Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HC_SR04_Ultrasonic_Library QEI mbed ros_lib_kinetic_weber
Fork of MPU6050IMU by
Revision 3:029450d064bb, committed 2018-11-08
- Comitter:
- WeberYang
- Date:
- Thu Nov 08 05:41:28 2018 +0000
- Parent:
- 2:e0381ca0edac
- Commit message:
- 1108
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/HC_SR04_Ultrasonic_Library.lib Thu Nov 08 05:41:28 2018 +0000 @@ -0,0 +1,1 @@ +http://developer.mbed.org/users/ejteb/code/HC_SR04_Ultrasonic_Library/#e0f9c9fb4cf3
--- a/MPU6050.h Sun Jun 29 21:53:23 2014 +0000
+++ b/MPU6050.h Thu Nov 08 05:41:28 2018 +0000
@@ -153,7 +153,7 @@
int Ascale = AFS_2G;
//Set up I2C, (SDA,SCL)
-I2C i2c(I2C_SDA, I2C_SCL);
+I2C i2c(PB_7, PB_6);
DigitalOut myled(LED1);
--- a/N5110.lib Sun Jun 29 21:53:23 2014 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -http://mbed.org/users/onehorse/code/MPU60506-axisMotionSensor/#313c258ada8a
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/QEI.lib Thu Nov 08 05:41:28 2018 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/aberk/code/QEI/#5c2ad81551aa
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/config.h Thu Nov 08 05:41:28 2018 +0000 @@ -0,0 +1,22 @@ +// FIFO rate = 200Hz / (1 + this value) +// For example, 0x01 is 100Hz, 0x03 is 50Hz. +// 0x00 to 0x09 +#define IMU_FIFO_RATE_DIVIDER 0x09 + +// Sample rate = 1kHz / (1 + this valye) +// For example, 4 is 200Hz. +#define IMU_SAMPLE_RATE_DIVIDER 4 + +// measuring range of gyroscope (±n deg/s) +// But other value doesn't yet support. +#define MPU6050_GYRO_FS MPU6050_GYRO_FS_2000 + +// measuring range of acceleration sensor (±n g) +// But other value doesn't yet support. +#define MPU6050_ACCEL_FS MPU6050_ACCEL_FS_2 + +#define PC_BAUDRATE 115200 + +#define PCF8574_ADDR (0x40) +#define PCF8574_ADDR_1 (0x40) +#define PCF8574_ADDR_2 (0x42)
--- a/main.cpp Sun Jun 29 21:53:23 2014 +0000
+++ b/main.cpp Thu Nov 08 05:41:28 2018 +0000
@@ -1,224 +1,261 @@
+#include "mbed.h"
+#include "config.h"
+#include "CAN.h"
+#include "MPU6050.h"
+#include "ultrasonic.h"
+#include "QEI.h"
-/* MPU6050 Basic Example Code
- by: Kris Winer
- date: May 1, 2014
- license: Beerware - Use this code however you'd like. If you
- find it useful you can buy me a beer some time.
-
- Demonstrate MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
- parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
- No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
-
- SDA and SCL should have external pull-up resistors (to 3.3V).
- 10k resistors worked for me. They should be on the breakout
- board.
