Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: WNC14A2AInterface
Dependents: http-example-wnc http-example-wnc-modified
atmel-rf-driver/source/NanostackRfPhyAtmel.cpp
- Committer:
- JMF
- Date:
- 2017-04-19
- Revision:
- 0:2563b0415d1f
File content as of revision 0:2563b0415d1f:
/*
* Copyright (c) 2014-2015 ARM Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include "platform/arm_hal_interrupt.h"
#include "nanostack/platform/arm_hal_phy.h"
#include "ns_types.h"
#include "NanostackRfPhyAtmel.h"
#include "randLIB.h"
#include "AT86RFReg.h"
#include "nanostack/platform/arm_hal_phy.h"
#include "toolchain.h"
/*Worst case sensitivity*/
#define RF_DEFAULT_SENSITIVITY -88
/*Run calibration every 5 minutes*/
#define RF_CALIBRATION_INTERVAL 6000000
/*Wait ACK for 2.5ms*/
#define RF_ACK_WAIT_DEFAULT_TIMEOUT 50
/*Base CCA backoff (50us units) - substitutes for Inter-Frame Spacing*/
#define RF_CCA_BASE_BACKOFF 13 /* 650us */
/*CCA random backoff (50us units)*/
#define RF_CCA_RANDOM_BACKOFF 51 /* 2550us */
#define RF_MTU 127
#define RF_PHY_MODE OQPSK_SIN_250
/*Radio RX and TX state definitions*/
#define RFF_ON 0x01
#define RFF_RX 0x02
#define RFF_TX 0x04
#define RFF_CCA 0x08
#define RFF_PROT 0x10
typedef enum
{
RF_MODE_NORMAL = 0,
RF_MODE_SNIFFER = 1,
RF_MODE_ED = 2
}rf_mode_t;
/*Atmel RF Part Type*/
typedef enum
{
ATMEL_UNKNOW_DEV = 0,
ATMEL_AT86RF212,
ATMEL_AT86RF231, // No longer supported (doesn't give ED+status on frame read)
ATMEL_AT86RF233
}rf_trx_part_e;
/*Atmel RF states*/
typedef enum
{
NOP = 0x00,
BUSY_RX = 0x01,
RF_TX_START = 0x02,
FORCE_TRX_OFF = 0x03,
FORCE_PLL_ON = 0x04,
RX_ON = 0x06,
TRX_OFF = 0x08,
PLL_ON = 0x09,
BUSY_RX_AACK = 0x11,
SLEEP = 0x0F,
RX_AACK_ON = 0x16,
TX_ARET_ON = 0x19
}rf_trx_states_t;
static const uint8_t *rf_tx_data; // Points to Nanostack's buffer
static uint8_t rf_tx_length;
/*ACK wait duration changes depending on data rate*/
static uint16_t rf_ack_wait_duration = RF_ACK_WAIT_DEFAULT_TIMEOUT;
static int8_t rf_sensitivity = RF_DEFAULT_SENSITIVITY;
static rf_mode_t rf_mode = RF_MODE_NORMAL;
static uint8_t radio_tx_power = 0x00; // Default to +4dBm
static uint8_t rf_phy_channel = 12;
static uint8_t rf_tuned = 1;
static uint8_t rf_use_antenna_diversity = 0;
static int16_t expected_ack_sequence = -1;
static uint8_t rf_rx_mode = 0;
static uint8_t rf_flags = 0;
static int8_t rf_radio_driver_id = -1;
static phy_device_driver_s device_driver;
static uint8_t mac_tx_handle = 0;
/* Channel configurations for 2.4 and sub-GHz */
static const phy_rf_channel_configuration_s phy_24ghz = {2405000000U, 5000000U, 250000U, 16U, M_OQPSK};
static const phy_rf_channel_configuration_s phy_subghz = {868300000U, 2000000U, 250000U, 11U, M_OQPSK};
static const phy_device_channel_page_s phy_channel_pages[] = {
{ CHANNEL_PAGE_0, &phy_24ghz},
{ CHANNEL_PAGE_2, &phy_subghz},
{ CHANNEL_PAGE_0, NULL}
};
/**
* RF output power write
*
* \brief TX power has to be set before network start.
