Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Fri Mar 01 23:53:59 2019 +0000
Revision:
98:4df3c0f7e707
Parent:
92:f264fbaa1be5
Child:
99:8139b0c274f4
Modified flipper logic timing; add Minimum Time Output port flag (proposed changes only; may be replaced collectively by a new Chime Logic type)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 87:8d35c74403af 3 // !!! ATTENTION !!!
mjr 87:8d35c74403af 4 // If you've come here on advice in a forum to change a GPIO setting or
mjr 87:8d35c74403af 5 // to #define a macro to enable the expansion boards, >>>STOP NOW<<<. The
mjr 87:8d35c74403af 6 // advice you found is out of date and no longer applies. You don't need
mjr 87:8d35c74403af 7 // to edit this file or recompile the firmware, and you shouldn't. Instead,
mjr 87:8d35c74403af 8 // use the standard firmware, and set options using the Pinscape Config Tool
mjr 87:8d35c74403af 9 // on your Windows PC. All options that were formerly configurable by
mjr 87:8d35c74403af 10 // editing this file can be selected with the Config Tool. That's much
mjr 87:8d35c74403af 11 // cleaner and easier than editing the source code, and it eliminates the
mjr 87:8d35c74403af 12 // problem of re-synchronizing a private copy of the source code with future
mjr 87:8d35c74403af 13 // updates. With the config tool, you only need the standard firmware build,
mjr 87:8d35c74403af 14 // so future updates are a simple matter of downloading the latest version.
mjr 35:e959ffba78fd 15 //
mjr 35:e959ffba78fd 16 //
mjr 87:8d35c74403af 17 // IN THE PAST (but NOT NOW - see above), configuration was handled mostly
mjr 87:8d35c74403af 18 // with #defines and #ifdefs. To customize the setup, you had to create a
mjr 87:8d35c74403af 19 // private forked copy of the source code, edit the constants defined in
mjr 87:8d35c74403af 20 // config.h, and compile a custom binary. That's no longer necessary because
mjr 87:8d35c74403af 21 // the config tool lets you set all configurable options dynamically. Of
mjr 87:8d35c74403af 22 // course, you're still free to create a custom version if you want to add
mjr 87:8d35c74403af 23 // entirely new features or make changes that go beyond the configurable
mjr 87:8d35c74403af 24 // options.
mjr 35:e959ffba78fd 25 //
mjr 87:8d35c74403af 26 #ifndef CONFIG_H
mjr 87:8d35c74403af 27 #define CONFIG_H
mjr 35:e959ffba78fd 28
mjr 90:aa4e571da8e8 29 #include "USBJoystick.h"
mjr 90:aa4e571da8e8 30
mjr 87:8d35c74403af 31
mjr 87:8d35c74403af 32 // TEST SETTINGS - FOR DEBUGGING PURPOSES ONLY. The macros below select
mjr 87:8d35c74403af 33 // special option combinations for debugging purposes.
mjr 55:4db125cd11a0 34 //
mjr 87:8d35c74403af 35 // IMPORTANT! If you're trying to create a custom configuration because
mjr 87:8d35c74403af 36 // you have a pin conflict or because you're using the expansion boards,
mjr 87:8d35c74403af 37 // DON'T modify this file, DON'T use these macros, and DON'T recompile
mjr 87:8d35c74403af 38 // the firmware. Use the Config Tool on your Windows PC instead.
mjr 55:4db125cd11a0 39 #define STANDARD_CONFIG 1 // standard settings, based on v1 base settings
mjr 55:4db125cd11a0 40 #define TEST_CONFIG_EXPAN 0 // configuration for the expansion boards
mjr 80:94dc2946871b 41 #define TEST_KEEP_PRINTF 0 // for debugging purposes, keep printf() enabled
mjr 55:4db125cd11a0 42 // by leaving the SDA UART GPIO pins unallocated
mjr 48:058ace2aed1d 43
mjr 35:e959ffba78fd 44 // Plunger type codes
mjr 35:e959ffba78fd 45 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 46 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 47 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 48 // versions.
mjr 35:e959ffba78fd 49 const int PlungerType_None = 0; // no plunger
mjr 82:4f6209cb5c33 50 const int PlungerType_TSL1410R = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode, edge detection
mjr 82:4f6209cb5c33 51 const int PlungerType_TSL1412S = 3; // TSL1412S linear image sensor (1536x1 pixels, 400dpi), serial mode, edge detection
mjr 35:e959ffba78fd 52 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 53 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 54 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 82:4f6209cb5c33 55 const int PlungerType_TSL1401CL = 8; // TSL1401CL linear image sensor (128x1 pixels, 400dpi), bar code sensing
mjr 82:4f6209cb5c33 56 const int PlungerType_VL6180X = 9; // VL6180X time-of-flight distance sensor
mjr 82:4f6209cb5c33 57
mjr 82:4f6209cb5c33 58 // Plunger auto-zero flags
mjr 82:4f6209cb5c33 59 const int PlungerAutoZeroEnabled = 0x01; // auto-zeroing enabled
mjr 21:5048e16cc9ef 60
mjr 35:e959ffba78fd 61 // Accelerometer orientation codes
mjr 35:e959ffba78fd 62 // These values are part of the external USB interface
mjr 35:e959ffba78fd 63 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 64 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 65 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 66 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 67
mjr 77:0b96f6867312 68 // Accelerometer dynamic range codes
mjr 77:0b96f6867312 69 const int AccelRange1G = 0; // +/-1G
mjr 77:0b96f6867312 70 const int AccelRange2G = 1; // +/-2G
mjr 77:0b96f6867312 71 const int AccelRange4G = 2; // +/-4G
mjr 77:0b96f6867312 72 const int AccelRange8G = 3; // +/-8G
mjr 77:0b96f6867312 73
mjr 35:e959ffba78fd 74 // input button types
mjr 53:9b2611964afc 75 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 76 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 77 const int BtnTypeKey = 2; // keyboard key
mjr 67:c39e66c4e000 78 const int BtnTypeMedia = 3; // media control key
mjr 38:091e511ce8a0 79
mjr 38:091e511ce8a0 80 // input button flags
mjr 38:091e511ce8a0 81 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 82 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 83
mjr 40:cc0d9814522b 84 // button setup structure
mjr 40:cc0d9814522b 85 struct ButtonCfg
mjr 40:cc0d9814522b 86 {
mjr 66:2e3583fbd2f4 87 // physical GPIO pin - a Wire-to-PinName mapping index
mjr 66:2e3583fbd2f4 88 uint8_t pin;
mjr 66:2e3583fbd2f4 89
mjr 66:2e3583fbd2f4 90 // Key type and value reported to the PC
mjr 40:cc0d9814522b 91 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 92 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 93 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 94 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 95 // keyboard -> val is USB scan code
mjr 77:0b96f6867312 96 uint8_t IRCommand; // IR command to send when the button is pressed, as
mjr 77:0b96f6867312 97 // an IR command slot number: 1..MAX_IR_CODES, or 0
mjr 77:0b96f6867312 98 // if no IR command is to be sent
mjr 66:2e3583fbd2f4 99
mjr 66:2e3583fbd2f4 100 // Shifted key type and value. These used when the button is pressed
mjr 66:2e3583fbd2f4 101 // while the Local Shift Button is being held down. We send the key
mjr 66:2e3583fbd2f4 102 // code given here instead of the regular typ/val code in this case.
