Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
decadriver/deca_device.c
- Committer:
- aungriah
- Date:
- 2017-12-06
- Revision:
- 0:a3b83d366423
File content as of revision 0:a3b83d366423:
/*! ------------------------------------------------------------------------------------------------------------------ * @file deca_device.c * @brief Decawave device configuration and control functions * * @attention * * Copyright 2013 (c) Decawave Ltd, Dublin, Ireland. * * All rights reserved. * */ #include <assert.h> #include "deca_types.h" #include "deca_param_types.h" #include "deca_regs.h" #include "deca_device_api.h" // Defines for enable_clocks function #define FORCE_SYS_XTI 0 #define ENABLE_ALL_SEQ 1 #define FORCE_SYS_PLL 2 #define READ_ACC_ON 7 #define READ_ACC_OFF 8 #define FORCE_OTP_ON 11 #define FORCE_OTP_OFF 12 #define FORCE_TX_PLL 13 #define FORCE_LDE 14 // Defines for ACK request bitmask in DATA and MAC COMMAND frame control (first byte) - Used to detect AAT bit wrongly set. #define FCTRL_ACK_REQ_MASK 0x20 // Frame control maximum length in bytes. #define FCTRL_LEN_MAX 2 // #define DWT_API_ERROR_CHECK // define so API checks config input parameters // ------------------------------------------------------------------------------------------------------------------- // // Internal functions for controlling and configuring the device // // ------------------------------------------------------------------------------------------------------------------- // Enable and Configure specified clocks void _dwt_enableclocks(int clocks) ; // Configure the ucode (FP algorithm) parameters void _dwt_configlde(int prf); // Load ucode from OTP/ROM void _dwt_loaducodefromrom(void); // Read non-volatile memory uint32 _dwt_otpread(uint32 address); // Program the non-volatile memory uint32 _dwt_otpprogword32(uint32 data, uint16 address); // Upload the device configuration into always on memory void _dwt_aonarrayupload(void); // ------------------------------------------------------------------------------------------------------------------- /*! * Static data for DW1000 DecaWave Transceiver control */ // ------------------------------------------------------------------------------------------------------------------- // Structure to hold device data typedef struct { uint32 partID ; // IC Part ID - read during initialisation uint32 lotID ; // IC Lot ID - read during initialisation uint8 longFrames ; // Flag in non-standard long frame mode uint8 otprev ; // OTP revision number (read during initialisation) uint32 txFCTRL ; // Keep TX_FCTRL register config uint8 init_xtrim; // initial XTAL trim value read from OTP (or defaulted to mid-range if OTP not programmed) uint8 dblbuffon; // Double RX buffer mode flag uint32 sysCFGreg ; // Local copy of system config register uint16 sleep_mode; // Used for automatic reloading of LDO tune and microcode at wake-up uint8 wait4resp ; // wait4response was set with last TX start command dwt_cb_data_t cbData; // Callback data structure dwt_cb_t cbTxDone; // Callback for TX confirmation event dwt_cb_t cbRxOk; // Callback for RX good frame event dwt_cb_t cbRxTo; // Callback for RX timeout events dwt_cb_t cbRxErr; // Callback for RX error events } dwt_local_data_t ; static dwt_local_data_t dw1000local ; // Static local device data /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_initialise() * * @brief This function initiates communications with the DW1000 transceiver * and reads its DEV_ID register (address 0x00) to verify the IC is one supported * by this software (e.g. DW1000 32-bit device ID value is 0xDECA0130). Then it * does any initial once only device configurations needed for use and initialises * as necessary any static data items belonging to this low-level driver. * * NOTES: * 1.this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz * 2.it also reads and applies LDO tune and crystal trim values from OTP memory * * input parameters * @param config - specifies what configuration to load * DWT_LOADUCODE 0x1 - load the LDE microcode from ROM - enabled accurate RX timestamp * DWT_LOADNONE 0x0 - do not load any values from OTP memory * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ // OTP addresses definitions #define LDOTUNE_ADDRESS (0x04) #define PARTID_ADDRESS (0x06) #define LOTID_ADDRESS (0x07) #define VBAT_ADDRESS (0x08) #define VTEMP_ADDRESS (0x09) #define XTRIM_ADDRESS (0x1E) int dwt_initialise(uint16 config) { uint16 otp_addr = 0; uint32 ldo_tune = 0; dw1000local.dblbuffon = 0; // Double buffer mode off by default dw1000local.wait4resp = 0; dw1000local.sleep_mode = 0; dw1000local.cbTxDone = NULL; dw1000local.cbRxOk = NULL; dw1000local.cbRxTo = NULL; dw1000local.cbRxErr = NULL; // Read and validate device ID return -1 if not recognised if (DWT_DEVICE_ID != dwt_readdevid()) // MP IC ONLY (i.e. DW1000) FOR THIS CODE { return DWT_ERROR ; } // Make sure the device is completely reset before starting initialisation dwt_softreset(); _dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read by _dwt_otpread are reliable // Configure the CPLL lock detect dwt_write8bitoffsetreg(EXT_SYNC_ID, EC_CTRL_OFFSET, EC_CTRL_PLLLCK); // Read OTP revision number otp_addr = _dwt_otpread(XTRIM_ADDRESS) & 0xffff; // Read 32 bit value, XTAL trim val is in low octet-0 (5 bits) dw1000local.otprev = (otp_addr >> 8) & 0xff; // OTP revision is next byte // Load LDO tune from OTP and kick it if there is a value actually programmed. ldo_tune = _dwt_otpread(LDOTUNE_ADDRESS); if((ldo_tune & 0xFF) != 0) { // Kick LDO tune dwt_write8bitoffsetreg(OTP_IF_ID, OTP_SF, OTP_SF_LDO_KICK); // Set load LDE kick bit dw1000local.sleep_mode |= AON_WCFG_ONW_LLDO; // LDO tune must be kicked at wake-up } // Load Part and Lot ID from OTP dw1000local.partID = _dwt_otpread(PARTID_ADDRESS); dw1000local.lotID = _dwt_otpread(LOTID_ADDRESS); // XTAL trim value is set in OTP for DW1000 module and EVK/TREK boards but that might not be the case in a custom design dw1000local.init_xtrim = otp_addr & 0x1F; if (!dw1000local.init_xtrim) // A value of 0 means that the crystal has not been trimmed { dw1000local.init_xtrim = FS_XTALT_MIDRANGE ; // Set to mid-range if no calibration value inside } // Configure XTAL trim dwt_setxtaltrim(dw1000local.init_xtrim); // Load leading edge detect code if(config & DWT_LOADUCODE) { _dwt_loaducodefromrom(); dw1000local.sleep_mode |= AON_WCFG_ONW_LLDE; // microcode must be loaded at wake-up } else // Should disable the LDERUN enable bit in 0x36, 0x4 { uint16 rega = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1) ; rega &= 0xFDFF ; // Clear LDERUN bit dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1, rega) ; } _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing // The 3 bits in AON CFG1 register must be cleared to ensure proper operation of the DW1000 in DEEPSLEEP mode. dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00); // Read system register / store local copy dw1000local.sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register return DWT_SUCCESS ; } // end dwt_initialise() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_otprevision() * * @brief This is used to return the read OTP revision * * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value. * * input parameters * * output parameters * * returns the read OTP revision value */ uint8 dwt_otprevision(void) { return dw1000local.otprev ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setfinegraintxseq() * * @brief This function enables/disables the fine grain TX sequencing (enabled by default). * * input parameters * @param enable - 1 to enable fine grain TX sequencing, 0 to disable it. * * output parameters none * * no return value */ void dwt_setfinegraintxseq(int enable) { if (enable) { dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_ENABLE); } else { dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_DISABLE); } } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setlnapamode() * * @brief This is used to enable GPIO for external LNA or PA functionality - HW dependent, consult the DW1000 User Manual. * This can also be used for debug as enabling TX and RX GPIOs is quite handy to monitor DW1000's activity. * * NOTE: Enabling PA functionality requires that fine grain TX sequencing is deactivated. This can be done using * dwt_setfinegraintxseq(). * * input parameters * @param lna - 1 to enable LNA functionality, 0 to disable it * @param pa - 1 to enable PA functionality, 0 to disable it * * output parameters * * no return value */ void dwt_setlnapamode(int lna, int pa) { uint32 gpio_mode = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); gpio_mode &= ~(GPIO_MSGP4_MASK | GPIO_MSGP5_MASK | GPIO_MSGP6_MASK); if (lna) { gpio_mode |= GPIO_PIN6_EXTRXE; } if (pa) { gpio_mode |= (GPIO_PIN5_EXTTXE | GPIO_PIN4_EXTPA); } dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, gpio_mode); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setgpiodirection() * * @brief This is used to set GPIO direction as an input (1) or output (0) * * input parameters * @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file * @param direction - this sets the GPIO direction - see GxP0... GxP8 in the deca_regs.h file * * output parameters * * no return value */ void dwt_setgpiodirection(uint32 gpioNum, uint32 direction) { uint8 buf[GPIO_DIR_LEN]; uint32 command = direction | gpioNum; buf[0] = command & 0xff; buf[1] = (command >> 8) & 0xff; buf[2] = (command >> 16) & 0xff; dwt_writetodevice(GPIO_CTRL_ID, GPIO_DIR_OFFSET, GPIO_DIR_LEN, buf); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setgpiovalue() * * @brief This is used to set GPIO value as (1) or (0) only applies if the GPIO is configured as output * * input parameters * @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file * @param value - this sets the GPIO value - see GDP0... GDP8 in the deca_regs.h file * * output parameters * * no return value */ void dwt_setgpiovalue(uint32 gpioNum, uint32 value) { uint8 buf[GPIO_DOUT_LEN]; uint32 command = value | gpioNum; buf[0] = command & 0xff; buf[1] = (command >> 8) & 0xff; buf[2] = (command >> 16) & 0xff; dwt_writetodevice(GPIO_CTRL_ID, GPIO_DOUT_OFFSET, GPIO_DOUT_LEN, buf); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_getpartid() * * @brief This is used to return the read part ID of the device * * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value. * * input parameters * * output parameters * * returns the 32 bit part ID value as programmed in the factory */ uint32 dwt_getpartid(void) { return dw1000local.partID; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_getlotid() * * @brief This is used to return the read lot ID of the device * * NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value. * * input parameters * * output parameters * * returns the 32 bit lot ID value as programmed in the factory */ uint32 dwt_getlotid(void) { return dw1000local.lotID; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readdevid() * * @brief This is used to return the read device type and revision information of the DW1000 device (MP part is 0xDECA0130) * * input parameters * * output parameters * * returns the read value which for DW1000 is 0xDECA0130 */ uint32 dwt_readdevid(void) { return dwt_read32bitoffsetreg(DEV_ID_ID,0); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configuretxrf() * * @brief This function provides the API for the configuration of the TX spectrum * including the power and pulse generator delay. The input is a pointer to the data structure * of type dwt_txconfig_t that holds all the configurable items. * * input parameters * @param config - pointer to the txrf configuration structure, which contains the tx rf config data * * output parameters * * no return value */ void dwt_configuretxrf(dwt_txconfig_t *config) { // Configure RF TX PG_DELAY dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, config->PGdly); // Configure TX power dwt_write32bitreg(TX_POWER_ID, config->power); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configure() * * @brief This function provides the main API for the configuration of the * DW1000 and this low-level driver. The input is a pointer to the data structure * of type dwt_config_t that holds all the configurable items. * The dwt_config_t structure shows which ones are supported * * input parameters * @param config - pointer to the configuration structure, which contains the device configuration data. * * output parameters * * no return value */ void dwt_configure(dwt_config_t *config) { uint8 chan = config->chan ; uint32 regval ; uint16 reg16 = lde_replicaCoeff[config->rxCode]; uint8 prfIndex = config->prf - DWT_PRF_16M; uint8 bw = ((chan == 4) || (chan == 7)) ? 