*
* \param power
* AT86RF233
* 0 = 4 dBm
* 1 = 3.7 dBm
* 2 = 3.4 dBm
* 3 = 3 dBm
* 4 = 2.5 dBm
* 5 = 2 dBm
* 6 = 1 dBm
* 7 = 0 dBm
* 8 = -1 dBm
* 9 = -2 dBm
* 10 = -3 dBm
* 11 = -4 dBm
* 12 = -6 dBm
* 13 = -8 dBm
* 14 = -12 dBm
* 15 = -17 dBm
*
* AT86RF212B
* See datasheet for TX power settings
*
* \return 0, Supported Value
* \return -1, Not Supported Value
*/
static int8_t rf_tx_power_set(uint8_t power);
static rf_trx_part_e rf_radio_type_read(void);
static void rf_ack_wait_timer_start(uint16_t slots);
static void rf_ack_wait_timer_stop(void);
static void rf_handle_cca_ed_done(void);
static void rf_handle_tx_end(void);
static void rf_handle_rx_end(void);
static void rf_on(void);
static void rf_receive(void);
static void rf_poll_trx_state_change(rf_trx_states_t trx_state);
static void rf_init(void);
static int8_t rf_device_register(const uint8_t *mac_addr);
static void rf_device_unregister(void);
static void rf_enable_static_frame_buffer_protection(void);
static void rf_disable_static_frame_buffer_protection(void);
static int8_t rf_start_cca(uint8_t *data_ptr, uint16_t data_length, uint8_t tx_handle, data_protocol_e data_protocol );
static void rf_cca_abort(void);
static void rf_calibration_cb(void);
static void rf_init_phy_mode(void);
static void rf_ack_wait_timer_interrupt(void);
static void rf_calibration_timer_interrupt(void);
static void rf_calibration_timer_start(uint32_t slots);
static void rf_cca_timer_interrupt(void);
static void rf_cca_timer_start(uint32_t slots);
static uint8_t rf_scale_lqi(int8_t rssi);
static int8_t rf_interface_state_control(phy_interface_state_e new_state, uint8_t rf_channel);
static int8_t rf_extension(phy_extension_type_e extension_type,uint8_t *data_ptr);
static int8_t rf_address_write(phy_address_type_e address_type,uint8_t *address_ptr);
static void rf_if_cca_timer_start(uint32_t slots);
static void rf_if_enable_promiscuous_mode(void);
static void rf_if_lock(void);
static void rf_if_unlock(void);
static uint8_t rf_if_read_rnd(void);
static void rf_if_calibration_timer_start(uint32_t slots);
static void rf_if_interrupt_handler(void);
static void rf_if_ack_wait_timer_start(uint16_t slots);
static void rf_if_ack_wait_timer_stop(void);
static void rf_if_ack_pending_ctrl(uint8_t state);
static void rf_if_calibration(void);
static uint8_t rf_if_read_register(uint8_t addr);
static void rf_if_set_bit(uint8_t addr, uint8_t bit, uint8_t bit_mask);
static void rf_if_clear_bit(uint8_t addr, uint8_t bit);
static void rf_if_write_register(uint8_t addr, uint8_t data);
static void rf_if_reset_radio(void);
static void rf_if_enable_ant_div(void);
static void rf_if_disable_ant_div(void);
static void rf_if_enable_slptr(void);
static void rf_if_disable_slptr(void);
static void rf_if_write_antenna_diversity_settings(void);
static void rf_if_write_set_tx_power_register(uint8_t value);
static void rf_if_write_rf_settings(void);
static uint8_t rf_if_check_cca(void);
static uint8_t rf_if_read_trx_state(void);