mjr 66:2e3583fbd2f4 103 // If typ2 is BtnTypeNone, we use the regular typ/val code whether or
mjr 66:2e3583fbd2f4 104 // not the shift button is being held.
mjr 66:2e3583fbd2f4 105 uint8_t typ2; // shifted key type
mjr 66:2e3583fbd2f4 106 uint8_t val2; // shifted key value
mjr 77:0b96f6867312 107 uint8_t IRCommand2; // IR command to send when shifted button is pressed
mjr 66:2e3583fbd2f4 108
mjr 66:2e3583fbd2f4 109 // key flags - a bitwise combination of BtnFlagXxx values
mjr 66:2e3583fbd2f4 110 uint8_t flags;
mjr 40:cc0d9814522b 111
mjr 40:cc0d9814522b 112 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 113 {
mjr 40:cc0d9814522b 114 this->pin = pin;
mjr 40:cc0d9814522b 115 this->typ = typ;
mjr 40:cc0d9814522b 116 this->val = val;
mjr 77:0b96f6867312 117 this->IRCommand = 0;
mjr 40:cc0d9814522b 118 this->flags = flags;
mjr 77:0b96f6867312 119 this->typ2 = 0;
mjr 77:0b96f6867312 120 this->val2 = 0;
mjr 77:0b96f6867312 121 this->IRCommand2 = 0;
mjr 40:cc0d9814522b 122 }
mjr 40:cc0d9814522b 123
mjr 40:cc0d9814522b 124 } __attribute__((packed));
mjr 40:cc0d9814522b 125
mjr 33:d832bcab089e 126
mjr 65:739875521aae 127 // maximum number of input button mappings in configuration
mjr 65:739875521aae 128 const int MAX_BUTTONS = 48;
mjr 65:739875521aae 129
mjr 65:739875521aae 130 // extra slots for virtual buttons (ZB Launch Ball)
mjr 89:c43cd923401c 131 const int VIRTUAL_BUTTONS = 1; // total number of buttons
mjr 89:c43cd923401c 132 const int ZBL_BUTTON_CFG = MAX_BUTTONS; // index of ZB Launch Ball slot
mjr 33:d832bcab089e 133
mjr 35:e959ffba78fd 134 // LedWiz output port type codes
mjr 35:e959ffba78fd 135 // These values are part of the external USB interface
mjr 89:c43cd923401c 136 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 89:c43cd923401c 137 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 89:c43cd923401c 138 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 89:c43cd923401c 139 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 89:c43cd923401c 140 const int PortType74HC595 = 4; // 74HC595 port
mjr 89:c43cd923401c 141 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 89:c43cd923401c 142 // to a physical output
mjr 89:c43cd923401c 143 const int PortTypeTLC59116 = 6; // TLC59116 port
mjr 17:ab3cec0c8bf4 144
mjr 35:e959ffba78fd 145 // LedWiz output port flag bits
mjr 89:c43cd923401c 146 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 89:c43cd923401c 147 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 89:c43cd923401c 148 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 89:c43cd923401c 149 const uint8_t PortFlagFlipperLogic = 0x08; // enable Flipper Logic on the port (timed power limitation)
mjr 98:4df3c0f7e707 150 const uint8_t PortFlagMinOnTime = 0x10; // enable Minimum On Time on this port
mjr 35:e959ffba78fd 151
mjr 35:e959ffba78fd 152 // maximum number of output ports
mjr 48:058ace2aed1d 153 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 154
mjr 38:091e511ce8a0 155 // port configuration data
mjr 38:091e511ce8a0 156 struct LedWizPortCfg
mjr 38:091e511ce8a0 157 {
mjr 89:c43cd923401c 158 // port type: a PortTypeXxx value
mjr 89:c43cd923401c 159 uint8_t typ;
mjr 40:cc0d9814522b 160
mjr 89:c43cd923401c 161 // physical output pin:
mjr 89:c43cd923401c 162 //
mjr 89:c43cd923401c 163 // - for a GPIO port, this is an index in the
mjr 89:c43cd923401c 164 // USB-to-PinName mapping list
mjr 89:c43cd923401c 165 //
mjr 89:c43cd923401c 166 // - for a TLC5940 or 74HC595 port, it's the output
mjr 89:c43cd923401c 167 // number in the overall daisy chain, starting
mjr 89:c43cd923401c 168 // from 0 for OUT0 on the first chip in the chain
mjr 89:c43cd923401c 169 //
mjr 89:c43cd923401c 170 // - for a TLC59116, the high 4 bits are the chip
mjr 89:c43cd923401c 171 // address (the low 4 bits of the address only),
mjr 89:c43cd923401c 172 // and the low 4 bits are the output number on
mjr 89:c43cd923401c 173 // the chip
mjr 89:c43cd923401c 174 //
mjr 89:c43cd923401c 175 // - for inactive and virtual ports, this is unused
mjr 89:c43cd923401c 176 //
mjr 89:c43cd923401c 177 uint8_t pin;
mjr 89:c43cd923401c 178
mjr 89:c43cd923401c 179 // flags: a combination of PortFlagXxx values
mjr 89:c43cd923401c 180 uint8_t flags;
mjr 89:c43cd923401c 181
mjr 89:c43cd923401c 182 // flipper logic properties:
mjr 89:c43cd923401c 183 //
mjr 98:4df3c0f7e707 184 // - high 4 bits (0xF0) give full-power time
mjr 89:c43cd923401c 185 //
mjr 89:c43cd923401c 186 // - low 4 bits (0x0F) give reduced power level (used
mjr 89:c43cd923401c 187 // after full-power time expires), in 6.66% units
mjr 89:c43cd923401c 188 //
mjr 89:c43cd923401c 189 uint8_t flipperLogic;
mjr 89:c43cd923401c 190
mjr 98:4df3c0f7e707 191 // Minimum On Time/reserved
mjr 98:4df3c0f7e707 192 //
mjr 98:4df3c0f7e707 193 // - high 4 bits (0xF) are reserved
mjr 98:4df3c0f7e707 194 // - low 4 bits (0x0F) give minimum on time
mjr 98:4df3c0f7e707 195 uint8_t minOnTime;
mjr 98:4df3c0f7e707 196
mjr 98:4df3c0f7e707 197 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0, uint8_t flipperLogic = 0, uint8_t minOnTime = 0)
mjr 40:cc0d9814522b 198 {
mjr 40:cc0d9814522b 199 this->typ = typ;
mjr 40:cc0d9814522b 200 this->pin = pin;
mjr 40:cc0d9814522b 201 this->flags = flags;
mjr 89:c43cd923401c 202 this->flipperLogic = flipperLogic;
mjr 98:4df3c0f7e707 203 this->minOnTime = minOnTime;
mjr 40:cc0d9814522b 204 }
mjr 40:cc0d9814522b 205
mjr 77:0b96f6867312 206 } __attribute__ ((packed));
mjr 77:0b96f6867312 207
mjr 77:0b96f6867312 208 // IR command configuration flags
mjr 77:0b96f6867312 209 const uint8_t IRFlagTVON = 0x01; // send command at TV ON time
mjr 77:0b96f6867312 210 const uint8_t IRFlagDittos = 0x02; // use "ditto" codes on send
mjr 77:0b96f6867312 211
mjr 77:0b96f6867312 212 // IR command configuration data
mjr 77:0b96f6867312 213 struct IRCommandCfg