-
- Hardware setup:
- MPU6050 Breakout --------- Arduino
- 3.3V --------------------- 3.3V
- SDA ----------------------- A4
- SCL ----------------------- A5
- GND ---------------------- GND
-
- Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
- Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
- We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
- We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
- */
-
-#include "mbed.h"
-#include "MPU6050.h"
-#include "N5110.h"
+#include <ros.h>
+#include <ros/time.h>
+#include <sensor_msgs/Imu.h>
+#include <std_msgs/Int16.h>
+#include <geometry_msgs/Quaternion.h>
+#include <std_msgs/Bool.h>
+#include <sensor_msgs/BatteryState.h>
+
+//=========define function title===================
+void dmpDataUpdate();
+bool pcf8574_write(uint8_t data,uint8_t address);
+bool pcf8574_read(uint8_t* data,uint8_t address);
+int DO_write(uint8_t value,uint8_t address);
+int DI_read(uint8_t address);
+void dist(int distance);
+
+//=======define pin user definition============
+I2C dio_i2c(PB_11, PB_10);
+MPU6050 mpu6050;
+QEI encoder2( PA_0, PA_1, NC, 1000, QEI::X4_ENCODING);
+QEI encoder1( PA_8, PA_9, NC, 1000, QEI::X4_ENCODING);
+Timer t; // timer for polling
+Ticker IMU_flipper;
+Ticker Sensor_flipper;
+ultrasonic dis1(D3, D4, .01, .05, &dist); //Set the trigger pin to D8 and the echo pin to D9
+
+
+//==============================ROS==================================
+ ros::NodeHandle nh;
+ char frameid[] = "/imu";
+ sensor_msgs::Imu imu_msg;
+ ros::Publisher imu_pub("imu_msgs", &imu_msg);
+ std_msgs::Int16 DI;
+ ros::Publisher DI_pub("DI_pub", &DI);
+
+ geometry_msgs::Vector3 encoder;
+ ros::Publisher Enc_pub("wheel_encoder", &encoder);
+
+ std_msgs::Int16 sonar_msg;
+ ros::Publisher pub_sonar("sonar", &sonar_msg);
+
+ geometry_msgs::Quaternion odom_quat;
-// Using NOKIA 5110 monochrome 84 x 48 pixel display
-// pin 9 - Serial clock out (SCLK)
-// pin 8 - Serial data out (DIN)
-// pin 7 - Data/Command select (D/C)
-// pin 5 - LCD chip select (CS)
-// pin 6 - LCD reset (RST)
-//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
+ std_msgs::Int16 DO;
+ void DOActionCb(const std_msgs::Int16 &msg){
+ DO_write(msg.data, PCF8574_ADDR_1);
+ }
+ ros::Subscriber<std_msgs::Int16> ACT_sub("DO_data", &DOActionCb);
+ ros::Time current_time,last_time;
+
+ std_msgs::Bool flag_reset_encoder;
+ void reset_encoderCb(const std_msgs::Bool &msg){
+ if (msg.data == 1) {
+ encoder1.reset();
+ encoder2.reset();
+ }
+ }
+ ros::Subscriber<std_msgs::Bool> resetEncoder_sub("resetEncoder", &reset_encoderCb);
+//======================================================================
+
+//=========define function ===================
+bool pcf8574_write(uint8_t data,uint8_t address){
+ return dio_i2c.write(address, (char*) &data, 1, 0) == 0;
+}
+
+bool pcf8574_read(uint8_t* data,uint8_t address){
+ return dio_i2c.read(address, (char*) data, 1, 0) == 0;
+}
+
+int DO_write(uint8_t value,uint8_t address){
+ int ret;
+
+ ret = pcf8574_write(value,address);
+
+ return ret;
+}
-float sum = 0;
-uint32_t sumCount = 0;
+int DI_read(uint8_t address){
+ int ret;
+ uint8_t data=0;
+
+ ret = pcf8574_read(&data,address);
+ if(!ret) return -2;
+
+ return data;
+}
+void dist(int distance)
+{
+ sonar_msg.data = distance;
+ pub_sonar.publish( &sonar_msg );
+}
- MPU6050 mpu6050;
-
- Timer t;
+//==========define parameter===================
+ //=======encoder================
+ long _PreviousLeftEncoderCounts = 0;
+ long _PreviousRightEncoderCounts = 0;
+ double x;
+ double y;
+ double th;
+
+ //=======imu_msgs================
+ float sum = 0;
+ uint32_t sumCount = 0;
- Serial pc(USBTX, USBRX); // tx, rx
- // VCC, SCE, RST, D/C, MOSI,S CLK, LED
- N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
-
+ //=======ultrsonic
+ int sonar_count;
+
+
+//=====================================================
int main()
{
- pc.baud(9600);
-
- //Set up I2C
- i2c.frequency(400000); // use fast (400 kHz) I2C
-
- t.start();
-
- lcd.init();
- lcd.setBrightness(0.05);
-
+ //Set up I2C
+ myled = !myled;
+ wait_ms(100);
+ nh.initNode();
+ nh.advertise(imu_pub);
- // Read the WHO_AM_I register, this is a good test of communication
- uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
- pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
-
- if (whoami == 0x68) // WHO_AM_I should always be 0x68
- {
- pc.printf("MPU6050 is online...");
- wait(1);
- lcd.clear();
- lcd.printString("MPU6050 OK", 0, 0);
-
+ nh.advertise(DI_pub);
+ nh.advertise(Enc_pub);
+ nh.advertise(pub_sonar);
+
+ nh.subscribe(ACT_sub);
+ nh.subscribe(resetEncoder_sub);
+ dis1.startUpdates();//start mesuring the distance
- mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
- pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[0]); pc.printf("% of factory value \n\r");
- pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[1]); pc.printf("% of factory value \n\r");
- pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%f", SelfTest[2]); pc.printf("% of factory value \n\r");
- pc.printf("x-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[3]); pc.printf("% of factory value \n\r");
- pc.printf("y-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[4]); pc.printf("% of factory value \n\r");