static uint16_t rf_if_read_packet(uint8_t data[RF_MTU], uint8_t *lqi_out, uint8_t *ed_out, bool *crc_good);
static void rf_if_write_short_addr_registers(uint8_t *short_address);
static uint8_t rf_if_last_acked_pending(void);
static void rf_if_write_pan_id_registers(uint8_t *pan_id);
static void rf_if_write_ieee_addr_registers(uint8_t *address);
static void rf_if_write_frame_buffer(const uint8_t *ptr, uint8_t length);
static void rf_if_change_trx_state(rf_trx_states_t trx_state);
static void rf_if_enable_tx_end_interrupt(void);
static void rf_if_enable_rx_end_interrupt(void);
static void rf_if_enable_cca_ed_done_interrupt(void);
static void rf_if_start_cca_process(void);
static int8_t rf_if_scale_rssi(uint8_t ed_level);
static void rf_if_set_channel_register(uint8_t channel);
static void rf_if_enable_promiscuous_mode(void);
static void rf_if_disable_promiscuous_mode(void);
static uint8_t rf_if_read_part_num(void);
static void rf_if_enable_irq(void);
static void rf_if_disable_irq(void);
#ifdef MBED_CONF_RTOS_PRESENT
#include "mbed.h"
#include "rtos.h"
static void rf_if_irq_task_process_irq();
#define SIG_RADIO 1
#define SIG_TIMER_ACK 2
#define SIG_TIMER_CAL 4
#define SIG_TIMER_CCA 8
#define SIG_TIMERS (SIG_TIMER_ACK|SIG_TIMER_CAL|SIG_TIMER_CCA)
#define SIG_ALL (SIG_RADIO|SIG_TIMERS)
#endif
// HW pins to RF chip
#define SPI_SPEED 7500000
class UnlockedSPI : public SPI {
public:
UnlockedSPI(PinName mosi, PinName miso, PinName sclk) :
SPI(mosi, miso, sclk) { }
virtual void lock() { }
virtual void unlock() { }
};
class RFBits {
public:
RFBits(PinName spi_mosi, PinName spi_miso,
PinName spi_sclk, PinName spi_cs,
PinName spi_rst, PinName spi_slp, PinName spi_irq);
UnlockedSPI spi;
DigitalOut CS;
DigitalOut RST;
DigitalOut SLP_TR;
InterruptIn IRQ;
Timeout ack_timer;
Timeout cal_timer;
Timeout cca_timer;
#ifdef MBED_CONF_RTOS_PRESENT
Thread irq_thread;
Mutex mutex;
void rf_if_irq_task();
#endif
};
RFBits::RFBits(PinName spi_mosi, PinName spi_miso,
PinName spi_sclk, PinName spi_cs,
PinName spi_rst, PinName spi_slp, PinName spi_irq)
: spi(spi_mosi, spi_miso, spi_sclk),
CS(spi_cs),
RST(spi_rst),
SLP_TR(spi_slp),
IRQ(spi_irq)
#ifdef MBED_CONF_RTOS_PRESENT
,irq_thread(osPriorityRealtime, 1024)
#endif
{
#ifdef MBED_CONF_RTOS_PRESENT
irq_thread.start(mbed::callback(this, &RFBits::rf_if_irq_task));
#endif
}
static RFBits *rf;
static uint8_t rf_part_num = 0;
/*TODO: RSSI Base value setting*/
static int8_t rf_rssi_base_val = -91;
static uint8_t rf_if_spi_exchange(uint8_t out);
static void rf_if_lock(void)
{
platform_enter_critical();
}
static void rf_if_unlock(void)
{
platform_exit_critical();
}
#ifdef MBED_CONF_RTOS_PRESENT
static void rf_if_cca_timer_signal(void)
{
rf->irq_thread.signal_set(SIG_TIMER_CCA);
}
static void rf_if_cal_timer_signal(void)
{
rf->irq_thread.signal_set(SIG_TIMER_CAL);
}
static void rf_if_ack_timer_signal(void)
{
rf->irq_thread.signal_set(SIG_TIMER_ACK);
}
#endif
/* Delay functions for RF Chip SPI access */