mjr 77:0b96f6867312 214 {
mjr 77:0b96f6867312 215 uint8_t flags; // flags: a combination of IRFlagXxx values
mjr 77:0b96f6867312 216 uint8_t keytype; // key type to send when IR command is received
mjr 77:0b96f6867312 217 uint8_t keycode; // key code to send when IR command is received
mjr 77:0b96f6867312 218 uint8_t protocol; // IR protocol ID (see IRRemote/IRProtocolID.h)
mjr 77:0b96f6867312 219 struct
mjr 77:0b96f6867312 220 {
mjr 77:0b96f6867312 221 uint32_t lo; // low 32 bits of code
mjr 77:0b96f6867312 222 uint32_t hi; // high 32 bits of code
mjr 77:0b96f6867312 223 } code; // 64-bit command code (protocol-specific; see IRProtocols.h)
mjr 77:0b96f6867312 224 } __attribute__ ((packed));
mjr 77:0b96f6867312 225
mjr 77:0b96f6867312 226 // Maximum number of IR commands
mjr 77:0b96f6867312 227 const int MAX_IR_CODES = 16;
mjr 38:091e511ce8a0 228
mjr 38:091e511ce8a0 229
mjr 53:9b2611964afc 230 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 231 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 232 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 233 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 234
mjr 35:e959ffba78fd 235 struct Config
mjr 35:e959ffba78fd 236 {
mjr 35:e959ffba78fd 237 // set all values to factory defaults
mjr 35:e959ffba78fd 238 void setFactoryDefaults()
mjr 35:e959ffba78fd 239 {
mjr 35:e959ffba78fd 240 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 241 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 242 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 243 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 244 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 245 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 246 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 247 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 248 // default that most people won't have to change.
mjr 54:fd77a6b2f76c 249 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 250 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 61:3c7e6e9ec355 251
mjr 55:4db125cd11a0 252 // Set the default Pinscape unit number to #1. This is a separate identifier
mjr 55:4db125cd11a0 253 // from the LedWiz ID, so you don't have to worry about making this different
mjr 55:4db125cd11a0 254 // from your LedWiz units. Each Pinscape unit should have a unique value for
mjr 55:4db125cd11a0 255 // this ID, though.
mjr 55:4db125cd11a0 256 //
mjr 55:4db125cd11a0 257 // Note that Pinscape unit #1 corresponds to DOF Pinscape #51, PS 2 -> DOF 52,
mjr 55:4db125cd11a0 258 // and so on - just add 50 to get the DOF ID.
mjr 55:4db125cd11a0 259 psUnitNo = 1;
mjr 35:e959ffba78fd 260
mjr 51:57eb311faafa 261 // set a disconnect reboot timeout of 10 seconds by default
mjr 55:4db125cd11a0 262 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 263
mjr 35:e959ffba78fd 264 // enable joystick reports
mjr 35:e959ffba78fd 265 joystickEnabled = true;
mjr 35:e959ffba78fd 266
mjr 90:aa4e571da8e8 267 // use the XYZ axis format
mjr 90:aa4e571da8e8 268 joystickAxisFormat = USBJoystick::AXIS_FORMAT_XYZ;
mjr 90:aa4e571da8e8 269
mjr 92:f264fbaa1be5 270 // send reports every 8.33ms by default (120 Hz, 2X the typical video
mjr 92:f264fbaa1be5 271 // refresh rate)
mjr 92:f264fbaa1be5 272 jsReportInterval_us = 8333;
mjr 92:f264fbaa1be5 273
mjr 35:e959ffba78fd 274 // assume standard orientation, with USB ports toward front of cabinet
mjr 78:1e00b3fa11af 275 accel.orientation = OrientationFront;
mjr 78:1e00b3fa11af 276
mjr 78:1e00b3fa11af 277 // default dynamic range +/-1G
mjr 78:1e00b3fa11af 278 accel.range = AccelRange1G;
mjr 78:1e00b3fa11af 279
mjr 78:1e00b3fa11af 280 // default auto-centering time
mjr 78:1e00b3fa11af 281 accel.autoCenterTime = 0;
mjr 92:f264fbaa1be5 282
mjr 92:f264fbaa1be5 283 // take a new accelerometer reading on every other joystick report
mjr 92:f264fbaa1be5 284 accel.stutter = 2;
mjr 25:e22b88bd783a 285
mjr 52:8298b2a73eb2 286 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 287 expan.typ = 0;
mjr 53:9b2611964afc 288 expan.vsn = 0;
mjr 53:9b2611964afc 289 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 290
mjr 35:e959ffba78fd 291 // assume no plunger is attached
mjr 77:0b96f6867312 292 plunger.enabled = 0x00;
mjr 35:e959ffba78fd 293 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 294
mjr 91:ae9be42652bf 295 // no jitter filter
mjr 91:ae9be42652bf 296 plunger.jitterWindow = 0;
mjr 91:ae9be42652bf 297
mjr 91:ae9be42652bf 298 // normal orientation
mjr 91:ae9be42652bf 299 plunger.reverseOrientation = false;
mjr 91:ae9be42652bf 300
mjr 55:4db125cd11a0 301 #if TEST_CONFIG_EXPAN || STANDARD_CONFIG
mjr 77:0b96f6867312 302 plunger.enabled = 0x01;
mjr 82:4f6209cb5c33 303 plunger.sensorType = PlungerType_TSL1410R;
mjr 53:9b2611964afc 304 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 305 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 306 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 307 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 308 #endif
mjr 43:7a6364d82a41 309
mjr 48:058ace2aed1d 310 // default plunger calibration button settings
mjr 55:4db125cd11a0 311 plunger.cal.features = 0x03; // 0x01 = enable button, 0x02 = enable indicator lamp
mjr 55:4db125cd11a0 312 plunger.cal.btn = PINNAME_TO_WIRE(PTE29); // button input (DigitalIn port)
mjr 55:4db125cd11a0 313 plunger.cal.led = PINNAME_TO_WIRE(PTE23); // button output (DigitalOut port)
mjr 35:e959ffba78fd 314
mjr 44:b5ac89b9cd5d 315 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 316 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 317
mjr 35:e959ffba78fd 318 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 319 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 65:739875521aae 320 plunger.zbLaunchBall.keytype = BtnTypeKey; // keyboard key
mjr 61:3c7e6e9ec355 321 plunger.zbLaunchBall.keycode = 0x28; // USB keyboard scan code for Enter key