- pc.printf("z-axis self test: gyration trim within : "); pc.printf("%f", SelfTest[5]); pc.printf("% of factory value \n\r");
- wait(1);
-
- if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
- {
- mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
- mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
- mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+ i2c.frequency(400000); // use fast (400 kHz) I2C
+ IMU_flipper.attach(&dmpDataUpdate, 0.06);
+ t.start();
+
+ // Read the WHO_AM_I register, this is a good test of communication
+ uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Read WHO_AM_I register for MPU-6050
+// pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
+
+ if (whoami == 0x68) // WHO_AM_I should always be 0x68
+ {
+// pc.printf("MPU6050 is online...");
+ wait(1);
+
+ mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+ wait(1);
- lcd.clear();
- lcd.printString("MPU6050", 0, 0);
- lcd.printString("pass self test", 0, 1);
- lcd.printString("initializing", 0, 2);
- wait(2);
- }
- else
- {
- pc.printf("Device did not the pass self-test!\n\r");
-
- lcd.clear();
- lcd.printString("MPU6050", 0, 0);
- lcd.printString("no pass", 0, 1);
- lcd.printString("self test", 0, 2);
- }
+ if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f)
+ {
+ mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+ mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+ mpu6050.initMPU6050();
+ wait(2);
+ }
+ else
+ {
+// pc.printf("Device did not the pass self-test!\n\r");
+ }
}
else
{
- pc.printf("Could not connect to MPU6050: \n\r");
- pc.printf("%#x \n", whoami);
-
- lcd.clear();
- lcd.printString("MPU6050", 0, 0);
- lcd.printString("no connection", 0, 1);
- lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami);
-
- while(1) ; // Loop forever if communication doesn't happen
- }
+// pc.printf("Could not connect to MPU6050: \n\r");
+// pc.printf("%#x \n", whoami);
+ while(1) ; // Loop forever if communication doesn't happen
+ }
-
+ while(1)
+ {
+ dis1.checkDistance();
- while(1) {
-
- // If data ready bit set, all data registers have new data
- if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
- mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
- mpu6050.getAres();
-
- // Now we'll calculate the accleration value into actual g's
- ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
- ay = (float)accelCount[1]*aRes - accelBias[1];
- az = (float)accelCount[2]*aRes - accelBias[2];
-
- mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
- mpu6050.getGres();
-
- // Calculate the gyro value into actual degrees per second
- gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
- gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
- gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
+ DI.data = DI_read(PCF8574_ADDR_2);
+ DI_pub.publish( &DI );
- tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
- temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
- }
-
- Now = t.read_us();
- deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
- lastUpdate = Now;
-
- sum += deltat;
- sumCount++;
-
- if(lastUpdate - firstUpdate > 10000000.0f) {
- beta = 0.04; // decrease filter gain after stabilized
- zeta = 0.015; // increasey bias drift gain after stabilized
+ nh.spinOnce();
+ wait_ms(100);
+
}
-
- // Pass gyro rate as rad/s
- mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
-
- // Serial print and/or display at 0.5 s rate independent of data rates
- delt_t = t.read_ms() - count;
- if (delt_t > 500) { // update LCD once per half-second independent of read rate
+}
- pc.printf("ax = %f", 1000*ax);
- pc.printf(" ay = %f", 1000*ay);
- pc.printf(" az = %f mg\n\r", 1000*az);
-
- pc.printf("gx = %f", gx);
- pc.printf(" gy = %f", gy);
- pc.printf(" gz = %f deg/s\n\r", gz);
-
- pc.printf(" temperature = %f C\n\r", temperature);
+void dmpDataUpdate() {
+ // If data ready bit set, all data registers have new data
+ if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01)
+ { // check if data ready interrupt
+ mpu6050.readAccelData(accelCount); // Read the x/y/z adc values
+ mpu6050.getAres();
- pc.printf("q0 = %f\n\r", q[0]);
- pc.printf("q1 = %f\n\r", q[1]);
- pc.printf("q2 = %f\n\r", q[2]);
- pc.printf("q3 = %f\n\r", q[3]);
-
- lcd.clear();
- lcd.printString("MPU6050", 0, 0);
- lcd.printString("x y z", 0, 1);
- lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax));
- lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay));
- lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2);
-
+ // Now we'll calculate the accleration value into actual g's
+ ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
+ ay = (float)accelCount[1]*aRes - accelBias[1];
+ az = (float)accelCount[2]*aRes - accelBias[2];
+
+ mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values
+ mpu6050.getGres();
+
+ // Calculate the gyro value into actual degrees per second
+ gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set
+ gy = (float)gyroCount[1]*gRes; // - gyroBias[1];
+ gz = (float)gyroCount[2]*gRes; // - gyroBias[2];
- // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
- // In this coordinate system, the positive z-axis is down toward Earth.
- // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
- // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
- // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
- // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
- // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
- // applied in the correct order which for this configuration is yaw, pitch, and then roll.
- // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
- yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
- pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
- roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
- pitch *= 180.0f / PI;
- yaw *= 180.0f / PI;
- roll *= 180.0f / PI;
+ tempCount = mpu6050.readTempData(); // Read the x/y/z adc values
+ temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+ }
+ Now = t.read_us();
+ deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+ lastUpdate = Now;
+
+ sum += deltat;
+ sumCount++;
+
+ if(lastUpdate - firstUpdate > 10000000.0f)
+ {
+ beta = 0.04; // decrease filter gain after stabilized
+ zeta = 0.015; // increasey bias drift gain after stabilized
+ }
+
+ // Pass gyro rate as rad/s
+ mpu6050.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+
+ // Serial print and/or display at 0.5 s rate independent of data rates
+ delt_t = t.read_ms() - count;
+ // update LCD once per half-second independent of read rate
+ yaw = atan2(2.1f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+ pitch = -asin(2.1f * (q[1] * q[3] - q[0] * q[2]));
+ roll = atan2(2.1f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+ pitch *= 180.0f / PI;
+ yaw *= 180.0f / PI;
+ roll *= 180.0f / PI;
-// pc.printf("Yaw, Pitch, Roll: \n\r");
-// pc.printf("%f", yaw);
-// pc.printf(", ");
-// pc.printf("%f", pitch);
-// pc.printf(", ");
-// pc.printf("%f\n\r", roll);
-// pc.printf("average rate = "); pc.printf("%f", (sumCount/sum)); pc.printf(" Hz\n\r");
+ imu_msg.header.frame_id = frameid;
+ imu_msg.header.stamp = nh.now();
+ imu_msg.linear_acceleration.x = ax*9.81;//dmpData.acc.x;
+ imu_msg.linear_acceleration.y = ay*9.81;//dmpData.acc.y;
+ imu_msg.linear_acceleration.z = az*9.81;//dmpData.acc.z;
+ imu_msg.angular_velocity.x = gx/180*3.1415926;//dmpData.gyro.x;
+ imu_msg.angular_velocity.y = gy/180*3.1415926;//dmpData.gyro.y;
+ imu_msg.angular_velocity.z = gz/180*3.1415926;//dmpData.gyro.z;
+ imu_msg.orientation.w = q[0];
+ imu_msg.orientation.x = q[1];
+ imu_msg.orientation.y = q[2];
+ imu_msg.orientation.z = q[3];
+ imu_msg.orientation_covariance[8] = 0;
+ imu_msg.angular_velocity_covariance[8] = 0;
+ imu_msg.linear_acceleration_covariance[8] = 0;
+ imu_pub.publish( &imu_msg );
+ wait_ms(30);//must bigger then 30ms at 115200
+
+ encoder.x = encoder1.getPulses();
+ encoder.y = encoder2.getPulses();
+ Enc_pub.publish(&encoder);
+ wait_ms(1);
+
- pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
- pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-
- myled= !myled;
- count = t.read_ms();
- sum = 0;
- sumCount = 0;
+
+ myled= !myled;
+ count = t.read_ms();
+ sum = 0;
+ sumCount = 0;
}
-}
-
- }
\ No newline at end of file
+
--- a/mbed.bld Sun Jun 29 21:53:23 2014 +0000 +++ b/mbed.bld Thu Nov 08 05:41:28 2018 +0000 @@ -1,1 +1,1 @@ -http://mbed.org/users/mbed_official/code/mbed/builds/0b3ab51c8877 \ No newline at end of file +https://os.mbed.com/users/mbed_official/code/mbed/builds/9baf128c2fab \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ros_lib_kinetic_weber.lib Thu Nov 08 05:41:28 2018 +0000 @@ -0,0 +1,1 @@ +http://os.mbed.com/users/WeberYang/code/ros_lib_kinetic_weber/#40f11e1dc026