#ifdef __CC_ARM
__asm static void delay_loop(uint32_t count)
{
1
SUBS a1, a1, #1
BCS %BT1
BX lr
}
#elif defined (__ICCARM__)
static void delay_loop(uint32_t count)
{
__asm volatile(
"loop: \n"
" SUBS %0, %0, #1 \n"
" BCS.n loop\n"
: "+r" (count)
:
: "cc"
);
}
#else // GCC
static void delay_loop(uint32_t count)
{
__asm__ volatile (
"%=:\n\t"
#if defined(__thumb__) && !defined(__thumb2__)
"SUB %0, #1\n\t"
#else
"SUBS %0, %0, #1\n\t"
#endif
"BCS %=b\n\t"
: "+l" (count)
:
: "cc"
);
}
#endif
static void delay_ns(uint32_t ns)
{
uint32_t cycles_per_us = SystemCoreClock / 1000000;
// Cortex-M0 takes 4 cycles per loop (SUB=1, BCS=3)
// Cortex-M3 and M4 takes 3 cycles per loop (SUB=1, BCS=2)
// Cortex-M7 - who knows?
// Cortex M3-M7 have "CYCCNT" - would be better than a software loop, but M0 doesn't
// Assume 3 cycles per loop for now - will be 33% slow on M0. No biggie,
// as original version of code was 300% slow on M4.
// [Note that this very calculation, plus call overhead, will take multiple
// cycles. Could well be 100ns on its own... So round down here, startup is
// worth at least one loop iteration.]
uint32_t count = (cycles_per_us * ns) / 3000;
delay_loop(count);
}
// t1 = 180ns, SEL falling edge to MISO active [SPI setup assumed slow enough to not need manual delay]
#define CS_SELECT() {rf->CS = 0; /* delay_ns(180); */}
// t9 = 250ns, last clock to SEL rising edge, t8 = 250ns, SPI idle time between consecutive access
#define CS_RELEASE() {delay_ns(250); rf->CS = 1; delay_ns(250);}
/*
* \brief Function sets the TX power variable.
*
* \param power TX power setting
*
* \return 0 Success
* \return -1 Fail
*/
MBED_UNUSED static int8_t rf_tx_power_set(uint8_t power)
{
int8_t ret_val = -1;
radio_tx_power = power;
rf_if_lock();
rf_if_write_set_tx_power_register(radio_tx_power);
rf_if_unlock();
ret_val = 0;
return ret_val;
}
/*
* \brief Read connected radio part.
*
* This function only return valid information when rf_init() is called
*
* \return
*/
static rf_trx_part_e rf_radio_type_read(void)
{
rf_trx_part_e ret_val = ATMEL_UNKNOW_DEV;
switch (rf_part_num)
{
case PART_AT86RF212:
ret_val = ATMEL_AT86RF212;
break;
case PART_AT86RF233:
ret_val = ATMEL_AT86RF233;
break;
default:
break;
}
return ret_val;
}
/*
* \brief Function starts the ACK wait timeout.
*
* \param slots Given slots, resolution 50us
*
* \return none
*/
static void rf_if_ack_wait_timer_start(uint16_t slots)
{
#ifdef MBED_CONF_RTOS_PRESENT
rf->ack_timer.attach_us(rf_if_ack_timer_signal, slots*50);
#else
rf->ack_timer.attach_us(rf_ack_wait_timer_interrupt, slots*50);
#endif
}
/*
* \brief Function starts the calibration interval.
*
* \param slots Given slots, resolution 50us
*
* \return none
*/
static void rf_if_calibration_timer_start(uint32_t slots)
{
#ifdef MBED_CONF_RTOS_PRESENT
rf->cal_timer.attach_us(rf_if_cal_timer_signal, slots*50);
#else
rf->cal_timer.attach_us(rf_calibration_timer_interrupt, slots*50);
#endif
}
/*
* \brief Function starts the CCA interval.