1 : 0 ; // Select wide or narrow band #ifdef DWT_API_ERROR_CHECK assert(config->dataRate <= DWT_BR_6M8); assert(config->rxPAC <= DWT_PAC64); assert((chan >= 1) && (chan <= 7) && (chan != 6)); assert(((config->prf == DWT_PRF_64M) && (config->txCode >= 9) && (config->txCode <= 24)) || ((config->prf == DWT_PRF_16M) && (config->txCode >= 1) && (config->txCode <= 8))); assert(((config->prf == DWT_PRF_64M) && (config->rxCode >= 9) && (config->rxCode <= 24)) || ((config->prf == DWT_PRF_16M) && (config->rxCode >= 1) && (config->rxCode <= 8))); assert((config->txPreambLength == DWT_PLEN_64) || (config->txPreambLength == DWT_PLEN_128) || (config->txPreambLength == DWT_PLEN_256) || (config->txPreambLength == DWT_PLEN_512) || (config->txPreambLength == DWT_PLEN_1024) || (config->txPreambLength == DWT_PLEN_1536) || (config->txPreambLength == DWT_PLEN_2048) || (config->txPreambLength == DWT_PLEN_4096)); assert((config->phrMode == DWT_PHRMODE_STD) || (config->phrMode == DWT_PHRMODE_EXT)); #endif // For 110 kbps we need a special setup if(DWT_BR_110K == config->dataRate) { dw1000local.sysCFGreg |= SYS_CFG_RXM110K ; reg16 >>= 3; // lde_replicaCoeff must be divided by 8 } else { dw1000local.sysCFGreg &= (~SYS_CFG_RXM110K) ; } dw1000local.longFrames = config->phrMode ; dw1000local.sysCFGreg &= ~SYS_CFG_PHR_MODE_11; dw1000local.sysCFGreg |= (SYS_CFG_PHR_MODE_11 & (config->phrMode << SYS_CFG_PHR_MODE_SHFT)); dwt_write32bitreg(SYS_CFG_ID,dw1000local.sysCFGreg) ; // Set the lde_replicaCoeff dwt_write16bitoffsetreg(LDE_IF_ID, LDE_REPC_OFFSET, reg16) ; _dwt_configlde(prfIndex); // Configure PLL2/RF PLL block CFG/TUNE (for a given channel) dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); // Configure RF RX blocks (for specified channel/bandwidth) dwt_write8bitoffsetreg(RF_CONF_ID, RF_RXCTRLH_OFFSET, rx_config[bw]); // Configure RF TX blocks (for specified channel and PRF) // Configure RF TX control dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); // Configure the baseband parameters (for specified PRF, bit rate, PAC, and SFD settings) // DTUNE0 dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE0b_OFFSET, sftsh[config->dataRate][config->nsSFD]); // DTUNE1 dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1a_OFFSET, dtune1[prfIndex]); if(config->dataRate == DWT_BR_110K) { dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_110K); } else { if(config->txPreambLength == DWT_PLEN_64) { dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_6M8_PRE64); dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE64); } else { dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_850K_6M8); dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE128PLUS); } } // DTUNE2 dwt_write32bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET, digital_bb_config[prfIndex][config->rxPAC]); // DTUNE3 (SFD timeout) // Don't allow 0 - SFD timeout will always be enabled if(config->sfdTO == 0) { config->sfdTO = DWT_SFDTOC_DEF; } dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_SFDTOC_OFFSET, config->sfdTO); // Configure AGC parameters dwt_write32bitoffsetreg( AGC_CFG_STS_ID, 0xC, agc_config.lo32); dwt_write16bitoffsetreg( AGC_CFG_STS_ID, 0x4, agc_config.target[prfIndex]); // Set (non-standard) user SFD for improved performance, if(config->nsSFD) { // Write non standard (DW) SFD length dwt_write8bitoffsetreg(USR_SFD_ID, 0x00, dwnsSFDlen[config->dataRate]); } regval = (CHAN_CTRL_TX_CHAN_MASK & (chan << CHAN_CTRL_TX_CHAN_SHIFT)) | // Transmit Channel (CHAN_CTRL_RX_CHAN_MASK & (chan << CHAN_CTRL_RX_CHAN_SHIFT)) | // Receive Channel (CHAN_CTRL_RXFPRF_MASK & (config->prf << CHAN_CTRL_RXFPRF_SHIFT)) | // RX PRF (CHAN_CTRL_DWSFD & (config->nsSFD << CHAN_CTRL_DWSFD_SHIFT)) | // Use DW nsSFD (CHAN_CTRL_TX_PCOD_MASK & (config->txCode << CHAN_CTRL_TX_PCOD_SHIFT)) | // TX Preamble Code (CHAN_CTRL_RX_PCOD_MASK & (config->rxCode << CHAN_CTRL_RX_PCOD_SHIFT)) ; // RX Preamble Code dwt_write32bitreg(CHAN_CTRL_ID,regval) ; // Set up TX Preamble Size, PRF and Data Rate dw1000local.txFCTRL = ((config->txPreambLength | config->prf) << TX_FCTRL_TXPRF_SHFT) | (config->dataRate << TX_FCTRL_TXBR_SHFT); dwt_write32bitreg(TX_FCTRL_ID, dw1000local.txFCTRL); // The SFD transmit pattern is initialised by the DW1000 upon a user TX request, but (due to an IC issue) it is not done for an auto-ACK TX. The // SYS_CTRL write below works around this issue, by simultaneously initiating and aborting a transmission, which correctly initialises the SFD // after its configuration or reconfiguration. // This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016). dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_TXSTRT | SYS_CTRL_TRXOFF); // Request TX start and TRX off at the same time } // end dwt_configure() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setrxantennadelay() * * @brief This API function writes the antenna delay (in time units) to RX registers * * input parameters: * @param rxDelay - this is the total (RX) antenna delay value, which * will be programmed into the RX register * * output parameters * * no return value */ void dwt_setrxantennadelay(uint16 rxDelay) { // Set the RX antenna delay for auto TX timestamp adjustment dwt_write16bitoffsetreg(LDE_IF_ID, LDE_RXANTD_OFFSET, rxDelay); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_settxantennadelay() * * @brief This API function writes the antenna delay (in time units) to TX registers * * input parameters: * @param txDelay - this is the total (TX) antenna delay value, which * will be programmed into the TX delay register * * output parameters * * no return value */ void dwt_settxantennadelay(uint16 txDelay) { // Set the TX antenna delay for auto TX timestamp adjustment dwt_write16bitoffsetreg(TX_ANTD_ID, TX_ANTD_OFFSET, txDelay); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_writetxdata() * * @brief This API function writes the supplied TX data into the DW1000's * TX buffer. The input parameters are the data length in bytes and a pointer * to those data bytes. * * input parameters * @param txFrameLength - This is the total frame length, including the two byte CRC. * Note: this is the length of TX message (including the 2 byte CRC) - max is 1023 * standard PHR mode allows up to 127 bytes * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration * see dwt_configure function * @param txFrameBytes - Pointer to the users buffer containing the data to send. * @param txBufferOffset - This specifies an offset in the DW1000s TX Buffer at which to start writing data. * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_writetxdata(uint16 txFrameLength, uint8 *txFrameBytes, uint16 txBufferOffset) { #ifdef DWT_API_ERROR_CHECK assert(txFrameLength >= 2); assert((dw1000local.longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); assert((txBufferOffset + txFrameLength) <= 1024); #endif if ((txBufferOffset + txFrameLength) <= 1024) { // Write the data to the IC TX buffer, (-2 bytes for auto generated CRC) dwt_writetodevice( TX_BUFFER_ID, txBufferOffset, txFrameLength-2, txFrameBytes); return DWT_SUCCESS; } else { return DWT_ERROR; } } // end dwt_writetxdata() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_writetxfctrl() * * @brief This API function configures the TX frame control register before the transmission of a frame * * input parameters: * @param txFrameLength - this is the length of TX message (including the 2 byte CRC) - max is 1023 * NOTE: standard PHR mode allows up to 127 bytes * if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration * see dwt_configure function * @param txBufferOffset - the offset in the tx buffer to start writing the data * @param ranging - 1 if this is a ranging frame, else 0 * * output parameters * * no return value */ void dwt_writetxfctrl(uint16 txFrameLength, uint16 txBufferOffset, int ranging) { #ifdef DWT_API_ERROR_CHECK assert((dw1000local.longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); #endif // Write the frame length to the TX frame control register // dw1000local.txFCTRL has kept configured bit rate information uint32 reg32 = dw1000local.txFCTRL | txFrameLength | (txBufferOffset << TX_FCTRL_TXBOFFS_SHFT) | (ranging << TX_FCTRL_TR_SHFT); dwt_write32bitreg(TX_FCTRL_ID, reg32); } // end dwt_writetxfctrl() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readrxdata() * * @brief This is used to read the data from the RX buffer, from an offset location give by offset parameter * * input parameters * @param buffer - the buffer into which the data will be read * @param length - the length of data to read (in bytes) * @param rxBufferOffset - the offset in the rx buffer from which to read the data * * output parameters * * no return value */ void dwt_readrxdata(uint8 *buffer, uint16 length, uint16 rxBufferOffset) { dwt_readfromdevice(RX_BUFFER_ID,rxBufferOffset,length,buffer) ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readaccdata() * * @brief This is used to read the data from the Accumulator buffer, from an offset location give by offset parameter * * NOTE: Because of an internal memory access delay when reading the accumulator the first octet output is a dummy octet * that should be discarded. This is true no matter what sub-index the read begins at. * * input parameters * @param buffer - the buffer into which the data will be read * @param length - the length of data to read (in bytes) * @param accOffset - the offset in the acc buffer from which to read the data * * output parameters * * no return value */ void dwt_readaccdata(uint8 *buffer, uint16 len, uint16 accOffset) { // Force on the ACC clocks if we are sequenced _dwt_enableclocks(READ_ACC_ON); dwt_readfromdevice(ACC_MEM_ID,accOffset,len,buffer) ; _dwt_enableclocks(READ_ACC_OFF); // Revert clocks back } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readdiagnostics() * * @brief this function reads the RX signal quality diagnostic data * * input parameters * @param diagnostics - diagnostic structure pointer, this will contain the diagnostic data read from the DW1000 * * output parameters * * no return value */ void dwt_readdiagnostics(dwt_rxdiag_t *diagnostics) { // Read the HW FP index diagnostics->firstPath = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_INDEX_OFFSET); // LDE diagnostic data diagnostics->maxNoise = dwt_read16bitoffsetreg(LDE_IF_ID, LDE_THRESH_OFFSET); // Read all 8 bytes in one SPI transaction dwt_readfromdevice(RX_FQUAL_ID, 0x0, 8, (uint8*)&diagnostics->stdNoise); diagnostics->firstPathAmp1 = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_AMPL1_OFFSET); diagnostics->rxPreamCount = (dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXPACC_MASK) >> RX_FINFO_RXPACC_SHIFT ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readtxtimestamp() * * @brief This is used to read the TX timestamp (adjusted with the programmed antenna delay) * * input parameters * @param timestamp - a pointer to a 5-byte buffer which will store the read