mjr 61:3c7e6e9ec355 322 plunger.zbLaunchBall.pushDistance = 63; // 63/1000 in == .063" == about 1/16"
mjr 35:e959ffba78fd 323
mjr 35:e959ffba78fd 324 // assume no TV ON switch
mjr 53:9b2611964afc 325 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 326 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 327 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 328 TVON.delayTime = 700; // 7 seconds
mjr 55:4db125cd11a0 329
mjr 55:4db125cd11a0 330 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 331 // expansion board TV ON wiring
mjr 53:9b2611964afc 332 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 333 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 334 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 335 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 336 #endif
mjr 53:9b2611964afc 337
mjr 53:9b2611964afc 338 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 339 nightMode.btn = 0;
mjr 53:9b2611964afc 340 nightMode.flags = 0;
mjr 53:9b2611964afc 341 nightMode.port = 0;
mjr 35:e959ffba78fd 342
mjr 35:e959ffba78fd 343 // assume no TLC5940 chips
mjr 35:e959ffba78fd 344 tlc5940.nchips = 0;
mjr 55:4db125cd11a0 345
mjr 55:4db125cd11a0 346 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 347 // for expansion board testing purposes, assume the common setup
mjr 55:4db125cd11a0 348 // with one main board and one power board
mjr 48:058ace2aed1d 349 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 350 #endif
mjr 38:091e511ce8a0 351
mjr 55:4db125cd11a0 352 // Default TLC5940 pin assignments. Note that it's harmless to set
mjr 55:4db125cd11a0 353 // these to valid pins even if no TLC5940 chips are actually present,
mjr 55:4db125cd11a0 354 // since the main program won't allocate the connections if 'nchips'
mjr 55:4db125cd11a0 355 // is zero. This means that the pins are free to be used for other
mjr 55:4db125cd11a0 356 // purposes (such as output ports) if not using TLC5940 chips.
mjr 53:9b2611964afc 357 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 358 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 359 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 59:94eb9265b6d7 360 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 59:94eb9265b6d7 361 #if TEST_KEEP_PRINTF
mjr 59:94eb9265b6d7 362 tlc5940.gsclk = PINNAME_TO_WIRE(PTA13); // PTA1 is reserved for SDA printf()
mjr 59:94eb9265b6d7 363 #else
mjr 53:9b2611964afc 364 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 59:94eb9265b6d7 365 #endif
mjr 35:e959ffba78fd 366
mjr 35:e959ffba78fd 367 // assume no 74HC595 chips
mjr 35:e959ffba78fd 368 hc595.nchips = 0;
mjr 55:4db125cd11a0 369
mjr 55:4db125cd11a0 370 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 371 // for expansion board testing purposes, assume one chime board
mjr 48:058ace2aed1d 372 hc595.nchips = 1;
mjr 40:cc0d9814522b 373 #endif
mjr 40:cc0d9814522b 374
mjr 55:4db125cd11a0 375 // Default 74HC595 pin assignments. As with the TLC5940 pins, it's
mjr 55:4db125cd11a0 376 // harmless to assign pins here even if no 74HC595 chips are used,
mjr 55:4db125cd11a0 377 // since the main program won't actually allocate the pins if 'nchips'
mjr 55:4db125cd11a0 378 // is zero.
mjr 53:9b2611964afc 379 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 380 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 381 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 382 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 383
mjr 87:8d35c74403af 384 // disable all TLC59116 chips by default
mjr 87:8d35c74403af 385 tlc59116.chipMask = 0;
mjr 87:8d35c74403af 386
mjr 87:8d35c74403af 387 // Default TLC59116 pin assignments
mjr 87:8d35c74403af 388 tlc59116.sda = PINNAME_TO_WIRE(PTC6);
mjr 87:8d35c74403af 389 tlc59116.scl = PINNAME_TO_WIRE(PTC5);
mjr 87:8d35c74403af 390 tlc59116.reset = PINNAME_TO_WIRE(PTC10);
mjr 77:0b96f6867312 391
mjr 77:0b96f6867312 392 // Default IR hardware pin assignments. On the expansion boards,
mjr 77:0b96f6867312 393 // the sensor is connected to PTA13, and the emitter LED is on PTC9.
mjr 77:0b96f6867312 394 #if TEST_CONFIG_EXPAN
mjr 77:0b96f6867312 395 IR.sensor = PINNAME_TO_WIRE(PTA13);
mjr 77:0b96f6867312 396 IR.emitter = PINNAME_TO_WIRE(PTC9);
mjr 77:0b96f6867312 397 #else
mjr 77:0b96f6867312 398 IR.sensor = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 399 IR.emitter = PINNAME_TO_WIRE(NC);
mjr 77:0b96f6867312 400 #endif
mjr 77:0b96f6867312 401
mjr 77:0b96f6867312 402 // clear out all IR slots
mjr 77:0b96f6867312 403 memset(IRCommand, 0, sizeof(IRCommand));
mjr 77:0b96f6867312 404 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 405 {
mjr 77:0b96f6867312 406 IRCommand[i].protocol = 0;
mjr 77:0b96f6867312 407 IRCommand[i].keytype = BtnTypeNone;
mjr 77:0b96f6867312 408 }
mjr 77:0b96f6867312 409
mjr 35:e959ffba78fd 410 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 411 outPort[0].typ = PortTypeDisabled;
mjr 66:2e3583fbd2f4 412
mjr 66:2e3583fbd2f4 413 // initially configure with no shift key
mjr 78:1e00b3fa11af 414 shiftButton.idx = 0;
mjr 78:1e00b3fa11af 415 shiftButton.mode = 0;
mjr 53:9b2611964afc 416
mjr 35:e959ffba78fd 417 // initially configure with no input buttons
mjr 35:e959ffba78fd 418 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 419 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 420
mjr 55:4db125cd11a0 421 #if STANDARD_CONFIG | TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 422 // For the standard configuration, assign 24 input ports to
mjr 55:4db125cd11a0 423 // joystick buttons 1-24. Assign the same GPIO pins used
mjr 55:4db125cd11a0 424 // in the original v1 default configuration. For expansion
mjr 55:4db125cd11a0 425 // board testing purposes, also assign the input ports, with
mjr 55:4db125cd11a0 426 // the noted differences.