*
* \param slots Given slots, resolution 50us
*
* \return none
*/
static void rf_if_cca_timer_start(uint32_t slots)
{
#ifdef MBED_CONF_RTOS_PRESENT
rf->cca_timer.attach_us(rf_if_cca_timer_signal, slots*50);
#else
rf->cca_timer.attach_us(rf_cca_timer_interrupt, slots*50);
#endif
}
/*
* \brief Function stops the CCA interval.
*
* \return none
*/
static void rf_if_cca_timer_stop(void)
{
rf->cca_timer.detach();
}
/*
* \brief Function stops the ACK wait timeout.
*
* \param none
*
* \return none
*/
static void rf_if_ack_wait_timer_stop(void)
{
rf->ack_timer.detach();
}
/*
* \brief Function sets bit(s) in given RF register.
*
* \param addr Address of the register to set
* \param bit Bit(s) to set
* \param bit_mask Masks the field inside the register
*
* \return none
*/
static void rf_if_set_bit(uint8_t addr, uint8_t bit, uint8_t bit_mask)
{
uint8_t reg = rf_if_read_register(addr);
reg &= ~bit_mask;
reg |= bit;
rf_if_write_register(addr, reg);
}
/*
* \brief Function clears bit(s) in given RF register.
*
* \param addr Address of the register to clear
* \param bit Bit(s) to clear
*
* \return none
*/
static void rf_if_clear_bit(uint8_t addr, uint8_t bit)
{
rf_if_set_bit(addr, 0, bit);
}
/*
* \brief Function writes register in RF.
*
* \param addr Address on the RF
* \param data Written data
*
* \return none
*/
static void rf_if_write_register(uint8_t addr, uint8_t data)
{
uint8_t cmd = 0xC0;
CS_SELECT();
rf_if_spi_exchange(cmd | addr);
rf_if_spi_exchange(data);
CS_RELEASE();
}
/*
* \brief Function reads RF register.
*
* \param addr Address on the RF
*
* \return Read data
*/
static uint8_t rf_if_read_register(uint8_t addr)
{
uint8_t cmd = 0x80;
uint8_t data;
CS_SELECT();
rf_if_spi_exchange(cmd | addr);
data = rf_if_spi_exchange(0);
CS_RELEASE();
return data;
}
/*
* \brief Function resets the RF.
*
* \param none
*
* \return none
*/
static void rf_if_reset_radio(void)
{
rf->spi.frequency(SPI_SPEED);
rf->IRQ.rise(0);
rf->RST = 1;
wait_ms(1);
rf->RST = 0;
wait_ms(10);
CS_RELEASE();
rf->SLP_TR = 0;
wait_ms(10);
rf->RST = 1;
wait_ms(10);
rf->IRQ.rise(&rf_if_interrupt_handler);
}
/*
* \brief Function enables the promiscuous mode.
*
* \param none
*
* \return none
*/
static void rf_if_enable_promiscuous_mode(void)
{
/*Set AACK_PROM_MODE to enable the promiscuous mode*/
rf_if_set_bit(XAH_CTRL_1, AACK_PROM_MODE, AACK_PROM_MODE);
}
/*
* \brief Function enables the promiscuous mode.
*
* \param none
*
* \return none
*/
static void rf_if_disable_promiscuous_mode(void)
{
/*Set AACK_PROM_MODE to enable the promiscuous mode*/
rf_if_clear_bit(XAH_CTRL_1, AACK_PROM_MODE);
}
/*
* \brief Function enables the Antenna diversity usage.
*
* \param none
*
* \return none
*/
static void rf_if_enable_ant_div(void)
{
/*Set ANT_EXT_SW_EN to enable controlling of antenna diversity*/
rf_if_set_bit(ANT_DIV, ANT_EXT_SW_EN, ANT_EXT_SW_EN);
}
/*
* \brief Function disables the Antenna diversity usage.