TX timestamp time * * output parameters - the timestamp buffer will contain the value after the function call * * no return value */ void dwt_readtxtimestamp(uint8 * timestamp) { dwt_readfromdevice(TX_TIME_ID, TX_TIME_TX_STAMP_OFFSET, TX_TIME_TX_STAMP_LEN, timestamp) ; // Read bytes directly into buffer } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readtxtimestamphi32() * * @brief This is used to read the high 32-bits of the TX timestamp (adjusted with the programmed antenna delay) * * input parameters * * output parameters * * returns high 32-bits of TX timestamp */ uint32 dwt_readtxtimestamphi32(void) { return dwt_read32bitoffsetreg(TX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readtxtimestamplo32() * * @brief This is used to read the low 32-bits of the TX timestamp (adjusted with the programmed antenna delay) * * input parameters * * output parameters * * returns low 32-bits of TX timestamp */ uint32 dwt_readtxtimestamplo32(void) { return dwt_read32bitreg(TX_TIME_ID); // Read TX TIME as a 32-bit register to get the 4 lower bytes out of 5 } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readrxtimestamp() * * @brief This is used to read the RX timestamp (adjusted time of arrival) * * input parameters * @param timestamp - a pointer to a 5-byte buffer which will store the read RX timestamp time * * output parameters - the timestamp buffer will contain the value after the function call * * no return value */ void dwt_readrxtimestamp(uint8 * timestamp) { dwt_readfromdevice(RX_TIME_ID, RX_TIME_RX_STAMP_OFFSET, RX_TIME_RX_STAMP_LEN, timestamp) ; // Get the adjusted time of arrival } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readrxtimestamphi32() * * @brief This is used to read the high 32-bits of the RX timestamp (adjusted with the programmed antenna delay) * * input parameters * * output parameters * * returns high 32-bits of RX timestamp */ uint32 dwt_readrxtimestamphi32(void) { return dwt_read32bitoffsetreg(RX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readrxtimestamplo32() * * @brief This is used to read the low 32-bits of the RX timestamp (adjusted with the programmed antenna delay) * * input parameters * * output parameters * * returns low 32-bits of RX timestamp */ uint32 dwt_readrxtimestamplo32(void) { return dwt_read32bitreg(RX_TIME_ID); // Read RX TIME as a 32-bit register to get the 4 lower bytes out of 5 } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readsystimestamphi32() * * @brief This is used to read the high 32-bits of the system time * * input parameters * * output parameters * * returns high 32-bits of system time timestamp */ uint32 dwt_readsystimestamphi32(void) { return dwt_read32bitoffsetreg(SYS_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readsystime() * * @brief This is used to read the system time * * input parameters * @param timestamp - a pointer to a 5-byte buffer which will store the read system time * * output parameters * @param timestamp - the timestamp buffer will contain the value after the function call * * no return value */ void dwt_readsystime(uint8 * timestamp) { dwt_readfromdevice(SYS_TIME_ID, SYS_TIME_OFFSET, SYS_TIME_LEN, timestamp) ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_writetodevice() * * @brief this function is used to write to the DW1000 device registers * Notes: * 1. Firstly we create a header (the first byte is a header byte) * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte * b. set bit-7 (or with 0x80) for write operation * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte * * 2. Write the header followed by the data bytes to the DW1000 device * * * input parameters: * @param recordNumber - ID of register file or buffer being accessed * @param index - byte index into register file or buffer being accessed * @param length - number of bytes being written * @param buffer - pointer to buffer containing the 'length' bytes to be written * * output parameters * * no return value */ void dwt_writetodevice ( uint16 recordNumber, uint16 index, uint32 length, const uint8 *buffer ) { uint8 header[3] ; // Buffer to compose header in int cnt = 0; // Counter for length of header #ifdef DWT_API_ERROR_CHECK assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. #endif // Write message header selecting WRITE operation and addresses as appropriate (this is one to three bytes long) if (index == 0) // For index of 0, no sub-index is required { header[cnt++] = 0x80 | recordNumber ; // Bit-7 is WRITE operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id } else { #ifdef DWT_API_ERROR_CHECK assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. #endif header[cnt++] = 0xC0 | recordNumber ; // Bit-7 is WRITE operation, bit-6 one=sub-address follows, bits 5-0 is reg file id if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required { header[cnt++] = (uint8)index ; // Bit-7 zero means no extension, bits 6-0 is index. } else { header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. } } // Write it to the SPI writetospi(cnt,header,length,buffer); } // end dwt_writetodevice() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readfromdevice() * * @brief this function is used to read from the DW1000 device registers * Notes: * 1. Firstly we create a header (the first byte is a header byte) * a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte * b. set bit-7 (or with 0x80) for write operation * c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte * * 2. Write the header followed by the data bytes to the DW1000 device * 3. Store the read data in the input buffer * * input parameters: * @param recordNumber - ID of register file or buffer being accessed * @param index - byte index into register file or buffer being accessed * @param length - number of bytes being read * @param buffer - pointer to buffer in which to return the read data. * * output parameters * * no return value */ void dwt_readfromdevice ( uint16 recordNumber, uint16 index, uint32 length, uint8 *buffer ) { uint8 header[3] ; // Buffer to compose header in int cnt = 0; // Counter for length of header #ifdef DWT_API_ERROR_CHECK assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. #endif // Write message header selecting READ operation and addresses as appropriate (this is one to three bytes long) if (index == 0) // For index of 0, no sub-index is required { header[cnt++] = (uint8) recordNumber ; // Bit-7 zero is READ operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id } else { #ifdef DWT_API_ERROR_CHECK assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. #endif header[cnt++] = (uint8)(0x40 | recordNumber) ; // Bit-7 zero is READ operation, bit-6 one=sub-address follows, bits 5-0 is reg file id if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required { header[cnt++] = (uint8) index ; // Bit-7 zero means no extension, bits 6-0 is index. } else { header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. } } // Do the read from the SPI readfromspi(cnt, header, length, buffer); // result is stored in the buffer } // end dwt_readfromdevice() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_read32bitoffsetreg() * * @brief this function is used to read 32-bit value from the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * * output parameters * * returns 32 bit register value */ uint32 dwt_read32bitoffsetreg(int regFileID,int regOffset) { uint32 regval = 0 ; int j ; uint8 buffer[4] ; dwt_readfromdevice(regFileID,regOffset,4,buffer); // Read 4 bytes (32-bits) register into buffer for (j = 3 ; j >= 0 ; j --) { regval = (regval << 8) + buffer[j] ; } return regval ; } // end dwt_read32bitoffsetreg() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_read16bitoffsetreg() * * @brief this function is used to read 16-bit value from the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * * output parameters * * returns 16 bit register value */ uint16 dwt_read16bitoffsetreg(int regFileID,int regOffset) { uint16 regval = 0 ; uint8 buffer[2] ; dwt_readfromdevice(regFileID,regOffset,2,buffer); // Read 2 bytes (16-bits) register into buffer regval = (buffer[1] << 8) + buffer[0] ; return regval ; } // end dwt_read16bitoffsetreg() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_read8bitoffsetreg() * * @brief this function is used to read an 8-bit value from the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * * output parameters * * returns 8-bit register value */ uint8 dwt_read8bitoffsetreg(int regFileID, int regOffset) { uint8 regval; dwt_readfromdevice(regFileID, regOffset, 1, ®val); return regval ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_write8bitoffsetreg() * * @brief this function is used to write an 8-bit value to the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * @param regval - the value to write * * output parameters * * no return value */ void dwt_write8bitoffsetreg(int regFileID, int regOffset, uint8 regval) { dwt_writetodevice(regFileID, regOffset, 1, ®val); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_write16bitoffsetreg() * * @brief this function is used to write 16-bit value to the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * @param regval - the value to write * * output parameters * * no return value */ void dwt_write16bitoffsetreg(int regFileID,int regOffset,uint16 regval) { uint8 buffer[2] ; buffer[0] = regval & 0xFF; buffer[1] = regval >> 8 ; dwt_writetodevice(regFileID,regOffset,2,buffer); } // end dwt_write16bitoffsetreg() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_write32bitoffsetreg() * * @brief this function is used to write 32-bit value to the DW1000 device registers * * input parameters: * @param regFileID - ID of register file or buffer being accessed * @param regOffset - the index into register file or buffer being accessed * @param regval - the value to write * * output parameters * * no return value */ void dwt_write32bitoffsetreg(int regFileID,int regOffset,uint32 regval) { int j ; uint8 buffer[4] ; for ( j = 0 ; j < 4 ; j++ ) { buffer[j] = regval & 0xff ; regval >>= 8 ; } dwt_writetodevice(regFileID,regOffset,4,buffer); } // end dwt_write32bitoffsetreg() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_enableframefilter() * * @brief This is used to enable the frame filtering - (the default option is to * accept any data and ACK frames with correct destination address * * input parameters * @param - bitmask - enables/disables the frame filtering options according to * DWT_FF_NOTYPE_EN 0x000 no frame types allowed * DWT_FF_COORD_EN 0x002 behave as coordinator (can receive frames with no destination address (PAN ID has to match)) * DWT_FF_BEACON_EN 0x004 beacon frames allowed * DWT_FF_DATA_EN 0x008 data frames allowed * DWT_FF_ACK_EN 0x010 ack frames allowed * DWT_FF_MAC_EN 0x020 mac control frames allowed * DWT_FF_RSVD_EN 0x040 reserved frame types allowed * * output parameters * * no return value */ void dwt_enableframefilter(uint16 enable) { uint32 sysconfig = SYS_CFG_MASK & dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register if(enable) { // Enable frame filtering and configure frame types sysconfig &= ~(SYS_CFG_FF_ALL_EN); // Clear all sysconfig |= (enable & SYS_CFG_FF_ALL_EN) | SYS_CFG_FFE; } else { sysconfig &= ~(SYS_CFG_FFE); } dw1000local.sysCFGreg = sysconfig ; dwt_write32bitreg(SYS_CFG_ID,sysconfig) ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setpanid() * * @brief This is used to set the PAN ID * * input parameters * @param panID - this is the PAN ID * * output parameters * * no return value */ void dwt_setpanid(uint16 panID) { // PAN ID is high 16 bits of register dwt_write16bitoffsetreg(PANADR_ID, PANADR_PAN_ID_OFFSET, panID); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setaddress16() * * @brief This is used to set 16-bit (short) address * * input parameters * @param shortAddress - this sets the 16 bit short address * * output parameters * * no return value */ void dwt_setaddress16(uint16 shortAddress) { // Short address into low 16 bits dwt_write16bitoffsetreg(PANADR_ID, PANADR_SHORT_ADDR_OFFSET, shortAddress); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_seteui() * * @brief This is used to set the EUI 64-bit (long) address * * input parameters * @param eui64 - this is the pointer to a buffer that contains the 64bit address * * output parameters * * no return value */ void dwt_seteui(uint8 *eui64) { dwt_writetodevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_geteui() * * @brief This is used to get the EUI 64-bit from the DW1000 * * input parameters * @param eui64 - this is the pointer to a buffer that will contain the read 64-bit EUI value * * output parameters * * no return value */ void dwt_geteui(uint8 *eui64) { dwt_readfromdevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_otpread() * * @brief This is used to read the OTP data from given address into provided array * * input parameters * @param address - this is the OTP address to read from * @param array - this is the pointer to the array into which to read the data * @param length - this is the number of 32 bit words to read (array needs to be at least this length) * * output parameters * * no return value */ void dwt_otpread(uint32 address, uint32 *array, uint8 length) { int i; _dwt_enableclocks(FORCE_SYS_XTI); // NOTE: Set system clock to XTAL - this is necessary to make sure the values read by _dwt_otpread are reliable for(i=0; i<length; i++) { array[i] = _dwt_otpread(address + i) ; } _dwt_enableclocks(ENABLE_ALL_SEQ); // Restore system clock to PLL return ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn _dwt_otpread() * * @brief function to read the OTP memory. Ensure that MR,MRa,MRb are reset to 0. * * input parameters * @param address - address to read at * * output parameters * * returns the 32bit of read data */ uint32 _dwt_otpread(uint32 address) { uint32 ret_data; // Write the address dwt_write16bitoffsetreg(OTP_IF_ID, OTP_ADDR, address); // Perform OTP Read - Manual read mode has to be set dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_OTPREAD | OTP_CTRL_OTPRDEN); dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, 0x00); // OTPREAD is self clearing but OTPRDEN is not // Read read data, available 40ns after rising edge of OTP_READ ret_data = dwt_read32bitoffsetreg(OTP_IF_ID, OTP_RDAT); // Return the 32bit of read data return ret_data; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn _dwt_otpsetmrregs() * * @brief Configure the MR registers for initial programming (enable charge pump). * Read margin is used to stress the read back from the * programmed bit. In normal operation this is relaxed. * * input parameters * @param mode - "0" : Reset all to 0x0: MRA=0x0000, MRB=0x0000, MR=0x0000 * "1" : Set for inital programming: MRA=0x9220, MRB=0x000E, MR=0x1024 * "2" : Set for soak programming: MRA=0x9220, MRB=0x0003, MR=0x1824 * "3" : High Vpp: MRA=0x9220, MRB=0x004E, MR=0x1824 * "4" : Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000 * "5" : Array Clean: MRA=0x0049, MRB=0x0003, MR=0x0024 * "4" : Very Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000 * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ uint32 _dwt_otpsetmrregs(int mode) { uint8 rd_buf[4]; uint8 wr_buf[4]; uint32 mra=0,mrb=0,mr=0; // PROGRAMME MRA // Set MRA, MODE_SEL wr_buf[0] = 0x03; dwt_writetodevice(OTP_IF_ID, OTP_CTRL+1,1,wr_buf); // Load data switch(mode&0x0f) { case 0x0 : mr =0x0000; mra=0x0000; mrb=0x0000; break; case 0x1 : mr =0x1024; mra=0x9220; // Enable CPP mon mrb=0x000e; break; case 0x2 : mr =0x1824; mra=0x9220; mrb=0x0003; break; case 0x3 : mr =0x1824; mra=0x9220; mrb=0x004e; break; case 0x4 : mr =0x0000; mra=0x0000; mrb=0x0003; break; case 0x5 : mr =0x0024; mra=0x0000; mrb=0x0003; break; default : return DWT_ERROR; } wr_buf[0] = mra & 0x00ff; wr_buf[1] = (mra & 0xff00)>>8; dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf); // Set WRITE_MR wr_buf[0] = 0x08; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); // Wait? // Set Clear Mode sel wr_buf[0] = 0x02; dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); // Set AUX update, write MR wr_buf[0] = 0x88; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); // Clear write MR wr_buf[0] = 0x80; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); // Clear AUX update wr_buf[0] = 0x00; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); /////////////////////////////////////////// // PROGRAM MRB // Set SLOW, MRB, MODE_SEL wr_buf[0] = 0x05; dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); wr_buf[0] = mrb & 0x00ff; wr_buf[1] = (mrb & 0xff00)>>8; dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf); // Set WRITE_MR wr_buf[0] = 0x08; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); // Wait? // Set Clear Mode sel wr_buf[0] = 0x04; dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); // Set AUX update, write MR wr_buf[0] = 0x88; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); // Clear write MR wr_buf[0] = 0x80; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); // Clear AUX update wr_buf[0] = 0x00; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); /////////////////////////////////////////// // PROGRAM MR // Set SLOW, MODE_SEL wr_buf[0] = 0x01; dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); // Load data wr_buf[0] = mr & 0x00ff; wr_buf[1] = (mr & 0xff00)>>8; dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf); // Set WRITE_MR wr_buf[0] = 0x08; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); // Wait? deca_sleep(10); // Set Clear Mode sel wr_buf[0] = 0x00; dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); // Read confirm mode writes. // Set man override, MRA_SEL wr_buf[0] = OTP_CTRL_OTPRDEN; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); wr_buf[0] = 0x02; dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); // MRB_SEL wr_buf[0] = 0x04; dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); deca_sleep(100); // Clear mode sel wr_buf[0] = 0x00; dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); // Clear MAN_OVERRIDE wr_buf[0] = 0x00; dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf); deca_sleep(10); if (((mode&0x0f) == 0x1)||((mode&0x0f) == 0x2)) { // Read status register dwt_readfromdevice(OTP_IF_ID, OTP_STAT,1,rd_buf); } return DWT_SUCCESS; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn _dwt_otpprogword32() * * @brief function to program the OTP memory. Ensure that MR,MRa,MRb are reset to 0. * VNM Charge pump needs to be enabled (see _dwt_otpsetmrregs) * Note the address is only 11 bits long. * * input parameters * @param address - address to read at * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ uint32 _dwt_otpprogword32(uint32 data, uint16 address) { uint8 rd_buf[1]; uint8 wr_buf[4]; uint8 otp_done; // Read status register dwt_readfromdevice(OTP_IF_ID, OTP_STAT, 1, rd_buf); if((rd_buf[0] & 0x02) != 0x02) { return DWT_ERROR; } // Write the data wr_buf[3] = (data>>24) & 0xff; wr_buf[2] = (data>>16) & 0xff; wr_buf[1] = (data>>8) & 0xff; wr_buf[0] = data & 0xff; dwt_writetodevice(OTP_IF_ID, OTP_WDAT, 4, wr_buf); // Write the address [10:0] wr_buf[1] = (address>>8) & 0x07; wr_buf[0] = address & 0xff; dwt_writetodevice(OTP_IF_ID, OTP_ADDR, 2, wr_buf); // Enable Sequenced programming wr_buf[0] = OTP_CTRL_OTPPROG; dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf); wr_buf[0] = 0x00; // And clear dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf); // WAIT for status to flag PRGM OK.. otp_done = 0; while(otp_done == 0) { deca_sleep(1); dwt_readfromdevice(OTP_IF_ID, OTP_STAT, 1, rd_buf); if((rd_buf[0] & 0x01) == 0x01) { otp_done = 1; } } return DWT_SUCCESS; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_otpwriteandverify() * * @brief This is used to program 32-bit value into the DW1000 OTP memory. * * input parameters * @param value - this is the 32-bit value to be programmed into OTP * @param address - this is the 16-bit OTP address into which the 32-bit value is programmed * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ uint32 dwt_otpwriteandverify(uint32 value, uint16 address) { int prog_ok = DWT_SUCCESS; int retry = 0; // Firstly set the system clock to crystal _dwt_enableclocks(FORCE_SYS_XTI); //set system clock to XTI // //!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!! //Set the supply to 3.7V // _dwt_otpsetmrregs(1); // Set mode for programming // For each value to program - the readback/check is done couple of times to verify it has programmed successfully while(1) { _dwt_otpprogword32(value, address); if(_dwt_otpread(address) == value) { break; } retry++; if(retry==5) { break; } } // Even if the above does not exit before retry reaches 5, the programming has probably been successful _dwt_otpsetmrregs(4); // Set mode for reading if(_dwt_otpread(address) != value) // If this does not pass please check voltage supply on VDDIO { prog_ok = DWT_ERROR; } _dwt_otpsetmrregs(0); // Setting OTP mode register for low RM read - resetting the device would be alternative return prog_ok; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn _dwt_aonconfigupload() * * @brief This function uploads always on (AON) configuration, as set in the AON_CFG0_OFFSET register. * * input parameters * * output parameters * * no return value */ void _dwt_aonconfigupload(void) { dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_UPL_CFG); dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register } /*! ------------------------------------------------------------------------------------------------------------------ * @fn _dwt_aonarrayupload() * * @brief This function uploads always on (AON) data array and configuration. Thus if this function is used, then _dwt_aonconfigupload * is not necessary. The DW1000 will go so SLEEP straight after this if the DWT_SLP_EN has been set. * * input parameters * * output parameters * * no return value */ void _dwt_aonarrayupload(void) { dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_SAVE); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_entersleep() * * @brief This function puts the device into deep sleep or sleep. dwt_configuresleep() should be called first * to configure the sleep and on-wake/wake-up parameters * * input parameters * * output parameters * * no return value */ void dwt_entersleep(void) { // Copy config to AON - upload the new configuration _dwt_aonarrayupload(); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configuresleepcnt() * * @brief sets the sleep counter to new value, this function programs the high 16-bits of the 28-bit counter * * NOTE: this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz * * input parameters * @param sleepcnt - this it value of the sleep counter to program * * output parameters * * no return value */ void dwt_configuresleepcnt(uint16 sleepcnt) { // Force system clock to crystal _dwt_enableclocks(FORCE_SYS_XTI); // Reset sleep configuration to make sure we don't accidentally go to sleep dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00); // NB: this write change the default LPCLKDIVA value which is not used anyway. dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00); // Disable the sleep counter _dwt_aonconfigupload(); // Set new value dwt_write16bitoffsetreg(AON_ID, AON_CFG0_OFFSET + AON_CFG0_SLEEP_TIM_OFFSET, sleepcnt); _dwt_aonconfigupload(); // Enable the sleep counter dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_SLEEP_CEN); _dwt_aonconfigupload(); // Put system PLL back on _dwt_enableclocks(ENABLE_ALL_SEQ); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_calibratesleepcnt() * * @brief calibrates the local oscillator as its frequency