mjr 38:091e511ce8a0 427 for (int i = 0 ; i < 24 ; ++i) {
mjr 55:4db125cd11a0 428 static const int bp[] = {
mjr 53:9b2611964afc 429 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 430 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 431 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 432 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 433 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 434 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 435 PINNAME_TO_WIRE(PTC11), // 6 - expansion boards use PTC11 for this, since PTE22
mjr 55:4db125cd11a0 436 // is reserved for a plunger connection
mjr 55:4db125cd11a0 437 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 438 PINNAME_TO_WIRE(PTE22), // 6 - original standalone setup uses PTE22
mjr 48:058ace2aed1d 439 #endif
mjr 53:9b2611964afc 440 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 441 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 442 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 443 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 444 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 445 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 446 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 447 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 448 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 449 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 450 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 451 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 452 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 453 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 454 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 455 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 456 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 457 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 458 };
mjr 48:058ace2aed1d 459 button[i].set(bp[i],
mjr 48:058ace2aed1d 460 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 461 // For expansion board testing only, assign the inputs
mjr 55:4db125cd11a0 462 // to keyboard keys A, B, etc. This isn't useful; it's
mjr 55:4db125cd11a0 463 // just for testing purposes. Note that the USB key code
mjr 55:4db125cd11a0 464 // for "A" is 4, "B" is 5, and so on sequentially through
mjr 55:4db125cd11a0 465 // the alphabet.
mjr 55:4db125cd11a0 466 BtnTypeKey, i+4);
mjr 55:4db125cd11a0 467 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 468 // For the standard configuration, assign the input to
mjr 55:4db125cd11a0 469 // joystick buttons 1-24, as in the original v1 default
mjr 55:4db125cd11a0 470 // configuration.
mjr 55:4db125cd11a0 471 BtnTypeJoystick, i+1);
mjr 48:058ace2aed1d 472 #endif
mjr 48:058ace2aed1d 473
mjr 38:091e511ce8a0 474 }
mjr 38:091e511ce8a0 475 #endif
mjr 38:091e511ce8a0 476
mjr 55:4db125cd11a0 477 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 478 // For testing purposes, configure the basic complement of
mjr 55:4db125cd11a0 479 // expansion board ports. AS MENTIONED ABOVE, THIS IS PURELY FOR
mjr 55:4db125cd11a0 480 // TESTING. DON'T USE THIS METHOD TO CONFIGURE YOUR EXPANSION
mjr 55:4db125cd11a0 481 // BOARDS FOR ACTUAL DEPLOYMENT. It's much easier and cleaner
mjr 55:4db125cd11a0 482 // to use the unmodified standard build, and customize your
mjr 55:4db125cd11a0 483 // installation with the Pinscape Config Tool on Windows.
mjr 40:cc0d9814522b 484 //
mjr 55:4db125cd11a0 485 // For this testing setup, we'll configure one main board, one
mjr 55:4db125cd11a0 486 // power board, and one chime board. The *physical* ports on
mjr 55:4db125cd11a0 487 // the board are shown below. The logical (LedWiz/DOF) numbering
mjr 55:4db125cd11a0 488 // ISN'T sequential through the physical ports, because we want
mjr 55:4db125cd11a0 489 // to arrange the DOF ports so that the most important and most
mjr 55:4db125cd11a0 490 // common toys are assigned to ports 1-32. Those ports are
mjr 55:4db125cd11a0 491 // special because they're accessible to ALL software on the PC,
mjr 55:4db125cd11a0 492 // including older LedWiz-only software such as Future Pinball.
mjr 55:4db125cd11a0 493 // Ports above 32 are accessible only to modern DOF software,
mjr 55:4db125cd11a0 494 // like Visual Pinball and PinballX.
mjr 40:cc0d9814522b 495 //
mjr 40:cc0d9814522b 496 // Main board
mjr 40:cc0d9814522b 497 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 498 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 499 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 500 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 501 //
mjr 40:cc0d9814522b 502 // Power board:
mjr 40:cc0d9814522b 503 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 504 //
mjr 40:cc0d9814522b 505 // Chime board:
mjr 40:cc0d9814522b 506 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 507 //
mjr 38:091e511ce8a0 508 {
mjr 38:091e511ce8a0 509 int n = 0;
mjr 40:cc0d9814522b 510
mjr 40:cc0d9814522b 511 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 512 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 513 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 514 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 515
mjr 53:9b2611964afc 516 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 517 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 518
mjr 40:cc0d9814522b 519 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 520 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 521 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 522
mjr 40:cc0d9814522b 523 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 524 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 525 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 59:94eb9265b6d7 526
mjr 40:cc0d9814522b 527 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 528 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 529 outPort[n++].set(PortType74HC595, i);
mjr 59:94eb9265b6d7 530
mjr 40:cc0d9814522b 531 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 532 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 533 }
mjr 38:091e511ce8a0 534 #endif
mjr 48:058ace2aed1d 535
mjr 55:4db125cd11a0 536 #if STANDARD_CONFIG
mjr 55:4db125cd11a0 537 //
mjr 55:4db125cd11a0 538 // For the standard build, set up the original complement
mjr 55:4db125cd11a0 539 // of 22 ports from the v1 default onfiguration.
mjr 55:4db125cd11a0 540 //
mjr 55:4db125cd11a0 541 // IMPORTANT! As mentioned above, don't edit this file to
mjr 55:4db125cd11a0 542 // customize this for your machine. Instead, use the unmodified
mjr 55:4db125cd11a0 543 // standard build, and customize your installation using the
mjr 55:4db125cd11a0 544 // Pinscape Config Tool on Windows.