*
* \param none
*
* \return none
*/
static void rf_if_disable_ant_div(void)
{
rf_if_clear_bit(ANT_DIV, ANT_EXT_SW_EN);
}
/*
* \brief Function sets the SLP TR pin.
*
* \param none
*
* \return none
*/
static void rf_if_enable_slptr(void)
{
rf->SLP_TR = 1;
}
/*
* \brief Function clears the SLP TR pin.
*
* \param none
*
* \return none
*/
static void rf_if_disable_slptr(void)
{
rf->SLP_TR = 0;
}
/*
* \brief Function writes the antenna diversity settings.
*
* \param none
*
* \return none
*/
static void rf_if_write_antenna_diversity_settings(void)
{
/*Recommended setting of PDT_THRES is 3 when antenna diversity is used*/
rf_if_set_bit(RX_CTRL, 0x03, 0x0f);
rf_if_write_register(ANT_DIV, ANT_DIV_EN | ANT_EXT_SW_EN | ANT_CTRL_DEFAULT);
}
/*
* \brief Function writes the TX output power register.
*
* \param value Given register value
*
* \return none
*/
static void rf_if_write_set_tx_power_register(uint8_t value)
{
rf_if_write_register(PHY_TX_PWR, value);
}
/*
* \brief Function returns the RF part number.
*
* \param none
*
* \return part number
*/
static uint8_t rf_if_read_part_num(void)
{
return rf_if_read_register(PART_NUM);
}
/*
* \brief Function writes the RF settings and initialises SPI interface.
*
* \param none
*
* \return none
*/
static void rf_if_write_rf_settings(void)
{
/*Reset RF module*/
rf_if_reset_radio();
rf_part_num = rf_if_read_part_num();
rf_if_write_register(XAH_CTRL_0,0);
rf_if_write_register(TRX_CTRL_1, 0x20);
/*CCA Mode - Carrier sense OR energy above threshold. Channel list is set separately*/
rf_if_write_register(PHY_CC_CCA, 0x05);
/*Read transceiver PART_NUM*/
rf_part_num = rf_if_read_register(PART_NUM);
/*Sub-GHz RF settings*/
if(rf_part_num == PART_AT86RF212)
{
/*GC_TX_OFFS mode-dependent setting - OQPSK*/
rf_if_write_register(RF_CTRL_0, 0x32);
if(rf_if_read_register(VERSION_NUM) == VERSION_AT86RF212B)
{
/*TX Output Power setting - 0 dBm North American Band*/
rf_if_write_register(PHY_TX_PWR, 0x03);
}
else
{
/*TX Output Power setting - 0 dBm North American Band*/
rf_if_write_register(PHY_TX_PWR, 0x24);
}
/*PHY Mode: IEEE 802.15.4-2006/2011 - OQPSK-SIN-250*/
rf_if_write_register(TRX_CTRL_2, RF_PHY_MODE);
/*Based on receiver Characteristics. See AT86RF212B Datasheet where RSSI BASE VALUE in range -97 - -100 dBm*/
rf_rssi_base_val = -98;
}
/*2.4GHz RF settings*/
else
{
#if 0
/* Disable power saving functions for now - can only impact reliability,
* and don't have any users demanding it. */
/*Set RPC register*/
rf_if_write_register(TRX_RPC, RX_RPC_CTRL|RX_RPC_EN|PLL_RPC_EN|XAH_TX_RPC_EN|IPAN_RPC_EN|TRX_RPC_RSVD_1);
#endif
/*PHY Mode: IEEE 802.15.4 - Data Rate 250 kb/s*/
rf_if_write_register(TRX_CTRL_2, 0);
rf_rssi_base_val = -91;
}
}
/*
* \brief Function checks the channel availability
*
* \param none
*
* \return 1 Channel clear
* \return 0 Channel not clear
*/
static uint8_t rf_if_check_cca(void)
{
uint8_t retval = 0;
if(rf_if_read_register(TRX_STATUS) & CCA_STATUS)
{
retval = 1;
}
return retval;
}
/*
* \brief Function returns the RF state
*
* \param none
*
* \return RF state
*/
static uint8_t rf_if_read_trx_state(void)
{
return rf_if_read_register(TRX_STATUS) & 0x1F;
}
/*
* \brief Function reads packet buffer.
