 0x00 /* Event Counter Control */ +#define EVC_CTRL_LEN (4) +#define EVC_CTRL_MASK 0x00000003UL/* access mask to Register for bits should always be set to zero to avoid any malfunction of the device. */ +#define EVC_EN 0x00000001UL/* Event Counters Enable bit */ +#define EVC_CLR 0x00000002UL + +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_PHE_OFFSET 0x04 /* PHR Error Event Counter */ +#define EVC_PHE_LEN (2) +#define EVC_PHE_MASK 0x0FFF +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_RSE_OFFSET 0x06 /* Reed Solomon decoder (Frame Sync Loss) Error Event Counter */ +#define EVC_RSE_LEN (2) +#define EVC_RSE_MASK 0x0FFF + +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_FCG_OFFSET 0x08 /* The EVC_FCG field is a 12-bit counter of the frames received with good CRC/FCS sequence. */ +#define EVC_FCG_LEN (2) +#define EVC_FCG_MASK 0x0FFF +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_FCE_OFFSET 0x0A /* The EVC_FCE field is a 12-bit counter of the frames received with bad CRC/FCS sequence. */ +#define EVC_FCE_LEN (2) +#define EVC_FCE_MASK 0x0FFF + +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_FFR_OFFSET 0x0C /* The EVC_FFR field is a 12-bit counter of the frames rejected by the receive frame filtering function. */ +#define EVC_FFR_LEN (2) +#define EVC_FFR_MASK 0x0FFF +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_OVR_OFFSET 0x0E /* The EVC_OVR field is a 12-bit counter of receive overrun events */ +#define EVC_OVR_LEN (2) +#define EVC_OVR_MASK 0x0FFF + +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_STO_OFFSET 0x10 /* The EVC_STO field is a 12-bit counter of SFD Timeout Error events */ +#define EVC_OVR_LEN (2) +#define EVC_OVR_MASK 0x0FFF +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_PTO_OFFSET 0x12 /* The EVC_PTO field is a 12-bit counter of Preamble detection Timeout events */ +#define EVC_PTO_LEN (2) +#define EVC_PTO_MASK 0x0FFF + +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_FWTO_OFFSET 0x14 /* The EVC_FWTO field is a 12-bit counter of receive frame wait timeout events */ +#define EVC_FWTO_LEN (2) +#define EVC_FWTO_MASK 0x0FFF +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_TXFS_OFFSET 0x16 /* The EVC_TXFS field is a 12-bit counter of transmit frames sent. This is incremented every time a frame is sent */ +#define EVC_TXFS_LEN (2) +#define EVC_TXFS_MASK 0x0FFF + +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_HPW_OFFSET 0x18 /* The EVC_HPW field is a 12-bit counter of Half Period Warnings. */ +#define EVC_HPW_LEN (2) +#define EVC_HPW_MASK 0x0FFF +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_TPW_OFFSET 0x1A /* The EVC_TPW field is a 12-bit counter of Transmitter Power-Up Warnings. */ +#define EVC_TPW_LEN (2) +#define EVC_TPW_MASK 0x0FFF + +/* offset from DIG_DIAG_ID in bytes */ +#define EVC_RES1_OFFSET 0x1C /* Please take care not to write to this register as doing so may cause the DW1000 to malfunction. */ + +/* offset from DIG_DIAG_ID in bytes */ +#define DIAG_TMC_OFFSET 0x24 +#define DIAG_TMC_LEN (2) +#define DIAG_TMC_MASK 0x0010 +#define DIAG_TMC_TX_PSTM 0x0010 /* This test mode is provided to help support regulatory approvals spectral testing. When the TX_PSTM bit is set it enables a repeating transmission of the data from the TX_BUFFER */ + + +/****************************************************************************//** + * @brief Bit definitions for register 0x30-0x35 + * Please take care not to write to these registers as doing so may cause the DW1000 to malfunction. +**/ +#define REG_30_ID_RESERVED 0x30 +#define REG_31_ID_RESERVED 0x31 +#define REG_32_ID_RESERVED 0x32 +#define REG_33_ID_RESERVED 0x33 +#define REG_34_ID_RESERVED 0x34 +#define REG_35_ID_RESERVED 0x35 + +/****************************************************************************//** + * @brief Bit definitions for register PMSC +**/ +#define PMSC_ID 0x36 /* Power Management System Control Block */ +#define PMSC_LEN (48) +/* offset from PMSC_ID in bytes */ +#define PMSC_CTRL0_OFFSET 0x00 +#define PMSC_CTRL0_LEN (4) +#define PMSC_CTRL0_MASK 0xF18F847FUL /* access mask to register PMSC_CTRL0 */ +#define PMSC_CTRL0_SYSCLKS_AUTO 0x00000000UL /* The system clock will run off the 19.2 MHz XTI clock until the PLL is calibrated and locked, then it will switch over the 125 MHz PLL clock */ +#define PMSC_CTRL0_SYSCLKS_19M 0x00000001UL /* Force system clock to be the 19.2 MHz XTI clock. */ +#define PMSC_CTRL0_SYSCLKS_125M 0x00000002UL /* Force system clock to the 125 MHz PLL clock. */ +#define PMSC_CTRL0_RXCLKS_AUTO 0x00000000UL /* The RX clock will be disabled until it is required for an RX operation */ +#define PMSC_CTRL0_RXCLKS_19M 0x00000004UL /* Force RX clock enable and sourced clock from the 19.2 MHz XTI clock */ +#define PMSC_CTRL0_RXCLKS_125M 0x00000008UL /* Force RX clock enable and sourced from the 125 MHz PLL clock */ +#define PMSC_CTRL0_RXCLKS_OFF 0x0000000CUL /* Force RX clock off. */ +#define PMSC_CTRL0_TXCLKS_AUTO 0x00000000UL /* The TX clock will be disabled until it is required for a TX operation */ +#define PMSC_CTRL0_TXCLKS_19M 0x00000010UL /* Force TX clock enable and sourced clock from the 19.2 MHz XTI clock */ +#define PMSC_CTRL0_TXCLKS_125M 0x00000020UL /* Force TX clock enable and sourced from the 125 MHz PLL clock */ +#define PMSC_CTRL0_TXCLKS_OFF 0x00000030UL /* Force TX clock off */ +#define PMSC_CTRL0_FACE 0x00000040UL /* Force Accumulator Clock Enable */ +#define PMSC_CTRL0_GPDCE 0x00040000UL /* GPIO De-bounce Clock Enable */ +#define PMSC_CTRL0_KHZCLEN 0x00800000UL /* Kilohertz Clock Enable */ +#define PMSC_CTRL0_PLL2_SEQ_EN 