mjr 55:4db125cd11a0 545 //
mjr 48:058ace2aed1d 546 #if TEST_KEEP_PRINTF
mjr 55:4db125cd11a0 547 outPort[ 0].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is SDA UART)
mjr 55:4db125cd11a0 548 outPort[ 1].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is SDA UART)
mjr 48:058ace2aed1d 549 #else
mjr 53:9b2611964afc 550 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 551 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 552 #endif
mjr 53:9b2611964afc 553 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 554 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 555 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 556 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 557 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 558 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 559 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 560 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 561 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 562 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 563 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 564 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 565 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 566 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 567 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 568 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 569 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 570 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 571 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 572 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 573 #endif
mjr 35:e959ffba78fd 574 }
mjr 35:e959ffba78fd 575
mjr 35:e959ffba78fd 576 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 577
mjr 35:e959ffba78fd 578 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 579 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 580 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 581 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 582 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 583 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 584 // for open-source USB projects).
mjr 35:e959ffba78fd 585 uint16_t usbVendorID;
mjr 35:e959ffba78fd 586 uint16_t usbProductID;
mjr 35:e959ffba78fd 587
mjr 35:e959ffba78fd 588 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 589 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 590 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 591 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 592 uint8_t psUnitNo;
mjr 35:e959ffba78fd 593
mjr 35:e959ffba78fd 594 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 595 // use the device as purely an output controller.
mjr 77:0b96f6867312 596 uint8_t joystickEnabled;
mjr 35:e959ffba78fd 597
mjr 90:aa4e571da8e8 598 // Joystick axis report format, as a USBJoystick::AXIS_FORMAT_xxx value.
mjr 90:aa4e571da8e8 599 uint8_t joystickAxisFormat;
mjr 90:aa4e571da8e8 600
mjr 92:f264fbaa1be5 601 // Joystick report timing. This is the minimum time between joystick
mjr 92:f264fbaa1be5 602 // reports, in microseconds.
mjr 92:f264fbaa1be5 603 uint32_t jsReportInterval_us;
mjr 92:f264fbaa1be5 604
mjr 51:57eb311faafa 605 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 606 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 607 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 608 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 609 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 610 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 611 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 612
mjr 35:e959ffba78fd 613 // --- ACCELEROMETER ---
mjr 78:1e00b3fa11af 614 struct
mjr 78:1e00b3fa11af 615 {
mjr 78:1e00b3fa11af 616 // accelerometer orientation (OrientationXxx value)
mjr 78:1e00b3fa11af 617 uint8_t orientation;
mjr 35:e959ffba78fd 618
mjr 78:1e00b3fa11af 619 // dynamic range (AccelRangeXxx value)
mjr 78:1e00b3fa11af 620 uint8_t range;
mjr 77:0b96f6867312 621
mjr 78:1e00b3fa11af 622 // Auto-centering mode:
mjr 78:1e00b3fa11af 623 // 0 = auto-centering on, 5-second timer
mjr 78:1e00b3fa11af 624 // 1-60 = auto-centering on with the given timer in seconds
mjr 78:1e00b3fa11af 625 // 255 = auto-centering off
mjr 78:1e00b3fa11af 626 uint8_t autoCenterTime;
mjr 92:f264fbaa1be5 627
mjr 92:f264fbaa1be5 628 // Accelerometer report "stuttering". This is the number of times
mjr 92:f264fbaa1be5 629 // that each accelerometer reading is repeated in the joystick
mjr 92:f264fbaa1be5 630 // reports. If this is set to 1 (or 0), a new accelerometer reading
mjr 92:f264fbaa1be5 631 // is taken on every joystick report. If set to 2, a new reading
mjr 92:f264fbaa1be5 632 // is taken on every other report, and the previous reading is
mjr 92:f264fbaa1be5 633 // repeated on the alternating reports. If set to 3, we take a
mjr 92:f264fbaa1be5 634 // new reading on each third report, and so on. The purpose is
mjr 92:f264fbaa1be5 635 // to slow down accelerometer readings for the benefit of Visual
mjr 92:f264fbaa1be5 636 // Pinball, which will miss readings if taken faster than the
mjr 92:f264fbaa1be5 637 // video refresh rate, while sending joystick reports at a
mjr 92:f264fbaa1be5 638 // faster rate for lower button input latency.
mjr 92:f264fbaa1be5 639 uint8_t stutter;
mjr 78:1e00b3fa11af 640
mjr 78:1e00b3fa11af 641 } accel;
mjr 35:e959ffba78fd 642
mjr 35:e959ffba78fd 643
mjr 52:8298b2a73eb2 644 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 645 struct
mjr 52:8298b2a73eb2 646 {
mjr 53:9b2611964afc 647 uint8_t typ; // expansion board set type:
mjr 53:9b2611964afc 648 // 1 -> Pinscape expansion boards
mjr 53:9b2611964afc 649 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 650 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 651
mjr 52:8298b2a73eb2 652 } expan;
mjr 52:8298b2a73eb2 653
mjr 52:8298b2a73eb2 654
mjr 35:e959ffba78fd 655 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 656 struct
mjr 35:e959ffba78fd 657 {
mjr 77:0b96f6867312 658 // Plunger enabled/disabled. Note that we use the status flag
mjr 77:0b96f6867312 659 // bit 0x01 if enabled, 0x00 if disabled. This conveniently
mjr 77:0b96f6867312 660 // can be tested as though it's a bool, but should always be
mjr 77:0b96f6867312 661 // stored as 0x01 or 0x00 so that it can be OR'ed into the
mjr 77:0b96f6867312 662 // status report flag bits.
mjr 77:0b96f6867312 663 uint8_t enabled;
mjr 33:d832bcab089e 664
mjr 35:e959ffba78fd 665 // plunger sensor type
mjr 77:0b96f6867312 666 uint8_t sensorType;
mjr 35:e959ffba78fd 667
mjr 35:e959ffba78fd 668 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 669 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 670 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 671 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 672 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 673 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 674 //
mjr 82:4f6209cb5c33 675 // TSL1410R/1412S/1401CL: SI (GPIO), CLK (GPIO), AO (AnalogIn), NC
mjr 35:e959ffba78fd 676 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 677 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 678 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 82:4f6209cb5c33 679 // VL6180X: SDA (GPIO), SCL (GPIO), GPIO0/CE (GPIO)
mjr 53:9b2611964afc 680 //
mjr 53:9b2611964afc 681 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 682 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 683
mjr 82:4f6209cb5c33 684 // Automatic zeroing. If enabled, we'll reset the plunger position to
mjr 82:4f6209cb5c33 685 // the park position after a period of inactivity. This only applies
mjr 82:4f6209cb5c33 686 // to certain sensor types; sensors that don't use it simply ignore it.