can vary between 7 and 13kHz depending on temp and voltage * * NOTE: this function needs to be run before dwt_configuresleepcnt, so that we know what the counter units are * * input parameters * * output parameters * * returns the number of XTAL/2 cycles per low-power oscillator cycle. LP OSC frequency = 19.2 MHz/return value */ uint16 dwt_calibratesleepcnt(void) { uint16 result; // Enable calibration of the sleep counter dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_LPOSC_CAL); _dwt_aonconfigupload(); // Disable calibration of the sleep counter dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00); _dwt_aonconfigupload(); // Force system clock to crystal _dwt_enableclocks(FORCE_SYS_XTI); deca_sleep(1); // Read the number of XTAL/2 cycles one LP oscillator cycle took. // Set up address - Read upper byte first dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_1); // Enable manual override dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); // Read confirm data that was written dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); // Read back byte from AON result = dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); result <<= 8; // Set up address - Read lower byte dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_0); // Enable manual override dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); // Read confirm data that was written dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); // Read back byte from AON result |= dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); // Disable manual override dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Put system PLL back on _dwt_enableclocks(ENABLE_ALL_SEQ); // Returns the number of XTAL/2 cycles per one LP OSC cycle // This can be converted into LP OSC frequency by 19.2 MHz/result return result; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configuresleep() * * @brief configures the device for both DEEP_SLEEP and SLEEP modes, and on-wake mode * i.e. before entering the sleep, the device should be programmed for TX or RX, then upon "waking up" the TX/RX settings * will be preserved and the device can immediately perform the desired action TX/RX * * NOTE: e.g. Tag operation - after deep sleep, the device needs to just load the TX buffer and send the frame * * * mode: the array and LDE code (OTP/ROM) and LDO tune, and set sleep persist * DWT_PRESRV_SLEEP 0x0100 - preserve sleep * DWT_LOADOPSET 0x0080 - load operating parameter set on wakeup * DWT_CONFIG 0x0040 - download the AON array into the HIF (configuration download) * DWT_LOADEUI 0x0008 * DWT_GOTORX 0x0002 * DWT_TANDV 0x0001 * * wake: wake up parameters * DWT_XTAL_EN 0x10 - keep XTAL running during sleep * DWT_WAKE_SLPCNT 0x8 - wake up after sleep count * DWT_WAKE_CS 0x4 - wake up on chip select * DWT_WAKE_WK 0x2 - wake up on WAKEUP PIN * DWT_SLP_EN 0x1 - enable sleep/deep sleep functionality * * input parameters * @param mode - config on-wake parameters * @param wake - config wake up parameters * * output parameters * * no return value */ void dwt_configuresleep(uint16 mode, uint8 wake) { // Add predefined sleep settings before writing the mode mode |= dw1000local.sleep_mode; dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, mode); dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, wake); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_entersleepaftertx(int enable) * * @brief sets the auto TX to sleep bit. This means that after a frame * transmission the device will enter deep sleep mode. The dwt_configuresleep() function * needs to be called before this to configure the on-wake settings * * NOTE: the IRQ line has to be low/inactive (i.e. no pending events) * * input parameters * @param enable - 1 to configure the device to enter deep sleep after TX, 0 - disables the configuration * * output parameters * * no return value */ void dwt_entersleepaftertx(int enable) { uint32 reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); // Set the auto TX -> sleep bit if(enable) { reg |= PMSC_CTRL1_ATXSLP; } else { reg &= ~(PMSC_CTRL1_ATXSLP); } dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, reg); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_spicswakeup() * * @brief wake up the device from sleep mode using the SPI read, * the device will wake up on chip select line going low if the line is held low for at least 500us. * To define the length depending on the time one wants to hold * the chip select line low, use the following formula: * * length (bytes) = time (s) * byte_rate (Hz) * * where fastest byte_rate is spi_rate (Hz) / 8 if the SPI is sending the bytes back-to-back. * To save time and power, a system designer could determine byte_rate value more precisely. * * NOTE: Alternatively the device can be waken up with WAKE_UP pin if configured for that operation * * input parameters * @param buff - this is a pointer to the dummy buffer which will be used in the SPI read transaction used for the WAKE UP of the device * @param length - this is the length of the dummy buffer * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error */ int dwt_spicswakeup(uint8 *buff, uint16 length) { if(dwt_readdevid() != DWT_DEVICE_ID) // Device was in deep sleep (the first read fails) { // Need to keep chip select line low for at least 500us dwt_readfromdevice(0x0, 0x0, length, buff); // Do a long read to wake up the chip (hold the chip select low) // Need 5ms for XTAL to start and stabilise (could wait for PLL lock IRQ status bit !!!) // NOTE: Polling of the STATUS register is not possible unless frequency is < 3MHz deca_sleep(5); } else { return DWT_SUCCESS; } // DEBUG - check if still in sleep mode if(dwt_readdevid() != DWT_DEVICE_ID) { return DWT_ERROR; } return DWT_SUCCESS; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn _dwt_configlde() * * @brief configure LDE algorithm parameters * * input parameters * @param prf - this is the PRF index (0 or 1) 0 corresponds to 16 and 1 to 64 PRF * * output parameters * * no return value */ void _dwt_configlde(int prfIndex) { dwt_write8bitoffsetreg(LDE_IF_ID, LDE_CFG1_OFFSET, LDE_PARAM1); // 8-bit configuration register if(prfIndex) { dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_64); // 16-bit LDE configuration tuning register } else { dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_16); } } /*! ------------------------------------------------------------------------------------------------------------------ * @fn _dwt_loaducodefromrom() * * @brief load ucode from OTP MEMORY or ROM * * input parameters * * output parameters * * no return value */ void _dwt_loaducodefromrom(void) { // Set up clocks _dwt_enableclocks(FORCE_LDE); // Kick off the LDE load dwt_write16bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_LDELOAD); // Set load LDE kick bit deca_sleep(1); // Allow time for code to upload (should take up to 120 us) // Default clocks (ENABLE_ALL_SEQ) _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_loadopsettabfromotp() * * @brief This is used to select which Operational Parameter Set table to load from OTP memory * * input parameters * @param ops_sel - Operational Parameter Set table to load: * DWT_OPSET_64LEN = 0x0 - load the operational parameter set table for 64 length preamble configuration * DWT_OPSET_TIGHT = 0x1 - load the operational parameter set table for tight xtal offsets (<1ppm) * DWT_OPSET_DEFLT = 0x2 - load the default operational parameter set table (this is loaded from reset) * * output parameters * * no return value */ void dwt_loadopsettabfromotp(uint8 ops_sel) { uint16 reg = ((ops_sel << OTP_SF_OPS_SEL_SHFT) & OTP_SF_OPS_SEL_MASK) | OTP_SF_OPS_KICK; // Select defined OPS table and trigger its loading // Set up clocks _dwt_enableclocks(FORCE_LDE); dwt_write16bitoffsetreg(OTP_IF_ID, OTP_SF, reg); // Default clocks (ENABLE_ALL_SEQ) _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setsmarttxpower() * * @brief This call enables or disables the smart TX power feature. * * input parameters * @param enable - this enables or disables the TX smart power (1 = enable, 0 = disable) * * output parameters * * no return value */ void dwt_setsmarttxpower(int enable) { // Config system register dw1000local.sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register // Disable smart power configuration if(enable) { dw1000local.sysCFGreg &= ~(SYS_CFG_DIS_STXP) ; } else { dw1000local.sysCFGreg |= SYS_CFG_DIS_STXP ; } dwt_write32bitreg(SYS_CFG_ID,dw1000local.sysCFGreg) ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_enableautoack() * * @brief This call enables the auto-ACK feature. If the responseDelayTime (parameter) is 0, the ACK will be sent a.s.a.p. * otherwise it will be sent with a programmed delay (in symbols), max is 255. * NOTE: needs to have frame filtering enabled as well * * input parameters * @param responseDelayTime - if non-zero the ACK is sent after this delay, max is 255. * * output parameters * * no return value */ void dwt_enableautoack(uint8 responseDelayTime) { // Set auto ACK reply delay dwt_write8bitoffsetreg(ACK_RESP_T_ID, ACK_RESP_T_ACK_TIM_OFFSET, responseDelayTime); // In symbols // Enable auto ACK dw1000local.sysCFGreg |= SYS_CFG_AUTOACK; dwt_write32bitreg(SYS_CFG_ID,dw1000local.sysCFGreg) ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setdblrxbuffmode() * * @brief This call enables the double receive buffer mode * * input parameters * @param enable - 1 to enable, 0 to disable the double buffer mode * * output parameters * * no return value */ void dwt_setdblrxbuffmode(int enable) { if(enable) { // Enable double RX buffer mode dw1000local.sysCFGreg &= ~SYS_CFG_DIS_DRXB; dw1000local.dblbuffon = 1; } else { // Disable double RX buffer mode dw1000local.sysCFGreg |= SYS_CFG_DIS_DRXB; dw1000local.dblbuffon = 0; } dwt_write32bitreg(SYS_CFG_ID,dw1000local.sysCFGreg) ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setrxaftertxdelay() * * @brief This sets the receiver turn on delay time after a transmission of a frame * * input parameters * @param rxDelayTime - (20 bits) - the delay is in UWB microseconds * * output parameters * * no return value */ void dwt_setrxaftertxdelay(uint32 rxDelayTime) { uint32 val = dwt_read32bitreg(ACK_RESP_T_ID) ; // Read ACK_RESP_T_ID register val &= ~(ACK_RESP_T_W4R_TIM_MASK) ; // Clear the timer (19:0) val |= (rxDelayTime & ACK_RESP_T_W4R_TIM_MASK) ; // In UWB microseconds (e.g. turn the receiver on 20uus after TX) dwt_write32bitreg(ACK_RESP_T_ID, val) ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setcallbacks() * * @brief This function is used to register the different callbacks called when one of the corresponding event occurs. * * NOTE: Callbacks can be undefined (set to NULL). In this case, dwt_isr() will process the event as usual but the 'null' * callback will not be called. * * input parameters * @param cbTxDone - the pointer to the TX confirmation event callback function * @param cbRxOk - the pointer to the RX good frame event callback function * @param cbRxTo - the pointer to the RX timeout events callback function * @param cbRxErr - the pointer to the RX error events callback function * * output parameters * * no return value */ void dwt_setcallbacks(dwt_cb_t cbTxDone, dwt_cb_t cbRxOk, dwt_cb_t cbRxTo, dwt_cb_t cbRxErr) { dw1000local.cbTxDone = cbTxDone; dw1000local.cbRxOk = cbRxOk; dw1000local.cbRxTo = cbRxTo; dw1000local.cbRxErr = cbRxErr; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_checkirq() * * @brief This function checks if the IRQ line is active - this is used instead of interrupt handler * * input parameters * * output parameters * * return value is 1 if the IRQS bit is set and 0 otherwise */ uint8 dwt_checkirq(void) { return (dwt_read8bitoffsetreg(SYS_STATUS_ID, SYS_STATUS_OFFSET) & SYS_STATUS_IRQS); // Reading the lower byte only is enough for this operation } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_isr() * * @brief This is the DW1000's general Interrupt Service Routine. It will process/report the following events: * - RXFCG (through cbRxOk callback) * - TXFRS (through cbTxDone callback) * - RXRFTO/RXPTO (through cbRxTo callback) * - RXPHE/RXFCE/RXRFSL/RXSFDTO/AFFREJ/LDEERR (through cbRxTo cbRxErr) * For all events, corresponding interrupts are cleared and necessary resets are performed. In addition, in the RXFCG case, * received frame information and frame control are read before calling the callback. If double buffering is activated, it * will also toggle between reception buffers once the reception callback processing has ended. * * /!