0x01000000UL /* Enable PLL2 on/off sequencing by SNIFF mode */ +#define PMSC_CTRL0_SOFTRESET_OFFSET 3 /* In bytes */ +#define PMSC_CTRL0_RESET_ALL 0x00 /* Assuming only 4th byte of the register is read */ +#define PMSC_CTRL0_RESET_RX 0xE0 /* Assuming only 4th byte of the register is read */ +#define PMSC_CTRL0_RESET_CLEAR 0xF0 /* Assuming only 4th byte of the register is read */ +/* offset from PMSC_ID in bytes */ +#define PMSC_CTRL1_OFFSET 0x04 +#define PMSC_CTRL1_LEN (4) +#define PMSC_CTRL1_MASK 0xFC02F802UL /* access mask to register PMSC_CTRL1 */ +#define PMSC_CTRL1_ARX2INIT 0x00000002UL /* Automatic transition from receive mode into the INIT state */ +#define PMSC_CTRL1_ATXSLP 0x00000800UL /* If this bit is set then the DW1000 will automatically transition into SLEEP or DEEPSLEEP mode after transmission of a frame */ +#define PMSC_CTRL1_ARXSLP 0x00001000UL /* this bit is set then the DW1000 will automatically transition into SLEEP mode after a receive attempt */ +#define PMSC_CTRL1_SNOZE 0x00002000UL /* Snooze Enable */ +#define PMSC_CTRL1_SNOZR 0x00004000UL /* The SNOZR bit is set to allow the snooze timer to repeat twice */ +#define PMSC_CTRL1_PLLSYN 0x00008000UL /* This enables a special 1 GHz clock used for some external SYNC modes */ +#define PMSC_CTRL1_LDERUNE 0x00020000UL /* This bit enables the running of the LDE algorithm */ +#define PMSC_CTRL1_KHZCLKDIV_MASK 0xFC000000UL /* Kilohertz clock divisor */ +#define PMSC_CTRL1_PKTSEQ_DISABLE 0x00 /* writing this to PMSC CONTROL 1 register (bits 10-3) disables PMSC control of analog RF subsystems */ +#define PMSC_CTRL1_PKTSEQ_ENABLE 0xE7 /* writing this to PMSC CONTROL 1 register (bits 10-3) enables PMSC control of analog RF subsystems */ +/* offset from PMSC_ID in bytes */ +#define PMSC_RES1_OFFSET 0x08 +/* offset from PMSC_ID in bytes */ +#define PMSC_SNOZT_OFFSET 0x0C /* PMSC Snooze Time Register */ +#define PMSC_SNOZT_LEN (1) +/* offset from PMSC_ID in bytes */ +#define PMSC_RES2_OFFSET 0x10 +/* offset from PMSC_ID in bytes */ +#define PMSC_RES3_OFFSET 0x24 +/* offset from PMSC_ID in bytes */ +#define PMSC_TXFINESEQ_OFFSET 0x26 +#define PMSC_TXFINESEQ_DISABLE 0x0 /* Writing this disables fine grain sequencing in the transmitter */ +#define PMSC_TXFINESEQ_ENABLE 0x0B74 /* Writing this enables fine grain sequencing in the transmitter */ +/* offset from PMSC_ID in bytes */ +#define PMSC_LEDC_OFFSET 0x28 +#define PMSC_LEDC_LEN (4) +#define PMSC_LEDC_MASK 0x000001FFUL /* 32-bit LED control register. */ +#define PMSC_LEDC_BLINK_TIM_MASK 0x000000FFUL /* This field determines how long the LEDs remain lit after an event that causes them to be set on. */ +#define PMSC_LEDC_BLNKEN 0x00000100UL /* Blink Enable. When this bit is set to 1 the LED blink feature is enabled. */ +/* Default blink time. Blink time is expressed in multiples of 14 ms. The value defined here is ~225 ms. */ +#define PMSC_LEDC_BLINK_TIME_DEF 0x10 +/* Command a blink of all LEDs */ +#define PMSC_LEDC_BLINK_NOW_ALL 0x000F0000UL + +/****************************************************************************//** + * @brief Bit definitions for register 0x37-0x3F + * Please take care not to write to these registers as doing so may cause the DW1000 to malfunction. +**/ +#define REG_37_ID_RESERVED 0x37 +#define REG_38_ID_RESERVED 0x38 +#define REG_39_ID_RESERVED 0x39 +#define REG_3A_ID_RESERVED 0x3A +#define REG_3B_ID_RESERVED 0x3B +#define REG_3C_ID_RESERVED 0x3C +#define REG_3D_ID_RESERVED 0x3D +#define REG_3E_ID_RESERVED 0x3E +#define REG_3F_ID_RESERVED 0x3F + +/* END DW1000 REGISTER DEFINITION */ + +#ifdef __cplusplus +} +#endif + +#endif +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/decadriver/deca_types.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,73 @@ +/*! ---------------------------------------------------------------------------- + * @file deca_types.h + * @brief Decawave general type definitions + * + * @attention + * + * Copyright 2013 (c) Decawave Ltd, Dublin, Ireland. + * + * All rights reserved. + * + */ + +#ifndef _DECA_TYPES_H_ +#define _DECA_TYPES_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef uint8 +#ifndef _DECA_UINT8_ +#define _DECA_UINT8_ +typedef unsigned char uint8; +#endif +#endif + +#ifndef uint16 +#ifndef _DECA_UINT16_ +#define _DECA_UINT16_ +typedef unsigned short uint16; +#endif +#endif + +#ifndef uint32 +#ifndef _DECA_UINT32_ +#define _DECA_UINT32_ +typedef unsigned long uint32; +#endif +#endif + +#ifndef int8 +#ifndef _DECA_INT8_ +#define _DECA_INT8_ +typedef signed char int8; +#endif +#endif + +#ifndef int16 +#ifndef _DECA_INT16_ +#define _DECA_INT16_ +typedef signed short int16; +#endif +#endif + +#ifndef int32 +#ifndef _DECA_INT32_ +#define _DECA_INT32_ +typedef signed long int32; +#endif +#endif + +#ifndef NULL +#define NULL ((void *)0UL) +#endif + +#ifdef __cplusplus +} +#endif + +#endif /* DECA_TYPES_H_ */ + + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/decadriver/deca_version.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,33 @@ +/*! ---------------------------------------------------------------------------- + * @file deca_version.h + * @brief Defines the version info for the DW1000 device driver including its API + * + * @attention + * + * Copyright 2013 (c) Decawave Ltd, Dublin, Ireland. + * + * All rights reserved. + * + */ + +#ifndef _DECA_VERSION_H_ +#define _DECA_VERSION_H_ + +// +// The DW1000 device driver is separately version numbered to any version the application using it may have +// +// Two symbols are defined here: one hexadecimal value and one string that includes the hex bytes. +// Both should be updated together in a consistent way when the software is being modified. +// +// The format of the hex version is 0xAABBCC and the string ends with AA.BB.CC, where... +// +// Quantity CC is updated for minor changes/bug fixes that should not need user code changes +// Quantity BB is updated for changes/bug fixes that may need user code changes +// Quantity AA is updated for major changes that will need user code changes +// + +#define DW1000_DRIVER_VERSION 0x040001 +#define DW1000_DEVICE_DRIVER_VER_STRING "DW1000 Device Driver Version 04.00.01" + +#endif +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/globals.