mjr 82:4f6209cb5c33 687 struct
mjr 82:4f6209cb5c33 688 {
mjr 82:4f6209cb5c33 689 uint8_t flags; // flags bits - combination of PlungerAutoZeroXxx flags
mjr 82:4f6209cb5c33 690 uint8_t t; // inactivity time in seconds
mjr 82:4f6209cb5c33 691 } autoZero;
mjr 82:4f6209cb5c33 692
mjr 85:3c28aee81cde 693 // Jitter filter. This is the size of the hysteresis window, in joystick
mjr 85:3c28aee81cde 694 // units (-4095..+4095). One joystick unit is approximately 1/10000" of
mjr 85:3c28aee81cde 695 // physical travel. Zero disables the jitter filter.
mjr 85:3c28aee81cde 696 uint16_t jitterWindow;
mjr 85:3c28aee81cde 697
mjr 91:ae9be42652bf 698 // Plunger sensor reverse orientation flags. This is a bit mask:
mjr 91:ae9be42652bf 699 //
mjr 91:ae9be42652bf 700 // 0x01 = Reverse orientation enabled. We invert the plunger sensor
mjr 91:ae9be42652bf 701 // readings, as though the sensor were physically flipped
mjr 91:ae9be42652bf 702 // around. This can be used to correct for installing the
mjr 91:ae9be42652bf 703 // sensor backwards without having to change the hardware.
mjr 91:ae9be42652bf 704 //
mjr 91:ae9be42652bf 705 // 0x80 = READ-ONLY feature flag. This always reads as set if the
mjr 91:ae9be42652bf 706 // feature is enabled. Note that the USB data exchanger always
mjr 91:ae9be42652bf 707 // sets the bit on read, so it's not necessary to actually
mjr 91:ae9be42652bf 708 // store it.
mjr 91:ae9be42652bf 709 //
mjr 91:ae9be42652bf 710 uint8_t reverseOrientation;
mjr 91:ae9be42652bf 711
mjr 87:8d35c74403af 712 // bar code sensor parameters
mjr 87:8d35c74403af 713 struct
mjr 87:8d35c74403af 714 {
mjr 87:8d35c74403af 715 uint16_t startPix; // starting pixel offset
mjr 87:8d35c74403af 716 } barCode;
mjr 87:8d35c74403af 717
mjr 53:9b2611964afc 718 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 719 //
mjr 35:e959ffba78fd 720 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 721 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 722 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 723 //
mjr 35:e959ffba78fd 724 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 725 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 726 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 727 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 728 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 729 //
mjr 53:9b2611964afc 730 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 731 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 732 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 733 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 734 // plunger and Launch button input).
mjr 35:e959ffba78fd 735 //
mjr 40:cc0d9814522b 736 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 737 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 738 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 739 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 740 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 741 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 742 // Pub").
mjr 35:e959ffba78fd 743 struct
mjr 35:e959ffba78fd 744 {
mjr 53:9b2611964afc 745 uint8_t port;
mjr 53:9b2611964afc 746 uint8_t keytype;
mjr 53:9b2611964afc 747 uint8_t keycode;
mjr 53:9b2611964afc 748 uint16_t pushDistance;
mjr 35:e959ffba78fd 749
mjr 35:e959ffba78fd 750 } zbLaunchBall;
mjr 35:e959ffba78fd 751
mjr 35:e959ffba78fd 752 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 753 struct
mjr 35:e959ffba78fd 754 {
mjr 35:e959ffba78fd 755 // has the plunger been calibrated?
mjr 53:9b2611964afc 756 bool calibrated;
mjr 55:4db125cd11a0 757
mjr 55:4db125cd11a0 758 // Feature enable mask:
mjr 55:4db125cd11a0 759 //
mjr 55:4db125cd11a0 760 // 0x01 = calibration button enabled
mjr 55:4db125cd11a0 761 // 0x02 = indicator light enabled
mjr 55:4db125cd11a0 762 uint8_t features;
mjr 35:e959ffba78fd 763
mjr 35:e959ffba78fd 764 // calibration button switch pin
mjr 53:9b2611964afc 765 uint8_t btn;
mjr 35:e959ffba78fd 766
mjr 35:e959ffba78fd 767 // calibration button indicator light pin
mjr 53:9b2611964afc 768 uint8_t led;
mjr 35:e959ffba78fd 769
mjr 48:058ace2aed1d 770 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 771 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 772 // readings.
mjr 48:058ace2aed1d 773 //
mjr 48:058ace2aed1d 774 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 775 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 776 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 777 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 778 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 779 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 780 uint16_t min;
mjr 48:058ace2aed1d 781 uint16_t zero;
mjr 48:058ace2aed1d 782 uint16_t max;
mjr 52:8298b2a73eb2 783
mjr 52:8298b2a73eb2 784 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 785 uint8_t tRelease;
mjr 35:e959ffba78fd 786
mjr 44:b5ac89b9cd5d 787 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 788 void setDefaults()
mjr 35:e959ffba78fd 789 {
mjr 44:b5ac89b9cd5d 790 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 791 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 792 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 793 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 794 tRelease = 65; // standard 65ms release time
mjr 44:b5ac89b9cd5d 795 }
mjr 44:b5ac89b9cd5d 796
mjr 44:b5ac89b9cd5d 797 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 798 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 799 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 800 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 801 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 802 void begin()
mjr 44:b5ac89b9cd5d 803 {
mjr 48:058ace2aed1d 804 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 805 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 806 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 807 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 808 }
mjr 17:ab3cec0c8bf4 809
mjr 35:e959ffba78fd 810 } cal;
mjr 18:5e890ebd0023 811
mjr 35:e959ffba78fd 812 } plunger;
mjr 29:582472d0bc57 813
mjr 35:e959ffba78fd 814
mjr 35:e959ffba78fd 815 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 816 //
mjr 35:e959ffba78fd 817 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 818 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 819 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 820 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 821 struct
mjr 35:e959ffba78fd 822 {
mjr 35:e959ffba78fd 823 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 824 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 825 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 826 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 827 uint8_t statusPin;
mjr 35:e959ffba78fd 828
mjr 35:e959ffba78fd 829 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 830 uint8_t latchPin;
mjr 35:e959ffba78fd 831
mjr 35:e959ffba78fd 832 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 833 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 834 uint8_t relayPin;
mjr 35:e959ffba78fd 835
mjr 40:cc0d9814522b 836 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 837 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 838 // TV ON switch relay.