\ This version of the ISR supports double buffering but does not support automatic RX re-enabling! * * NOTE: In PC based system using (Cheetah or ARM) USB to SPI converter there can be no interrupts, however we still need something * to take the place of it and operate in a polled way. In an embedded system this function should be configured to be triggered * on any of the interrupts described above. * input parameters * * output parameters * * no return value */ void dwt_isr(void) { uint32 status = dw1000local.cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits // Handle RX good frame event if(status & SYS_STATUS_RXFCG) { uint16 finfo16; uint16 len; dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits dw1000local.cbData.rx_flags = 0; // Read frame info - Only the first two bytes of the register are used here. finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, RX_FINFO_OFFSET); // Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes len = finfo16 & RX_FINFO_RXFL_MASK_1023; if(dw1000local.longFrames == 0) { len &= RX_FINFO_RXFLEN_MASK; } dw1000local.cbData.datalength = len; // Report ranging bit if(finfo16 & RX_FINFO_RNG) { dw1000local.cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; } // Report frame control - First bytes of the received frame. dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, dw1000local.cbData.fctrl); // Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for // acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this // implementation works only for IEEE802.15.4-2011 compliant frames). // This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016). if((status & SYS_STATUS_AAT) && ((dw1000local.cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) { dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register dw1000local.cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy dw1000local.wait4resp = 0; } // Call the corresponding callback if present if(dw1000local.cbRxOk != NULL) { dw1000local.cbRxOk(&dw1000local.cbData); } if (dw1000local.dblbuffon) { // Toggle the Host side Receive Buffer Pointer dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET, 1); } } // Handle TX confirmation event if(status & SYS_STATUS_TXFRS) { dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_TX); // Clear TX event bits // In the case where this TXFRS interrupt is due to the automatic transmission of an ACK solicited by a response (with ACK request bit set) // that we receive through using wait4resp to a previous TX (and assuming that the IRQ processing of that TX has already been handled), then // we need to handle the IC issue which turns on the RX again in this situation (i.e. because it is wrongly applying the wait4resp after the // ACK TX). // See section "Transmit and automatically wait for response" in DW1000 User Manual if((status & SYS_STATUS_AAT) && dw1000local.wait4resp) { dwt_forcetrxoff(); // Turn the RX off dwt_rxreset(); // Reset in case we were late and a frame was already being received } // Call the corresponding callback if present if(dw1000local.cbTxDone != NULL) { dw1000local.cbTxDone(&dw1000local.cbData); } } // Handle frame reception/preamble detect timeout events if(status & SYS_STATUS_ALL_RX_TO) { dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXRFTO); // Clear RX timeout event bits dw1000local.wait4resp = 0; // Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure // the next good frame's timestamp is computed correctly. // See section "RX Message timestamp" in DW1000 User Manual. dwt_forcetrxoff(); dwt_rxreset(); // Call the corresponding callback if present if(dw1000local.cbRxTo != NULL) { dw1000local.cbRxTo(&dw1000local.cbData); } } // Handle RX errors events if(status & SYS_STATUS_ALL_RX_ERR) { dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); // Clear RX error event bits dw1000local.wait4resp = 0; // Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure // the next good frame's timestamp is computed correctly. // See section "RX Message timestamp" in DW1000 User Manual. dwt_forcetrxoff(); dwt_rxreset(); // Call the corresponding callback if present if(dw1000local.cbRxErr != NULL) { dw1000local.cbRxErr(&dw1000local.cbData); } } } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_isr_lplisten() * * @brief This is the DW1000's Interrupt Service Routine to use when low-power listening scheme is implemented. It will * only process/report the RXFCG event (through cbRxOk callback). * It clears RXFCG interrupt and reads received frame information and frame control before calling the callback. * * /!\ This version of the ISR is designed for single buffering case only! * * input parameters * * output parameters * * no return value */ void dwt_lowpowerlistenisr(void) { uint32 status = dw1000local.cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits uint16 finfo16; uint16 len; // The only interrupt handled when in low-power listening mode is RX good frame so proceed directly to the handling of the received frame. // Deactivate low-power listening before clearing the interrupt. If not, the DW1000 will go back to sleep as soon as the interrupt is cleared. dwt_setlowpowerlistening(0); dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits dw1000local.cbData.rx_flags = 0; // Read frame info - Only the first two bytes of the register are used here. finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, 0); // Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes len = finfo16 & RX_FINFO_RXFL_MASK_1023; if(dw1000local.longFrames == 0) { len &= RX_FINFO_RXFLEN_MASK; } dw1000local.cbData.datalength = len; // Report ranging bit if(finfo16 & RX_FINFO_RNG) { dw1000local.cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; } // Report frame control - First bytes of the received frame. dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, dw1000local.cbData.fctrl); // Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for // acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this // implementation works only for IEEE802.15.4-2011 compliant frames). // This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016). if((status & SYS_STATUS_AAT) && ((dw1000local.cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) { dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register dw1000local.cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy dw1000local.wait4resp = 0; } // Call the corresponding callback if present if(dw1000local.cbRxOk != NULL) { dw1000local.cbRxOk(&dw1000local.cbData); } } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setleds() * * @brief This is used to set up Tx/Rx GPIOs which could be used to control LEDs * Note: not completely IC dependent, also needs board with LEDS fitted on right I/O lines * this function enables GPIOs 2 and 3 which are connected to LED3 and LED4 on EVB1000 * * input parameters * @param mode - this is a bit field interpreted as follows: * - bit 0: 1 to enable LEDs, 0 to disable them * - bit 1: 1 to make LEDs blink once on init. Only valid if bit 0 is set (enable LEDs) * - bit 2 to 7: reserved * * output parameters none * * no return value */ void dwt_setleds(uint8 mode) { uint32 reg; if (mode & DWT_LEDS_ENABLE) { // Set up MFIO for LED output. reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); reg |= (GPIO_PIN2_RXLED | GPIO_PIN3_TXLED); dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); // Enable LP Oscillator to run from counter and turn on de-bounce clock. reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); reg |= (PMSC_CTRL0_GPDCE | PMSC_CTRL0_KHZCLEN); dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, reg); // Enable LEDs to blink and set default blink time. reg = PMSC_LEDC_BLNKEN | PMSC_LEDC_BLINK_TIME_DEF; // Make LEDs blink once if requested. if (mode & DWT_LEDS_INIT_BLINK) { reg |= PMSC_LEDC_BLINK_NOW_ALL; } dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); // Clear force blink bits if needed. if(mode & DWT_LEDS_INIT_BLINK) { reg &= ~PMSC_LEDC_BLINK_NOW_ALL; dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); } } else { // Clear the GPIO bits that are used for LED control. reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); } } /*! ------------------------------------------------------------------------------------------------------------------ * @fn _dwt_enableclocks() * * @brief function to enable/disable clocks to particular digital blocks/system * * input parameters * @param clocks - set of clocks to enable/disable * * output parameters none * * no return value */ void _dwt_enableclocks(int clocks) { uint8 reg[2]; dwt_readfromdevice(PMSC_ID, PMSC_CTRL0_OFFSET, 2, reg); switch(clocks) { case ENABLE_ALL_SEQ: { reg[0] = 0x00 ; reg[1] = reg[1] & 0xfe; } break; case FORCE_SYS_XTI: { // System and RX reg[0] = 0x01 | (reg[0] & 0xfc); } break; case FORCE_SYS_PLL: { // System reg[0] = 0x02 | (reg[0] & 0xfc); } break; case READ_ACC_ON: { reg[0] = 0x48 | (reg[0] & 0xb3); reg[1] = 0x80 | reg[1]; } break; case READ_ACC_OFF: { reg[0] = reg[0] & 0xb3; reg[1] = 0x7f & reg[1]; } break; case FORCE_OTP_ON: { reg[1] = 0x02 | reg[1]; } break; case FORCE_OTP_OFF: { reg[1] = reg[1] & 0xfd; } break; case FORCE_TX_PLL: { reg[0] = 0x20 | (reg[0] & 0xcf); } break; case FORCE_LDE: { reg[0] = 0x01; reg[1] = 0x03; } break; default: break; } // Need to write lower byte separately before setting the higher byte(s) dwt_writetodevice(PMSC_ID, PMSC_CTRL0_OFFSET, 1, ®[0]); dwt_writetodevice(PMSC_ID, 0x1, 1, ®[1]); } // end _dwt_enableclocks() /*! ------------------------------------------------------------------------------------------------------------------ * @fn _dwt_disablesequencing() * * @brief This function disables the TX blocks sequencing, it disables PMSC control of RF blocks, system clock is also set to XTAL * * input parameters none * * output parameters none * * no return value */ void _dwt_disablesequencing(void) // Disable sequencing and go to state "INIT" { _dwt_enableclocks(FORCE_SYS_XTI); // Set system clock to XTI dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); // Disable PMSC ctrl of RF and RX clk blocks } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setdelayedtrxtime() * * @brief This API function configures the delayed transmit time or the delayed RX on time * * input parameters * @param starttime - the TX/RX start time (the 32 bits should be the high 32 bits of the system time at which to send the message, * or at which to turn on the receiver) * * output parameters none * * no return value */ void dwt_setdelayedtrxtime(uint32 starttime) { dwt_write32bitoffsetreg(DX_TIME_ID, 1, starttime); // Write at offset 1 as the lower 9 bits of this register are ignored } // end dwt_setdelayedtrxtime() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_starttx() * * @brief This call initiates the transmission, input parameter indicates which TX mode is used see below * * input parameters: * @param mode - if 0 immediate TX (no response expected) * if 1 delayed TX (no response expected) * if 2 immediate TX (response expected - so the receiver will be automatically turned on