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,29 @@ +/*#include "PC.h" +#include "mbed.h" +#include "DecaWave.h"*/ +#ifndef _GLOBALS_H +#define _GLOBALS_H + +#include "DecaWave.h" +#include "PC.h" +#include "mbed.h"/* +#include "SMConfig.h" +#include "DecaWave.h" // DW1000 functions +#include "LMMN2WR.h" // 2-Way-Ranging +#include "PC.h" // Serial Port via USB for debugging with Terminal +#include "Watchdog.h" // Resets Program if it gets stuck*/ +//#include "frames.h" // Resets Program if it gets stuck +//#include "LMMN2WR.h" + + + + +//Declarations for global Variables. They are all defined somewhere throughout the project. +extern SPI decaWaveSpi; +extern DigitalOut decaWaveCs; +extern InterruptIn decaWaveIrq; +extern PC pc; // USB UART Terminal +//extern LMMN2WR node; + + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main_minimal.cpp Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,354 @@ +#include "mbed.h" + + +#include "SMConfig.h" +#include "DecaWave.h" // DW1000 functions +//#include "LMMN2WR.h" // 2-Way-Ranging +#include "PC.h" // Serial Port via USB for debugging with Terminal +#include "Watchdog.h" // Resets Program if it gets stuck +#include "nodes.h" + #include <stddef.h> + +#define NELEMS(x) (sizeof(x) / sizeof((x)[0])) + +// Function Prototypes +void dwCallbackTx(const dwt_cb_data_t *rxd); +void dwCallbackRx(const dwt_cb_data_t *rxd); +int min (int a, int b); +void configureDW1000(uint8_t dwMode); +void rangeAndDisplayOne(uint8_t addr); +void rangeAndDisplayAll(); +void executeOrder(char* command); + + +// PA_7 MOSI, PA_6 MISO, PA_5 SCLK, PB_6 CS, PB_9 IRQ +SPI decaWaveSpi(PA_7, PA_6, PA_5); // Instance of SPI connection to DW1000 +DigitalOut decaWaveCs(PB_6); +InterruptIn decaWaveIrq(PB_9); +DecaWave decaWave = DecaWave(); // Instance of the DW1000 + + +/* BIT and PINS +BIT 1 = PA_10 +BIT 2 = PB_3 +BIT 3 = PB_5 +BIT 4 = PB_4 +BIT 5 = PB_10 +BIT 6 = PA_8 +BIT 7 = PA_9 +BIT 8 = PC_7 +*/ + + +BusIn adressInput(PA_9,PA_8,PB_10,PB_4,PB_5,PB_3,PA_10); // first seven 7 bit for ID settings, most left bit = most significant bit +PC pc(USBTX, USBRX, 921600); // USB UART Terminal +DigitalIn anchorInput(PC_7); // usage of last bit as deciding bit for: anchor or beacon +Watchdog wdt = Watchdog(); +BeaconNode beaconNode(decaWave); +AnchorNode anchorNode(decaWave); +BaseStationNode baseStationNode(decaWave); +Node *node; + + +int main() { + + decaWaveSpi.frequency(20000000); // Crank up the SPI frequency from 1Mhz to 3Mhz (maybe more?) + + // Check if Reset was from Watchdog or externally + if(RCC->CSR&0x20000000) + pc.printf("\r\n\r\n --- !!!!WATCHDOG RESET!!!! --- \r\n\r\n", RCC->CSR); + else if(RCC->CSR&0x4000000){ + pc.printf("\r\n\r\n --- External Reset --- \r\n\r\n", RCC->CSR); + //wdt.kick(); + } + __HAL_RCC_CLEAR_RESET_FLAGS(); + + // Set all Switches Pull-Down so that it is zero if Switch is not set + + adressInput.mode(PullDown); + anchorInput.mode(PullDown); + //modeInput.mode(PullDown); + wait_ms(50); + + baseStationNode.setAddress(adressInput & adressInput.mask()); + anchorNode.setAddress(adressInput & adressInput.mask()); + beaconNode.setAddress(adressInput & adressInput.mask()); + + if((adressInput & adressInput.mask()) == BASE_STATION_ADDR){ + node = &baseStationNode; + pc.printf("This node is the Base Station, Adress: %d \r\n \r\n \r\n", node->getAddress()); + // wdt.kick(2); // Set up WatchDog + + } + else if(anchorInput){ + node = &anchorNode; + pc.printf("This node is an Anchor node, Adress: %d \r\n \r\n \r\n", node->getAddress()); + wdt.kick(2); // Set up WatchDog + } + else{ + node = &beaconNode; + pc.printf("This node is a Beacon, Adress: %d \r\n \r\n \r\n", node->getAddress()); + wdt.kick(2); // Set up WatchDog + } + + //pc.printf(" Adress: %d \r\n \r\n \r\n", node->getAddress()); + + configureDW1000(7); + + // TODO turn on RXMode regularly (every couple seconds) + + char command_str[30]; + + while(1) { + + // Choose between what to execte based on whether this device is a: + // BEACON + // BASESTATION + // ANCHOR + if (!node->isAnchor() && !node->isBaseStation()){ + + // THE BEACON EXECUTES THIS + if(beaconNode.getRepetitions() > 0){ + switch(beaconNode.getMode()){ + case RANGE_ALL: rangeAndDisplayAll(); + break; + case RANGE_ONE: rangeAndDisplayOne(beaconNode.getDestination()); + break; + default: break; + } + beaconNode.decreaseRepetitions(); + } + else{ + beaconNode.clearRec(); + wait_ms(8); + } + wdt.kick(); + } + else if (node->isBaseStation()){ + + //pc.readcommand(executeOrder); + + // EXECUTE THIS IF A BASE STATION + pc.readcommand(executeOrder); + wait_ms(10); + wdt.kick(); + /* + while (1) + { + if (pc.readable()) + { + pc.scanf( "%s" , command_str ); + break; + } + } + */ + //wait_ms(3); + //pc.printf("Command Received: %s", command_str); + //wait_ms(3); + //executeOrder(command_str); + //wait_ms(3); + } + else { // All Anchor Action is in the Interrupt functions! + // EXECUTE THIS IF AN ANCHOR + wait_ms(10); + wdt.kick(); + } + } + + +} + + +void