mjr 40:cc0d9814522b 839 int delayTime;
mjr 35:e959ffba78fd 840
mjr 35:e959ffba78fd 841 } TVON;
mjr 35:e959ffba78fd 842
mjr 53:9b2611964afc 843 // --- Night Mode ---
mjr 53:9b2611964afc 844 struct
mjr 53:9b2611964afc 845 {
mjr 55:4db125cd11a0 846 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0 = no button)
mjr 53:9b2611964afc 847 uint8_t flags; // flags:
mjr 53:9b2611964afc 848 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 55:4db125cd11a0 849 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0 = no indicator)
mjr 53:9b2611964afc 850 } nightMode;
mjr 53:9b2611964afc 851
mjr 29:582472d0bc57 852
mjr 35:e959ffba78fd 853 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 854 struct
mjr 35:e959ffba78fd 855 {
mjr 35:e959ffba78fd 856 // number of TLC5940NT chips connected in daisy chain
mjr 87:8d35c74403af 857 uint8_t nchips;
mjr 35:e959ffba78fd 858
mjr 53:9b2611964afc 859 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 860 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 861 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 862 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 863 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 864 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 865 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 866
mjr 35:e959ffba78fd 867 } tlc5940;
mjr 35:e959ffba78fd 868
mjr 35:e959ffba78fd 869
mjr 35:e959ffba78fd 870 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 871 struct
mjr 35:e959ffba78fd 872 {
mjr 35:e959ffba78fd 873 // number of 74HC595 chips attached in daisy chain
mjr 87:8d35c74403af 874 uint8_t nchips;
mjr 35:e959ffba78fd 875
mjr 35:e959ffba78fd 876 // pin connections
mjr 53:9b2611964afc 877 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 878 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 879 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 880 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 881
mjr 35:e959ffba78fd 882 } hc595;
mjr 77:0b96f6867312 883
mjr 87:8d35c74403af 884 // --- TLC59116 PWM Controller Chip Setup --
mjr 87:8d35c74403af 885 struct
mjr 87:8d35c74403af 886 {
mjr 87:8d35c74403af 887 // Chip mask. Each bit represents an enabled chip at the
mjr 87:8d35c74403af 888 // corresponding 4-bit address (i.e., bit 1<<addr represents
mjr 87:8d35c74403af 889 // the chip at 'addr').
mjr 87:8d35c74403af 890 uint16_t chipMask;
mjr 87:8d35c74403af 891
mjr 87:8d35c74403af 892 // pin connections
mjr 87:8d35c74403af 893 uint8_t sda; // I2C SDA
mjr 87:8d35c74403af 894 uint8_t scl; // I2C SCL
mjr 87:8d35c74403af 895 uint8_t reset; // !RESET (hardware reset line, active low)
mjr 87:8d35c74403af 896
mjr 87:8d35c74403af 897 } tlc59116;
mjr 87:8d35c74403af 898
mjr 77:0b96f6867312 899
mjr 77:0b96f6867312 900 // --- IR Remote Control Hardware Setup ---
mjr 77:0b96f6867312 901 struct
mjr 77:0b96f6867312 902 {
mjr 77:0b96f6867312 903 // sensor (receiver) GPIO input pin; must be interrupt-capable
mjr 77:0b96f6867312 904 uint8_t sensor;
mjr 77:0b96f6867312 905
mjr 77:0b96f6867312 906 // IR emitter LED GPIO output pin; must be PWM-capable
mjr 77:0b96f6867312 907 uint8_t emitter;
mjr 77:0b96f6867312 908 } IR;
mjr 77:0b96f6867312 909
mjr 77:0b96f6867312 910
mjr 35:e959ffba78fd 911 // --- Button Input Setup ---
mjr 65:739875521aae 912 ButtonCfg button[MAX_BUTTONS + VIRTUAL_BUTTONS] __attribute__((packed));
mjr 66:2e3583fbd2f4 913
mjr 78:1e00b3fa11af 914 // Shift button. This can be used to give each physical button a
mjr 78:1e00b3fa11af 915 // second meaning.
mjr 78:1e00b3fa11af 916 struct
mjr 78:1e00b3fa11af 917 {
mjr 78:1e00b3fa11af 918 // Shift button index, 1..MAX_BUTTONS. If this is zero, there's
mjr 78:1e00b3fa11af 919 // no shift button.
mjr 78:1e00b3fa11af 920 uint8_t idx;
mjr 78:1e00b3fa11af 921
mjr 78:1e00b3fa11af 922 // Shift button mode. If the shift button has a key mapping or
mjr 78:1e00b3fa11af 923 // IR command assigned, this determines what happens when the
mjr 78:1e00b3fa11af 924 // shift button is pressed in combination with another key.
mjr 78:1e00b3fa11af 925 //
mjr 78:1e00b3fa11af 926 // 0 = Shift OR Key mode. In this mode, when you initially press
mjr 78:1e00b3fa11af 927 // the shift button, nothing happens. Instead, we wait to see if
mjr 78:1e00b3fa11af 928 // any other buttons are pressed. If so, we use the shifted meaning
mjr 78:1e00b3fa11af 929 // of the other button, and we DON'T send the shift button's key or
mjr 78:1e00b3fa11af 930 // IR command at all.
mjr 78:1e00b3fa11af 931 //
mjr 78:1e00b3fa11af 932 // 1 = Shift AND Key mode. In this mode, the shift button acts like
mjr 78:1e00b3fa11af 933 // any other button: its assigned key is sent to the PC as soon as
mjr 78:1e00b3fa11af 934 // you press it. If you also press another button while the shift
mjr 78:1e00b3fa11af 935 // button is down, the shifted meaning of the other button is used.
mjr 78:1e00b3fa11af 936 //
mjr 78:1e00b3fa11af 937 // Mode 0, the "OR" mode, is the default. This allows a button with
mjr 78:1e00b3fa11af 938 // a key assignment to do double duty as the shift button without
mjr 78:1e00b3fa11af 939 // creating any confusing situations where the shift button's own
mjr 78:1e00b3fa11af 940 // key is also sent to the PC during shift usage.
mjr 78:1e00b3fa11af 941 uint8_t mode;
mjr 78:1e00b3fa11af 942
mjr 78:1e00b3fa11af 943 } shiftButton;
mjr 17:ab3cec0c8bf4 944
mjr 35:e959ffba78fd 945 // --- LedWiz Output Port Setup ---
mjr 77:0b96f6867312 946 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__ ((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 947
mjr 77:0b96f6867312 948 // --- IR Command Slots ---
mjr 77:0b96f6867312 949 IRCommandCfg IRCommand[MAX_IR_CODES] __attribute__ ((packed));
mjr 17:ab3cec0c8bf4 950 };
mjr 17:ab3cec0c8bf4 951
mjr 35:e959ffba78fd 952 #endif