after TX is done) * if 3 delayed TX (response expected - so the receiver will be automatically turned on after TX is done) * * output parameters * * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed transmission will fail if the delayed time has passed) */ int dwt_starttx(uint8 mode) { int retval = DWT_SUCCESS ; uint8 temp = 0x00; uint16 checkTxOK = 0 ; if(mode & DWT_RESPONSE_EXPECTED) { temp = (uint8)SYS_CTRL_WAIT4RESP ; // Set wait4response bit dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); dw1000local.wait4resp = 1; } if (mode & DWT_START_TX_DELAYED) { // Both SYS_CTRL_TXSTRT and SYS_CTRL_TXDLYS to correctly enable TX temp |= (uint8)(SYS_CTRL_TXDLYS | SYS_CTRL_TXSTRT) ; dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); checkTxOK = dwt_read16bitoffsetreg(SYS_STATUS_ID, 3); // Read at offset 3 to get the upper 2 bytes out of 5 if ((checkTxOK & SYS_STATUS_TXERR) == 0) // Transmit Delayed Send set over Half a Period away or Power Up error (there is enough time to send but not to power up individual blocks). { retval = DWT_SUCCESS ; // All okay } else { // I am taking DSHP set to Indicate that the TXDLYS was set too late for the specified DX_TIME. // Remedial Action - (a) cancel delayed send temp = (uint8)SYS_CTRL_TRXOFF; // This assumes the bit is in the lowest byte dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); // Note event Delayed TX Time too Late // Could fall through to start a normal send (below) just sending late..... // ... instead return and assume return value of 1 will be used to detect and recover from the issue. dw1000local.wait4resp = 0; retval = DWT_ERROR ; // Failed ! } } else { temp |= (uint8)SYS_CTRL_TXSTRT ; dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); } return retval; } // end dwt_starttx() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_forcetrxoff() * * @brief This is used to turn off the transceiver * * input parameters * * output parameters * * no return value */ void dwt_forcetrxoff(void) { decaIrqStatus_t stat ; uint32 mask; mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read set interrupt mask // Need to beware of interrupts occurring in the middle of following read modify write cycle // We can disable the radio, but before the status is cleared an interrupt can be set (e.g. the // event has just happened before the radio was disabled) // thus we need to disable interrupt during this operation stat = decamutexon() ; dwt_write32bitreg(SYS_MASK_ID, 0) ; // Clear interrupt mask - so we don't get any unwanted events dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, (uint8)SYS_CTRL_TRXOFF) ; // Disable the radio // Forcing Transceiver off - so we do not want to see any new events that may have happened dwt_write32bitreg(SYS_STATUS_ID, (SYS_STATUS_ALL_TX | SYS_STATUS_ALL_RX_ERR | SYS_STATUS_ALL_RX_TO | SYS_STATUS_ALL_RX_GOOD)); dwt_syncrxbufptrs(); dwt_write32bitreg(SYS_MASK_ID, mask) ; // Set interrupt mask to what it was // Enable/restore interrupts again... decamutexoff(stat) ; dw1000local.wait4resp = 0; } // end deviceforcetrxoff() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_syncrxbufptrs() * * @brief this function synchronizes rx buffer pointers * need to make sure that the host/IC buffer pointers are aligned before starting RX * * input parameters: * * output parameters * * no return value */ void dwt_syncrxbufptrs(void) { uint8 buff ; // Need to make sure that the host/IC buffer pointers are aligned before starting RX buff = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 if((buff & (SYS_STATUS_ICRBP >> 24)) != // IC side Receive Buffer Pointer ((buff & (SYS_STATUS_HSRBP>>24)) << 1) ) // Host Side Receive Buffer Pointer { dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET , 0x01) ; // We need to swap RX buffer status reg (write one to toggle internally) } } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setsniffmode() * * @brief enable/disable and configure SNIFF mode. * * SNIFF mode is a low-power reception mode where the receiver is sequenced on and off instead of being on all the time. * The time spent in each state (on/off) is specified through the parameters below. * See DW1000 User Manual section 4.5 "Low-Power SNIFF mode" for more details. * * input parameters: * @param enable - 1 to enable SNIFF mode, 0 to disable. When 0, all other parameters are not taken into account. * @param timeOn - duration of receiver ON phase, expressed in multiples of PAC size. The counter automatically adds 1 PAC * size to the value set. Min value that can be set is 1 (i.e. an ON time of 2 PAC size), max value is 15. * @param timeOff - duration of receiver OFF phase, expressed in multiples of 128/125 µs (~1 µs). Max value is 255. * * output parameters * * no return value */ void dwt_setsniffmode(int enable, uint8 timeOn, uint8 timeOff) { uint32 pmsc_reg; if (enable) { /* Configure ON/OFF times and enable PLL2 on/off sequencing by SNIFF mode. */ uint16 sniff_reg = ((timeOff << 8) | timeOn) & RX_SNIFF_MASK; dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, sniff_reg); pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); pmsc_reg |= PMSC_CTRL0_PLL2_SEQ_EN; dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); } else { /* Clear ON/OFF times and disable PLL2 on/off sequencing by SNIFF mode. */ dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, 0x0000); pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); pmsc_reg &= ~PMSC_CTRL0_PLL2_SEQ_EN; dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); } } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setlowpowerlistening() * * @brief enable/disable low-power listening mode. * * Low-power listening is a feature whereby the DW1000 is predominantly in the SLEEP state but wakes periodically, (after * this "long sleep"), for a very short time to sample the air for a preamble sequence. This preamble sampling "listening" * phase is actually two reception phases separated by a "short sleep" time. See DW1000 User Manual section "Low-Power * Listening" for more details. * * NOTE: Before enabling low-power listening, the following functions have to be called to fully configure it: * - dwt_configuresleep() to configure long sleep phase. "mode" parameter should at least have DWT_PRESRV_SLEEP, * DWT_CONFIG and DWT_RX_EN set and "wake" parameter should at least have both DWT_WAKE_SLPCNT and DWT_SLP_EN set. * - dwt_calibratesleepcnt() and dwt_configuresleepcnt() to define the "long sleep" phase duration. * - dwt_setsnoozetime() to define the "short sleep" phase duration. * - dwt_setpreambledetecttimeout() to define the reception phases duration. * - dwt_setinterrupt() to activate RX good frame interrupt (DWT_INT_RFCG) only. * When configured, low-power listening mode can be triggered either by putting the DW1000 to sleep (using * dwt_entersleep()) or by activating reception (using dwt_rxenable()). * * Please refer to the low-power listening examples (examples 8a/8b accompanying the API distribution on Decawave's * website). They form a working example code that shows how to use low-power listening correctly. * * input parameters: * @param enable - 1 to enable low-power listening, 0 to disable. * * output parameters * * no return value */ void dwt_setlowpowerlistening(int enable) { uint32 pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); if (enable) { /* Configure RX to sleep and snooze features. */ pmsc_reg |= (PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); } else { /* Reset RX to sleep and snooze features. */ pmsc_reg &= ~(PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); } dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, pmsc_reg); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setsnoozetime() * * @brief Set duration of "short sleep" phase when in low-power listening mode. * * input parameters: * @param snooze_time - "short sleep" phase duration, expressed in multiples of 512/19.2 µs (~26.7 µs). The counter * automatically adds 1 to the value set. The smallest working value that should be set is 1, * i.e. giving a snooze time of 2 units (or ~53 µs). * * output parameters * * no return value */ void dwt_setsnoozetime(uint8 snooze_time) { dwt_write8bitoffsetreg(PMSC_ID, PMSC_SNOZT_OFFSET, snooze_time); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_rxenable() * * @brief This call turns on the receiver, can be immediate or delayed (depending on the mode parameter). In the case of a * "late" error the receiver will only be turned on if the DWT_IDLE_ON_DLY_ERR is not set. * The receiver will stay turned on, listening to any messages until * it either receives a good frame, an error (CRC, PHY header, Reed Solomon) or it times out (SFD, Preamble or Frame). * * input parameters * @param mode - this can be one of the following allowed values: * * DWT_START_RX_IMMEDIATE 0 used to enbale receiver immediately * DWT_START_RX_DELAYED 1 used to set up delayed RX, if "late" error triggers, then the RX will be enabled immediately * (DWT_START_RX_DELAYED | DWT_IDLE_ON_DLY_ERR) 3 used to disable re-enabling of receiver if delayed RX failed due to "late" error * (DWT_START_RX_IMMEDIATE | DWT_NO_SYNC_PTRS) 4 used to re-enable RX without trying to sync IC and host side buffer pointers, typically when * performing manual RX re-enabling in double buffering mode * * returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed receive enable will be too far in the future if delayed time has passed) */ int dwt_rxenable(int mode) { uint16 temp ; uint8 temp1 ; if ((mode & DWT_NO_SYNC_PTRS) == 0) { dwt_syncrxbufptrs(); } temp = (uint16)SYS_CTRL_RXENAB ; if (mode & DWT_START_RX_DELAYED) { temp |= (uint16)SYS_CTRL_RXDLYE ; } dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); if (mode & DWT_START_RX_DELAYED) // check for errors { temp1 = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 if ((temp1 & (SYS_STATUS_HPDWARN >> 24)) != 0) // if delay has passed do immediate RX on unless DWT_IDLE_ON_DLY_ERR is true { dwt_forcetrxoff(); // turn the delayed receive off if((mode & DWT_IDLE_ON_DLY_ERR) == 0) // if DWT_IDLE_ON_DLY_ERR not set then re-enable receiver { dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_RXENAB); } return DWT_ERROR; // return warning indication } } return DWT_SUCCESS; } // end dwt_rxenable() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setrxtimeout() * * @brief This call enables RX timeout (SY_STAT_RFTO event) * * input parameters * @param time - how long the receiver remains on from the RX enable command * The time parameter used here is in 1.0256 us (512/499.2MHz) units * If set to 0 the timeout is disabled. * * output parameters * * no return value */ void dwt_setrxtimeout(uint16 time) { uint8 temp ; temp = dwt_read8bitoffsetreg(SYS_CFG_ID, 3); // Read at offset 3 to get the upper byte only if(time > 0) { dwt_write16bitoffsetreg(RX_FWTO_ID, RX_FWTO_OFFSET, time) ; temp |= (uint8)(SYS_CFG_RXWTOE>>24); // Shift RXWTOE mask as we read the upper byte only // OR in 32bit value (1 bit set), I know this is in high byte. dw1000local.sysCFGreg |= SYS_CFG_RXWTOE; dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only } else { temp &= ~((uint8)(SYS_CFG_RXWTOE>>24)); // Shift RXWTOE mask as we read the upper byte only // AND in inverted 32bit value (1 bit clear), I know this is in high byte. dw1000local.sysCFGreg &= ~(SYS_CFG_RXWTOE); dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only } } // end dwt_setrxtimeout() /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setpreambledetecttimeout() * * @brief This call enables preamble timeout (SY_STAT_RXPTO event) * * input parameters * @param timeout - Preamble detection timeout, expressed in multiples of PAC size. The counter automatically adds 1 PAC * size to the value set. Min value that can be set is 1 (i.e. a timeout of 2 PAC size). * * output