executeOrder(char* command){ + + int repetitions = command[3]*100 + command[4]*10 + command[5] - 5328; + //uint8_t dest1 = command[7] - 48; + uint8_t dest2 = command[8] - 48; + uint8_t dest3 = command[9] - 48; + uint8_t dest1=0; + + + + + if(command[7] == 0 && command[8] == 0) + { + dest1 = command[9] - 48; + } + else if (command[7] == 0 && command[8] != 0) + { + dest1 = command[8] * 10 + command[9] - 528; + } + else if (command[7] != 0 && command[8] != 0) + { + dest1 = command[7] * 100 + command[8] * 10 + command[9] - 5328; + } + + if (strncmp(command, "reset", 5) == 0){ // This command is implemented in order to be able to reset BaseStation from Matlab. + wdt.kick(2); // Set up WatchDog + pc.printf("Base Station is RESETTED \r\n\r\n"); + } + + + else if (strncmp(command, "all", 3) == 0){ + baseStationNode.sendOrder(0, NOT_USED, RANGE_ALL, repetitions, Node::BASE_ORDER); + // pc.printf("Mode: Range all \r\n"); + } + else if (strncmp(command, "one", 3) == 0){ + + + + if(dest1 != 15) + { + + baseStationNode.sendOrder(0, dest1, RANGE_ONE, repetitions, Node::BASE_ORDER); + } + else + { + baseStationNode.sendOrder(0, 1, RANGE_ONE, repetitions, Node::BASE_ORDER); + } + } + + else if (strncmp(command, "bea", 3) == 0){ + if(dest1 < 15) + baseStationNode.sendOrder(dest1, NOT_USED, BECOME_BEACON, NOT_USED, Node::SWITCH_TYPE); + else + baseStationNode.sendOrder(0, NOT_USED, BECOME_BEACON, NOT_USED, Node::SWITCH_TYPE); + + } + + else if (strncmp(command, "anc", 3) == 0){ + if(dest1 < 15) + baseStationNode.sendOrder(dest1, NOT_USED, BECOME_ANCHOR, NOT_USED, Node::SWITCH_TYPE); + else + baseStationNode.sendOrder(0, NOT_USED, BECOME_ANCHOR, NOT_USED, Node::SWITCH_TYPE); + } + + else if (strncmp(command, "tri", 3) == 0){ + // Switch them in correct modes (should already be the case) + baseStationNode.sendOrder(dest1, NOT_USED, BECOME_BEACON, NOT_USED, Node::SWITCH_TYPE); + baseStationNode.sendOrder(dest2, NOT_USED, BECOME_ANCHOR, NOT_USED, Node::SWITCH_TYPE); + baseStationNode.sendOrder(dest3, NOT_USED, BECOME_ANCHOR, NOT_USED, Node::SWITCH_TYPE); + + // Ranging from first node + baseStationNode.sendOrder(dest1, dest2, RANGE_ONE, repetitions, Node::BASE_ORDER); + wait_ms(10*repetitions); + baseStationNode.sendOrder(dest1, dest3, RANGE_ONE, repetitions, Node::BASE_ORDER); + wait_ms(10*repetitions); + + // Mode Switches + baseStationNode.sendOrder(dest2, NOT_USED, BECOME_BEACON, NOT_USED, Node::SWITCH_TYPE); + baseStationNode.sendOrder(dest1, NOT_USED, BECOME_ANCHOR, NOT_USED, Node::SWITCH_TYPE); + + // Rangings + baseStationNode.sendOrder(dest2, dest1, RANGE_ONE, repetitions, Node::BASE_ORDER); + wait_ms(10*repetitions); + baseStationNode.sendOrder(dest2, dest3, RANGE_ONE, repetitions, Node::BASE_ORDER); + wait_ms(10*repetitions); + + // Mode Switches + baseStationNode.sendOrder(dest3, NOT_USED, BECOME_BEACON, NOT_USED, Node::SWITCH_TYPE); + baseStationNode.sendOrder(dest2, NOT_USED, BECOME_ANCHOR, NOT_USED, Node::SWITCH_TYPE); + + // Rangings + baseStationNode.sendOrder(dest3, dest1, RANGE_ONE, repetitions, Node::BASE_ORDER); + wait_ms(10*repetitions); + baseStationNode.sendOrder(dest3, dest2, RANGE_ONE, repetitions, Node::BASE_ORDER); + wait_ms(10*repetitions); + + // Back to original modes + baseStationNode.sendOrder(dest1, NOT_USED, BECOME_BEACON, NOT_USED, Node::SWITCH_TYPE); + baseStationNode.sendOrder(dest2, NOT_USED, BECOME_ANCHOR, NOT_USED, Node::SWITCH_TYPE); + baseStationNode.sendOrder(dest3, NOT_USED, BECOME_ANCHOR, NOT_USED, Node::SWITCH_TYPE); + + } + else + { + pc.printf("ERROR ------ This is an invalid command\n"); + } +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +// Called after Frame was received +void dwCallbackRx(const dwt_cb_data_t *rxd) { + int64_t rxTimeStamp = 0; + dwt_readrxdata(node->getRecFrameRef(), min(node->getRecFrameLength(), rxd->datalength), 0); // Read Data Frame from Registers + + dwt_readrxtimestamp((uint8_t*) &rxTimeStamp); // Read Timestamp when the frame was received exactly + rxTimeStamp &= MASK_40BIT; //Mask the 40 Bits of the timestamp + + node->callbackRX(rxTimeStamp); // Two Way Ranging Function +} + + +#pragma Otime // Compiler optimize Runtime at the cost of image size +// Called after Frame was transmitted +void dwCallbackTx(const dwt_cb_data_t *txd) { + int64_t txTimeStamp = 0; + dwt_readtxtimestamp((uint8_t*) &txTimeStamp); // Read Timestamp when the frame was transmitted exactly + txTimeStamp &= MASK_40BIT; // Delete the most significant 8 Bits because the timestamp has only 40 Bits + + node->callbackTX(txTimeStamp); // Two Way Ranging Function +} + + +int min (int a, int b){ + if(a<=b) return a; + return b; +} + +void configureDW1000(uint8_t dwMode){ + dwt_config_t dwConfig; + dwt_txconfig_t dwConfigTx; + + SMsetconfig(dwMode, &dwConfig, &dwConfigTx); + + decaWave.setup(dwConfig, dwConfigTx, rfDelays[dwConfig.prf - DWT_PRF_16M], dwCallbackTx, dwCallbackRx); + + pc.printf("%s\r\n", DW1000_DEVICE_DRIVER_VER_STRING); + { + uint16_t tempvbat = dwt_readtempvbat(1); + if (tempvbat>0) { + float tempC = 1.13f * (float) (tempvbat >> 8) - 113.0f; + float vbatV = 0.0057f * (float) (tempvbat & 0xFF) + 2.3f; + + pc.printf(" Voltage: %f, Temperature: %f\r\n", vbatV, tempC); + } else { + pc.printf("ERROR: Cannot read voltage/temperature\r\n"); + } + } + pc.printf(" Device Lot ID %lu, Part ID %lu\r\n", dwt_getlotid(), dwt_getpartid()); + + uint16_t DWID = (dwt_getpartid() & 0xFFFF); + + pc.printf( + " Settings %i: \r\n Channel %u (%1.3f GHz w/ %1.3f GHz BW), Datarate %s, \r\n PRF %s, Preamble Code %u, PreambleLength %u symbols, \r\n PAC Size %u, %s SFD, SDF timeout %ul symbols\r\n", + dwMode, dwConfig.chan, ChannelFrequency[dwConfig.chan], + ChannelBandwidth[dwConfig.chan], ChannelBitrate[dwConfig.dataRate], ChannelPRF[dwConfig.prf], + dwConfig.txCode, ChannelPLEN(dwConfig.txPreambLength), ChannelPAC[dwConfig.rxPAC], + dwConfig.nsSFD==0?"standard":"non-standard", dwConfig.sfdTO); + pc.printf(" Power: NORM %2.1f dB, BOOST: 0.125ms %2.1f dB, 0.25ms %2.1f dB, 0.5ms %2.1f dB\r\n", + SMgain(dwConfigTx.power& 0xFF), SMgain((dwConfigTx.power>>24)& 0xFF), SMgain((dwConfigTx.power>>16)& 0xFF), + SMgain((dwConfigTx.power>>8)& 0xFF)); + pc.printf(" Frame length: %d us\r\n", decaWave.computeFrameLength_us()); + pc.printf(" Antenna Delay set to: %d \r\n", decaWave.getAntennaDelay()); + + decaWave.turnonrx(); // start listening +} + +void rangeAndDisplayOne(uint8_t addr){ + beaconNode.requestRanging(addr); + pc.printf("o error2 ? %f(%f) \r\n", beaconNode.getDistance(addr), beaconNode.getSignalStrength(addr)); +} + + + +void rangeAndDisplayAll(){ + beaconNode.requestRangingAll(); + for(int i = 0; i < ADRESSES_COUNT; i++){ + /*if(beaconNode.getDistance(i) > -10){ + pc.printf("#%d %f(%f), ", i, beaconNode.getDistance(i), beaconNode.getSignalStrength(i)); + }*/ + } + // pc.printf("o error3 ? \r\n"); +} +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed-dev.lib Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed-dev/#447f873cad2f
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/nodes/frames.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,27 @@ +// Lukas Bieri, Matthias, Manuel Meier & Noa Melchior +// based on Work by Matthias Grob & Manuel Stalder +// ETH 2017 + +#ifndef _FRAMES_H +#define _FRAMES_H + +//the packed attribute makes sure the types only use their respective size in memory (8 bit for uint8_t), otherwise they would always use 32 bit +//IT IS A GCC SPECIFIC DIRECTIVE +struct __attribute__((packed, aligned(1))) RangingFrame { + uint8_t source; + uint8_t destination; + uint8_t type; +}; + +struct __attribute__((packed, aligned(1))) ExtendedRangingFrame : RangingFrame{ + int signedTime; +}; + +struct __attribute__((packed, aligned(1))) StreamFrame : RangingFrame{ + uint8_t anchor_adress; + float distance; + float signalStrength; + float FPLevel; +}; + +#endif /* _FRAMES_H */
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/nodes/nodes.cpp Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,504 @@ +#include "nodes.h" + +extern Node *node; +extern BeaconNode beaconNode; +extern AnchorNode anchorNode; +extern BaseStationNode baseStationNode; + +Node::Node(DecaWave& DW) : dw(DW) { + address = 0; +} +void Node::setAnchor(bool anc){ + Anchor = anc; +} + +bool Node::isAnchor(){ + return Anchor; +} +bool Node::isBaseStation(){ + return address == BASE_STATION_ADDR; +} +void Node::setAddress(uint8_t adr){ + address = adr; +} + +uint8_t Node::getAddress(){ + return address; +} + + + +//------- BeaconNode Class ------------------- +BeaconNode::BeaconNode(DecaWave& DW) : Node(DW) { + Anchor = false; + for (int i = 0; i < 3; i++) + acknowledgement[i] = true; + LocalTimer.start(); + mode=0; +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +// Two Way Ranging Actions when Frame was received +void BeaconNode::callbackRX(uint64_t RxTime) { + //pc.printf("Got a frame, adress: %d source: %d \r\n", receivedFrame.destination, receivedFrame.source); + if (receivedFrame.destination == address){ + switch (receivedFrame.type) { + case SWITCH_TYPE: + sendBaseAck(); + if((receivedFrame.signedTime >> 24) == BECOME_BEACON){ + pc.printf("\r\n \r\n ---This Node is already a beacon ---\r\n \r\n"); + } + else if((receivedFrame.signedTime >> 24) == BECOME_ANCHOR){ + node = &anchorNode; + pc.printf("\r\n \r\n ---This Node is an anchor now ---\r\n \r\n"); + } + + break; + case BASE_ORDER: + repetitions = receivedFrame.signedTime&0xffff; + mode = receivedFrame.signedTime >> 24; + destination = (receivedFrame.signedTime&0xff0000) >> 16; + sendBaseAck(); + break; + case ANCHOR_RESPONSE: + { + sendAnswer(receivedFrame.source, BEACON_RESPONSE); + senderTimestamps[receivedFrame.source][1] = RxTime; //Save the second timestamp on the sending node/beacon (T_rr) + acknowledgement[0] = true; + + // Get Signal Level + dwt_rxdiag_t diagnostic; + dwt_readdiagnostics(&diagnostic); + signalStrength[receivedFrame.source] = dw.getRXLevel(&diagnostic); + + break; + } + case TRANSFER_FRAME: + { + //timediffSend = 2 * senderTimestamps[receivedFrame.source][1] - senderTimestamps[receivedFrame.source][0] - senderTimestamps[receivedFrame.source][2]; + tofs[receivedFrame.source] = receivedFrame.signedTime + 2 * senderTimestamps[receivedFrame.source][1] - senderTimestamps[receivedFrame.source][0] - senderTimestamps[receivedFrame.source][2]; + + // Get Signal Level + dwt_rxdiag_t diagnostic2; + dwt_readdiagnostics(&diagnostic2); + float level = dw.getRXLevel(&diagnostic2); + if(level < signalStrength[receivedFrame.source]) + signalStrength[receivedFrame.source] = level; + + acknowledgement[1] = true; + + //dw.turnonrx(); // start listening again + break; + } + default : break; + } + } + else{ + dw.turnonrx(); // start listening again + } +} + + +#pragma Otime // Compiler optimize Runtime at the cost of image size +// Two Way Ranging Actions when Frame was transmitted +void BeaconNode::callbackTX(uint64_t TxTime) { + //pc.printf("TXCallback: %d %d %d \r\n", acknowledgement[0], acknowledgement[1], acknowledgement[2]); + dw.turnonrx(); // start listening again + + switch (rangingFrame.type) { + case PING: + senderTimestamps[rangingFrame.destination][0] = TxTime; //Save the first timestamp on the sending