*
* \param data_out Output buffer
* \param lqi_out LQI output
* \param ed_out ED output
* \param crc_good CRC good indication
*
* \return PSDU length [0..RF_MTU]
*/
static uint16_t rf_if_read_packet(uint8_t data_out[RF_MTU], uint8_t *lqi_out, uint8_t *ed_out, bool *crc_good)
{
CS_SELECT();
rf_if_spi_exchange(0x20);
uint8_t len = rf_if_spi_exchange(0) & 0x7F;
uint8_t *ptr = data_out;
for (uint_fast8_t i = 0; i < len; i++) {
*ptr++ = rf_if_spi_exchange(0);
}
*lqi_out = rf_if_spi_exchange(0);
*ed_out = rf_if_spi_exchange(0);
*crc_good = rf_if_spi_exchange(0) & 0x80;
CS_RELEASE();
return len;
}
/*
* \brief Function writes RF short address registers
*
* \param short_address Given short address
*
* \return none
*/
static void rf_if_write_short_addr_registers(uint8_t *short_address)
{
rf_if_write_register(SHORT_ADDR_1, *short_address++);
rf_if_write_register(SHORT_ADDR_0, *short_address);
}
/*
* \brief Function sets the frame pending in ACK message
*
* \param state Given frame pending state
*
* \return none
*/
static void rf_if_ack_pending_ctrl(uint8_t state)
{
rf_if_lock();
if(state)
{
rf_if_set_bit(CSMA_SEED_1, (1 << AACK_SET_PD), (1 << AACK_SET_PD));
}
else
{
rf_if_clear_bit(CSMA_SEED_1, (1 << AACK_SET_PD));
}
rf_if_unlock();
}
/*
* \brief Function returns the state of frame pending control
*
* \param none
*
* \return Frame pending state
*/
static uint8_t rf_if_last_acked_pending(void)
{
uint8_t last_acked_data_pending;
rf_if_lock();
if(rf_if_read_register(CSMA_SEED_1) & 0x20)
last_acked_data_pending = 1;
else
last_acked_data_pending = 0;
rf_if_unlock();
return last_acked_data_pending;
}
/*
* \brief Function calibrates the RF part.
*
* \param none
*
* \return none
*/
static void rf_if_calibration(void)
{
rf_if_set_bit(FTN_CTRL, FTN_START, FTN_START);
/*Wait while calibration is running*/
while(rf_if_read_register(FTN_CTRL) & FTN_START);
}
/*
* \brief Function writes RF PAN Id registers
*
* \param pan_id Given PAN Id
*
* \return none
*/
static void rf_if_write_pan_id_registers(uint8_t *pan_id)
{
rf_if_write_register(PAN_ID_1, *pan_id++);
rf_if_write_register(PAN_ID_0, *pan_id);
}
/*
* \brief Function writes RF IEEE Address registers
*
* \param address Given IEEE Address
*
* \return none
*/
static void rf_if_write_ieee_addr_registers(uint8_t *address)
{
uint8_t i;
uint8_t temp = IEEE_ADDR_0;
for(i=0; i<8; i++)
rf_if_write_register(temp++, address[7-i]);
}
/*
* \brief Function writes data in RF frame buffer.
*
* \param ptr Pointer to data (PSDU, except FCS)
* \param length Pointer to length (PSDU length, minus 2 for FCS)
*
* \return none
*/
static void rf_if_write_frame_buffer(const uint8_t *ptr, uint8_t length)
{
uint8_t i;
uint8_t cmd = 0x60;
CS_SELECT();
rf_if_spi_exchange(cmd);
rf_if_spi_exchange(length + 2);
for(i=0; i<length; i++)
rf_if_spi_exchange(*ptr++);
CS_RELEASE();
}
/*
* \brief Function returns 8-bit random value.