parameters * * no return value */ void dwt_setpreambledetecttimeout(uint16 timeout) { dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_PRETOC_OFFSET, timeout); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn void dwt_setinterrupt() * * @brief This function enables the specified events to trigger an interrupt. * The following events can be enabled: * DWT_INT_TFRS 0x00000080 // frame sent * DWT_INT_RFCG 0x00004000 // frame received with good CRC * DWT_INT_RPHE 0x00001000 // receiver PHY header error * DWT_INT_RFCE 0x00008000 // receiver CRC error * DWT_INT_RFSL 0x00010000 // receiver sync loss error * DWT_INT_RFTO 0x00020000 // frame wait timeout * DWT_INT_RXPTO 0x00200000 // preamble detect timeout * DWT_INT_SFDT 0x04000000 // SFD timeout * DWT_INT_ARFE 0x20000000 // frame rejected (due to frame filtering configuration) * * * input parameters: * @param bitmask - sets the events which will generate interrupt * @param enable - if set the interrupts are enabled else they are cleared * * output parameters * * no return value */ void dwt_setinterrupt(uint32 bitmask, uint8 enable) { decaIrqStatus_t stat ; uint32 mask ; // Need to beware of interrupts occurring in the middle of following read modify write cycle stat = decamutexon() ; mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read register if(enable) { mask |= bitmask ; } else { mask &= ~bitmask ; // Clear the bit } dwt_write32bitreg(SYS_MASK_ID,mask) ; // New value decamutexoff(stat) ; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configeventcounters() * * @brief This is used to enable/disable the event counter in the IC * * input parameters * @param - enable - 1 enables (and reset), 0 disables the event counters * output parameters * * no return value */ void dwt_configeventcounters(int enable) { // Need to clear and disable, can't just clear dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_CLR)); if(enable) { dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_EN)); // Enable } } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readeventcounters() * * @brief This is used to read the event counters in the IC * * input parameters * @param counters - pointer to the dwt_deviceentcnts_t structure which will hold the read data * * output parameters * * no return value */ void dwt_readeventcounters(dwt_deviceentcnts_t *counters) { uint32 temp; temp= dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_PHE_OFFSET); // Read sync loss (31-16), PHE (15-0) counters->PHE = temp & 0xFFF; counters->RSL = (temp >> 16) & 0xFFF; temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FCG_OFFSET); // Read CRC bad (31-16), CRC good (15-0) counters->CRCG = temp & 0xFFF; counters->CRCB = (temp >> 16) & 0xFFF; temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FFR_OFFSET); // Overruns (31-16), address errors (15-0) counters->ARFE = temp & 0xFFF; counters->OVER = (temp >> 16) & 0xFFF; temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_STO_OFFSET); // Read PTO (31-16), SFDTO (15-0) counters->PTO = (temp >> 16) & 0xFFF; counters->SFDTO = temp & 0xFFF; temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FWTO_OFFSET); // Read RX TO (31-16), TXFRAME (15-0) counters->TXF = (temp >> 16) & 0xFFF; counters->RTO = temp & 0xFFF; temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_HPW_OFFSET); // Read half period warning events counters->HPW = temp & 0xFFF; counters->TXW = (temp >> 16) & 0xFFF; // Power-up warning events } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_rxreset() * * @brief this function resets the receiver of the DW1000 * * input parameters: * * output parameters * * no return value */ void dwt_rxreset(void) { // Set RX reset dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_RX); // Clear RX reset dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_softreset() * * @brief this function resets the DW1000 * * input parameters: * * output parameters * * no return value */ void dwt_softreset(void) { _dwt_disablesequencing(); // Clear any AON auto download bits (as reset will trigger AON download) dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, 0x00); // Clear the wake-up configuration dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00); // Upload the new configuration _dwt_aonarrayupload(); // Reset HIF, TX, RX and PMSC dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_ALL); // DW1000 needs a 10us sleep to let clk PLL lock after reset - the PLL will automatically lock after the reset // Could also have polled the PLL lock flag, but then the SPI needs to be < 3MHz !! So a simple delay is easier deca_sleep(1); // Clear reset dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); dw1000local.wait4resp = 0; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_setxtaltrim() * * @brief This is used to adjust the crystal frequency * * input parameters: * @param value - crystal trim value (in range 0x0 to 0x1F) 31 steps (~1.5ppm per step) * * output parameters * * no return value */ void dwt_setxtaltrim(uint8 value) { // The 3 MSb in this 8-bit register must be kept to 0b011 to avoid any malfunction. uint8 reg_val = (3 << 5) | (value & FS_XTALT_MASK); dwt_write8bitoffsetreg(FS_CTRL_ID, FS_XTALT_OFFSET, reg_val); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_getinitxtaltrim() * * @brief This function returns the value of XTAL trim that has been applied during initialisation (dwt_init). This can * be either the value read in OTP memory or a default value. * * NOTE: The value returned by this function is the initial value only! It is not updated on dwt_setxtaltrim calls. * * input parameters * * output parameters * * returns the XTAL trim value set upon initialisation */ uint8 dwt_getinitxtaltrim(void) { return dw1000local.init_xtrim; } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configcwmode() * * @brief this function sets the DW1000 to transmit cw signal at specific channel frequency * * input parameters: * @param chan - specifies the operating channel (e.g. 1, 2, 3, 4, 5, 6 or 7) * * output parameters * * no return value */ void dwt_configcwmode(uint8 chan) { #ifdef DWT_API_ERROR_CHECK assert((chan >= 1) && (chan <= 7) && (chan != 6)); #endif // // Disable TX/RX RF block sequencing (needed for cw frame mode) // _dwt_disablesequencing(); // Config RF pll (for a given channel) // Configure PLL2/RF PLL block CFG/TUNE dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); // PLL wont be enabled until a TX/RX enable is issued later on // Configure RF TX blocks (for specified channel and prf) // Config RF TX control dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); // // Enable RF PLL // dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks // // Configure TX clocks // dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, 0x22); dwt_write8bitoffsetreg(PMSC_ID, 0x1, 0x07); // Disable fine grain TX sequencing dwt_setfinegraintxseq(0); // Configure CW mode dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGTEST_OFFSET, TC_PGTEST_CW); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_configcontinuousframemode() * * @brief this function sets the DW1000 to continuous tx frame mode for regulatory approvals testing. * * input parameters: * @param framerepetitionrate - This is a 32-bit value that is used to set the interval between transmissions. * The minimum value is 4. The units are approximately 8 ns. (or more precisely 512/(499.2e6*128) seconds)). * * output parameters * * no return value */ void dwt_configcontinuousframemode(uint32 framerepetitionrate) { // // Disable TX/RX RF block sequencing (needed for continuous frame mode) // _dwt_disablesequencing(); // // Enable RF PLL and TX blocks // dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks // // Configure TX clocks // _dwt_enableclocks(FORCE_SYS_PLL); _dwt_enableclocks(FORCE_TX_PLL); // Set the frame repetition rate if(framerepetitionrate < 4) { framerepetitionrate = 4; } dwt_write32bitreg(DX_TIME_ID, framerepetitionrate); // // Configure continuous frame TX // dwt_write8bitoffsetreg(DIG_DIAG_ID, DIAG_TMC_OFFSET, (uint8)(DIAG_TMC_TX_PSTM)); // Turn the tx power spectrum test mode - continuous sending of frames } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readtempvbat() * * @brief this function reads the battery voltage and temperature of the MP * The values read here will be the current values sampled by DW1000 AtoD converters. * Note on Temperature: the temperature value needs to be converted to give the real temperature * the formula is: 1.13 * reading - 113.0 * Note on Voltage: the voltage value needs to be converted to give the real voltage * the formula is: 0.0057 * reading + 2.3 * * NB: To correctly read the temperature this read should be done with xtal clock * however that means that the receiver will be switched off, if receiver needs to be on then * the timer is used to make sure the value is stable before reading * * input parameters: * @param fastSPI - set to 1 if SPI rate > than 3MHz is used * * output parameters * * returns (temp_raw<<8)|(vbat_raw) */ uint16 dwt_readtempvbat(uint8 fastSPI) { uint8 wr_buf[2]; uint8 vbat_raw; uint8 temp_raw; // These writes should be single writes and in sequence wr_buf[0] = 0x80; // Enable TLD Bias dwt_writetodevice(RF_CONF_ID,0x11,1,wr_buf); wr_buf[0] = 0x0A; // Enable TLD Bias and ADC Bias dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); wr_buf[0] = 0x0f; // Enable Outputs (only after Biases are up and running) dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); // // Reading All SAR inputs wr_buf[0] = 0x00; dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf); wr_buf[0] = 0x01; // Set SAR enable dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf); if(fastSPI == 1) { deca_sleep(1); // If using PLL clocks(and fast SPI rate) then this sleep is needed // Read voltage and temperature. dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf); } else //change to a slow clock { _dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read are reliable // Read voltage and temperature. dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf); // Default clocks (ENABLE_ALL_SEQ) _dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing } vbat_raw = wr_buf[0]; temp_raw = wr_buf[1]; wr_buf[0] = 0x00; // Clear SAR enable dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf); return ((temp_raw<<8)|(vbat_raw)); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readwakeuptemp() * * @brief this function reads the temperature of the DW1000 that was sampled * on waking from Sleep/Deepsleep. They are not current values, but read on last * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep * * input parameters: * * output parameters: * * returns: 8-bit raw temperature sensor value */ uint8 dwt_readwakeuptemp(void) { return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LTEMP_OFFSET); } /*! ------------------------------------------------------------------------------------------------------------------ * @fn dwt_readwakeupvbat() * * @brief this function reads the battery voltage of the DW1000 that was sampled * on waking from Sleep/Deepsleep. They are not current values, but read on last * wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep * * input parameters: * * output parameters: * * returns: 8-bit raw battery voltage sensor value */ uint8 dwt_readwakeupvbat(void) { return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET); } /* =============================================================================================== List of expected (known) device ID handled by this software =============================================================================================== 0xDECA0130 // DW1000 - MP =============================================================================================== */