node/beacon (T_sp) + break; + case BEACON_RESPONSE: + senderTimestamps[rangingFrame.destination][2] = TxTime; //Save the third timestamp on the sending node/beacon (T_sr) + correctSenderTimestamps(rangingFrame.destination); //Correct the timestamps for the case of a counter overflow + break; + default: + break; + } + if(acknowledgement[1] == true){ + acknowledgement[2] = true; + // pc.printf("Ack edited %d \r\n", acknowledgement[2]); + } +} + + +#pragma Otime // Compiler optimize Runtime at the cost of image size +/** + * Get the distance to the Anchor with address @param destination. + * + * @param destination The address of the anchor + */ +void BeaconNode::requestRanging(uint8_t destination) { + if(noRec[destination] <= MAX_TRIES){ + + + float time_before = LocalTimer.read(); + + while(!acknowledgement[2] && LocalTimer.read() < time_before + 0.001f); // Wait until previous StreamFrame is sent + + acknowledgement[0] = false; + acknowledgement[1] = false; + acknowledgement[2] = false; + time_before = LocalTimer.read(); + + sendPingFrame(destination); + + while(!acknowledgement[1] && (LocalTimer.read() < time_before + 0.001f + 0.003f*acknowledgement[0])); // One Ranging normaly takes less than 1.5 miliseconds + + if(acknowledgement[1]){ + distances[destination] = calibratedDistance(destination); + noRec[destination] = 0; + // Stream Data to Basestation + sendStreamFrame(destination); + } else { + distances[destination] = -10; + noRec[destination]++; + } + } +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +inline float BeaconNode::calibratedDistance(uint8_t destination) { + + float rawDistance = (tofs[destination] * 300 * TIMEUNITS_TO_US / 4); + //float correctDistance = rawDistance + dwt_getrangebias(7, rawDistance, DWT_PRF_64M); + + //if(rawDistance <= 8.458) + // rawDistance -= 0.0541*rawDistance; // Correction Term 22-03-2017 + //else + if(rawDistance >= 22.7) + rawDistance += -0.0004*rawDistance - 0.3971; + else if (rawDistance >= 14.3) + rawDistance += -0.0015*rawDistance - 0.372; + else if (rawDistance >= 8) + rawDistance += -0.0029*rawDistance - 0.352; + else if (rawDistance >= 3.93) + rawDistance += 0.001*rawDistance - 0.370; + else + rawDistance += -0.0235*rawDistance - 0.273; + + //else if (rawDistance >= 3) + // rawDistance += 0.0004*rawDistance - 0.5556 + /* else + rawDistance += -0.01799*rawDistance - 0.2724; + + else if ()*/ + + + //Non-Correction-Term: rawDistance -= 0.458; + + + // Calibration for Nucleo 0 (and 1) + + // if (this->address == 1) rawDistance+= 10; +// switch(destination){ +// case 2: +// return rawDistance * 0.9754 - 0.5004; +// case 3: +// return rawDistance * 0.9759 - 0.4103; +// case 4: +// return rawDistance * 0.9798 - 0.5499; +// case 5: +// return rawDistance * 0.9765 - 0.5169; +// } + + return rawDistance; + +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void BeaconNode::requestRangingAll() { + for (int i = 0; i < ADRESSES_COUNT; i++) { // Request ranging to all anchors + if(i != address){ + requestRanging(i); + } + else + distances[i] = -10; + } +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void BeaconNode::sendPingFrame(uint8_t destination) { + rangingFrame.source = address; + rangingFrame.destination = destination; + rangingFrame.type = PING; + //dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame)); + dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame), 0, 0); +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void BeaconNode::sendBaseAck() { + rangingFrame.source = address; + rangingFrame.destination = BASE_STATION_ADDR; + rangingFrame.type = BASE_ORDER_ACK; + //dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame)); + dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame), 0, 0); +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void BeaconNode::sendStreamFrame(uint8_t anchor_addr) { + StreamFrame streamFrame; + + streamFrame.source = address; + streamFrame.destination = BASE_STATION_ADDR; + streamFrame.type = STREAM_TO_BASE; + streamFrame.anchor_adress = anchor_addr; + streamFrame.distance = getDistance(anchor_addr); + streamFrame.signalStrength = getSignalStrength(anchor_addr); + streamFrame.FPLevel = dw.getFPLevel(); + + dw.sendFrame((uint8_t*)&streamFrame, sizeof(streamFrame), 0, 0); +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void BeaconNode::sendAnswer(uint8_t destination, uint8_t type) { + + rangingFrame.source = address; + rangingFrame.destination = destination; + rangingFrame.type = type; + + dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame), 0, 0); +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void BeaconNode::correctSenderTimestamps(uint8_t source){ + + if (senderTimestamps[source][0] - dw.getAntennaDelay() > senderTimestamps[source][1]) { + senderTimestamps[source][1] += MMRANGING_2POWER40; + senderTimestamps[source][2] += MMRANGING_2POWER40; + } + if (senderTimestamps[source][1] > senderTimestamps[source][2]) { + senderTimestamps[source][2] += MMRANGING_2POWER40; + } + +} + +float BeaconNode::getSignalStrength(uint8_t index){ + return signalStrength[index]; +} + +float BeaconNode::getDistance(uint8_t index){ + return distances[index]; +} + +uint8* BeaconNode::getRecFrameRef(){ + return (uint8 *) &receivedFrame; +} +uint16 BeaconNode::getRecFrameLength(){ + return sizeof(receivedFrame); +} + +int BeaconNode::getMode(){ + return mode; +} + +uint16_t BeaconNode::getRepetitions(){ + return repetitions; +} +void BeaconNode::decreaseRepetitions(){ + repetitions--; +} +uint8_t BeaconNode::getDestination(){ + return destination; +} + +void BeaconNode::clearRec(){ + for(int j = 0; j < ADRESSES_COUNT; j++) + noRec[j] = 0; +} + + +//------- AnchorNode Class ------------------- +AnchorNode::AnchorNode(DecaWave& DW) : Node(DW) { + Anchor = true; +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +// Two Way Ranging Actions when Frame was received +void AnchorNode::callbackRX(uint64_t RxTime) { + // pc.printf("Got a frame, adress: %d source: %d \r\n", receivedFrame.destination, receivedFrame.source); + // if(!isBaseStation()){ + if (receivedFrame.destination == address){ + switch (receivedFrame.type) { + case SWITCH_TYPE: + sendBaseAck(); + if((receivedFrame.signedTime >> 24) == BECOME_BEACON){ + node = &beaconNode; + pc.printf("\r\n \r\n ---This Node is a beacon now ---\r\n \r\n"); + } + else if((receivedFrame.signedTime >> 24) == BECOME_ANCHOR){ + pc.printf("\r\n \r\n ---This Node is already an anchor ---\r\n \r\n"); + } + break; + case PING: + sendAnswer(receivedFrame.source, ANCHOR_RESPONSE); + receiverTimestamps[receivedFrame.source][0] = RxTime; //Save the first timestamp on the receiving node/anchor (T_rp) + break; + case BEACON_RESPONSE: + { + receiverTimestamps[receivedFrame.source][2] = RxTime; //Save the third timestamp on the receiving node/anchor (T_rf) + correctReceiverTimestamps(receivedFrame.source); //Correct the timestamps for the case of a counter overflow + //timediffRec = receiverTimestamps[receivedFrame.source][0] + receiverTimestamps[receivedFrame.source][2] - 2*receiverTimestamps[receivedFrame.source][1]; + //if(timediffRec < 0) + // timediffRec = 0; + sendTransferFrame(receivedFrame.source, receiverTimestamps[receivedFrame.source][0] + receiverTimestamps[receivedFrame.source][2] - 2*receiverTimestamps[receivedFrame.source][1]); + break; + } + default : break; + } + } + else{ + dw.turnonrx(); // start listening again + } +} + + +#pragma Otime // Compiler optimize Runtime at the cost of image size +// Two Way Ranging Actions when Frame was transmitted +void AnchorNode::callbackTX(uint64_t TxTime) { + dw.turnonrx(); // start listening again + + switch (rangingFrame.type) { + case ANCHOR_RESPONSE: + receiverTimestamps[rangingFrame.destination][1] = TxTime; //Save the second timestamp on the receiving node/anchor (T_sr) + break; + default: + break; + } +} + + + + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void AnchorNode::sendBaseAck() { + rangingFrame.source = address; + rangingFrame.destination = BASE_STATION_ADDR; + rangingFrame.type = BASE_ORDER_ACK; + //dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame)); + dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame), 0, 0); +} + + + + + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void AnchorNode::sendTransferFrame(uint8_t destination, int timeDiffsReceiver) { + ExtendedRangingFrame transferFrame; + + transferFrame.source = address; + transferFrame.destination = destination; + transferFrame.type = TRANSFER_FRAME; + transferFrame.signedTime = timeDiffsReceiver; //cast the time difference + dw.sendFrame((uint8_t*)&transferFrame, sizeof(transferFrame), 0, 0); +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void AnchorNode::sendAnswer(uint8_t destination, uint8_t type) { + + rangingFrame.source = address; + rangingFrame.destination = destination; + rangingFrame.type = type; + + dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame), 0, 0); +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void AnchorNode::correctReceiverTimestamps(uint8_t source){ + + if(receiverTimestamps[source][0] > receiverTimestamps[source][1]){ + receiverTimestamps[source][1] += MMRANGING_2POWER40; + receiverTimestamps[source][2] += MMRANGING_2POWER40; + } + + if(receiverTimestamps[source][1] - dw.getAntennaDelay() > receiverTimestamps[source][2]){ + receiverTimestamps[source][2] += MMRANGING_2POWER40; + } + +} + + + +uint8* AnchorNode::getRecFrameRef(){ + return (uint8 *) &receivedFrame; +} +uint16 AnchorNode::getRecFrameLength(){ + return sizeof(receivedFrame); +} + + +//------- BaseStationNode Class ------------------- +BaseStationNode::BaseStationNode(DecaWave& DW) : Node(DW) { + Anchor = false; + LocalTimer.start(); +} + +uint8* BaseStationNode::getRecFrameRef(){ + return (uint8 *) &receivedStreamFrame; +} +uint16 BaseStationNode::getRecFrameLength(){ + return sizeof(receivedStreamFrame); +} + + +#pragma Otime // Compiler optimize Runtime at the cost of image size +// Two Way Ranging Actions when Frame was received +void BaseStationNode::callbackRX(uint64_t RxTime) { + //pc.printf("Got a frame, adress: %d source: %d \r\n", receivedStreamFrame.destination, receivedStreamFrame.source); + if (receivedStreamFrame.destination == address){ + switch(receivedStreamFrame.type){ + case STREAM_TO_BASE: + + //pc.printf("#%d to #%d %f(%f) \r\n", receivedStreamFrame.source, receivedStreamFrame.anchor_adress, receivedStreamFrame.distance, receivedStreamFrame.signalStrength); + pc.printf("#%03d/#%03d/%+011.6f/%+011.6f/%+011.6f/ \r\n", receivedStreamFrame.source, receivedStreamFrame.anchor_adress, receivedStreamFrame.distance, receivedStreamFrame.signalStrength, receivedStreamFrame.FPLevel/*dw.getFPLevel()*/); + break; + case BASE_ORDER_ACK: + + ack = true; + break; + + + + } + } + dw.turnonrx(); // start listening again + + +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +// Two Way Ranging Actions when Frame was transmitted +void BaseStationNode::callbackTX(uint64_t TxTime) { + dw.turnonrx(); // start listening again +} + +#pragma Otime // Compiler optimize Runtime at the cost of image size +void BaseStationNode::sendOrder(uint8_t beacon_destination, uint8_t anchor_destination, uint8_t action, uint16_t repetitions, uint8_t type) { + ExtendedRangingFrame orderFrame; + ack = false; + + orderFrame.source = address; + orderFrame.destination = beacon_destination; + orderFrame.type = type; + orderFrame.signedTime = action << 24 | anchor_destination << 16 | repetitions; + + int i = 0; + for(i = 0; i < 10 && !ack; i++){ + float time_before = LocalTimer.read(); + dw.sendFrame((uint8_t*)&orderFrame, sizeof(orderFrame), 0, 0); + while(!ack && (LocalTimer.read() < time_before + 0.010 + 0.01*i)); // One Ranging normaly takes less than 1.5 miliseconds + } + if(!ack) + { + pc.printf("ERROR: Tag #%d did not respond \r\n", beacon_destination); + } + else + { + //pc.printf("Order sent, %d tries \r\n", i); + } + + + +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/nodes/nodes.h Wed Dec 06 21:35:45 2017 +0000 @@ -0,0 +1,168 @@ +// Lukas Bieri, Matthias, Manuel Meier & Noa Melchior +// based on Work by Matthias Grob & Manuel Stalder +// ETH 2017 + +#ifndef _NODES_H +#define _NODES_H + +#include "mbed.h" +#include "DecaWave.h" +#include "frames.h" + +#include "globals.h" + +#define TIMEUNITS_TO_US (1/(128*499.2)) // conversion between the decawave timeunits (ca 15.65ps) to microseconds. +#define US_TO_TIMEUNITS (128*499.2) // conversion between microseconds to the decawave timeunits (ca 15.65ps). +#define MMRANGING_2POWER40 1099511627776 // decimal value of 2^40 to correct timeroverflow between timestamps +#define ADRESSES_COUNT 10 // Defines the Adress Space that is covered when Ranging for all + + //static int ADRESSES_COUNT=1; // Adress Space: 0 - (ADRESSES_COUNT - 1) +#define MAX_TRIES 5 // Number of times a Anchor is pinged until determined it is not in range +#define BASE_STATION_ADDR 15 // Defines the Adress of the Base Station (reserved Adress) + +// Constants for Base_Orders +#define RANGE_ALL 1 +#define RANGE_ONE 0 +#define NOT_USED 0xff + +// Constant for Switch Types Orders +#define BECOME_BEACON 1 +#define BECOME_ANCHOR 0 + + +class Node { + public: + Node(DecaWave& DW); + + void setAnchor(bool anc); + bool isAnchor(); + bool isBaseStation(); + void setAddress(uint8_t adr); + uint8_t getAddress(); + + virtual uint8* getRecFrameRef() = 0; + virtual uint16 getRecFrameLength() = 0; + + virtual void callbackRX(uint64_t RxTime) = 0; + virtual void callbackTX(uint64_t TxTime) = 0; + + //Frametype of the form 1001XXXX. First 4 Bits for uniqueness + enum FrameType{ + PING = 0x91, + ANCHOR_RESPONSE = 0x92, + BEACON_RESPONSE = 0x93, + TRANSFER_FRAME = 0x94, + DISTANCES_FRAME = 0x95, + STREAM_TO_BASE = 0x96, + BASE_ORDER = 0x97, + SWITCH_TYPE = 0x98, + BASE_ORDER_ACK = 0x99 + }; + + protected: + DecaWave& dw; + uint8_t address; + bool Anchor; +}; + +class BaseStationNode : public Node { + public: + BaseStationNode(DecaWave& DW); + + virtual uint8* getRecFrameRef(); + virtual uint16 getRecFrameLength(); + + virtual void callbackRX(uint64_t RxTime); + virtual void callbackTX(uint64_t TxTime); + + void sendOrder(uint8_t beacon_destination, uint8_t anchor_destination, uint8_t action, uint16_t repetitions, uint8_t type); + + private: + Timer LocalTimer; + bool ack; + RangingFrame rangingFrame; // buffer in class for sending a frame (not made locally because then we can recall in the interrupt what was sent) + public: + StreamFrame receivedStreamFrame; +}; + +class AnchorNode : public Node { + public: + AnchorNode(DecaWave& DW); + + virtual uint8* getRecFrameRef(); + virtual uint16 getRecFrameLength(); + + virtual void callbackRX(uint64_t RxTime); + virtual void callbackTX(uint64_t TxTime); + + private: + uint64_t receiverTimestamps[ADRESSES_COUNT][3]; + + void sendAnswer(uint8_t destination, uint8_t type); + void sendTransferFrame(uint8_t destination, int timestamp); + void sendBaseAck(); + + void correctReceiverTimestamps(uint8_t source); + + RangingFrame rangingFrame; // buffer in class for sending a frame (not made locally because then we can recall in the interrupt what was sent) + + public: + ExtendedRangingFrame receivedFrame; +}; + + + +class BeaconNode : public Node { + public: + BeaconNode(DecaWave& DW); + + virtual void requestRanging(uint8_t destination); + virtual void requestRangingAll(); + + float getDistance(uint8_t index); + float getSignalStrength(uint8_t index); + int getMode(); + + virtual uint8* getRecFrameRef(); + virtual uint16 getRecFrameLength(); + + virtual void callbackRX(uint64_t RxTime); + virtual void callbackTX(uint64_t TxTime); + + uint16_t getRepetitions(); + void decreaseRepetitions(); + uint8_t getDestination(); + void clearRec(); + + + private: + Timer LocalTimer; + float distances[ADRESSES_COUNT]; // Array containing the finally calculated Distances to the anchors + float signalStrength[ADRESSES_COUNT]; // Array containing the finally calculated Distances to the anchors + uint64_t senderTimestamps[ADRESSES_COUNT][3]; + volatile bool acknowledgement[3]; // flag to indicate if ranging has started (0) and succeeded (1) + int32_t tofs[ADRESSES_COUNT]; // Array containing time of flights for each node (index is address of node) + int8_t noRec[ADRESSES_COUNT]; + + void sendPingFrame(uint8_t destination); + void sendAnswer(uint8_t destination, uint8_t type); + void sendStreamFrame(uint8_t anchor_addr); + void sendBaseAck(); + + inline float calibratedDistance(uint8_t destination); + void correctSenderTimestamps(uint8_t source); + + RangingFrame rangingFrame; // buffer in class for sending a frame (not made locally because then we can recall in the interrupt what was sent) + + uint8_t mode; + uint8_t destination; + uint16_t repetitions; + + public: + ExtendedRangingFrame receivedFrame; + + +}; + +#endif +