*
* \param none
*
* \return random value
*/
static uint8_t rf_if_read_rnd(void)
{
uint8_t temp;
uint8_t tmp_rpc_val = 0;
/*RPC must be disabled while reading the random number*/
if(rf_part_num == PART_AT86RF233)
{
tmp_rpc_val = rf_if_read_register(TRX_RPC);
rf_if_write_register(TRX_RPC, RX_RPC_CTRL|TRX_RPC_RSVD_1);
}
wait_ms(1);
temp = ((rf_if_read_register(PHY_RSSI)>>5) << 6);
wait_ms(1);
temp |= ((rf_if_read_register(PHY_RSSI)>>5) << 4);
wait_ms(1);
temp |= ((rf_if_read_register(PHY_RSSI)>>5) << 2);
wait_ms(1);
temp |= ((rf_if_read_register(PHY_RSSI)>>5));
wait_ms(1);
if(rf_part_num == PART_AT86RF233)
rf_if_write_register(TRX_RPC, tmp_rpc_val);
return temp;
}
/*
* \brief Function changes the state of the RF.
*
* \param trx_state Given RF state
*
* \return none
*/
static void rf_if_change_trx_state(rf_trx_states_t trx_state)
{
// XXX Lock claim apparently not required
rf_if_lock();
rf_if_write_register(TRX_STATE, trx_state);
/*Wait while not in desired state*/
rf_poll_trx_state_change(trx_state);
rf_if_unlock();
}
/*
* \brief Function enables the TX END interrupt
*
* \param none
*
* \return none
*/
static void rf_if_enable_tx_end_interrupt(void)
{
rf_if_set_bit(IRQ_MASK, TRX_END, TRX_END);
}
/*
* \brief Function enables the RX END interrupt
*
* \param none
*
* \return none
*/
static void rf_if_enable_rx_end_interrupt(void)
{
rf_if_set_bit(IRQ_MASK, TRX_END, TRX_END);
}
/*
* \brief Function enables the CCA ED interrupt
*
* \param none
*
* \return none
*/
static void rf_if_enable_cca_ed_done_interrupt(void)
{
rf_if_set_bit(IRQ_MASK, CCA_ED_DONE, CCA_ED_DONE);
}
/*
* \brief Function starts the CCA process
*
* \param none
*
* \return none
*/
static void rf_if_start_cca_process(void)
{
rf_if_set_bit(PHY_CC_CCA, CCA_REQUEST, CCA_REQUEST);
}
/*
* \brief Function scales RSSI
*
* \param ed_level ED level read from chip
*
* \return appropriately scaled RSSI dBm
*/
static int8_t rf_if_scale_rssi(uint8_t ed_level)
{
if (rf_part_num == PART_AT86RF212) {
/* Data sheet says to multiply by 1.03 - this is 1.03125, rounding down */
ed_level += ed_level >> 5;
}
return rf_rssi_base_val + ed_level;
}
/*
* \brief Function sets the RF channel field
*
* \param Given channel
*
* \return none
*/
static void rf_if_set_channel_register(uint8_t channel)
{
rf_if_set_bit(PHY_CC_CCA, channel, 0x1f);
}
/*
* \brief Function enables RF irq pin interrupts in RF interface.
*
* \param none
*
* \return none
*/
static void rf_if_enable_irq(void)
{
rf->IRQ.enable_irq();
}
/*
* \brief Function disables RF irq pin interrupts in RF interface.
*
* \param none
*
* \return none
*/
static void rf_if_disable_irq(void)
{
rf->IRQ.disable_irq();
}
#ifdef MBED_CONF_RTOS_PRESENT
static void rf_if_interrupt_handler(void)
{
rf->irq_thread.signal_set(SIG_RADIO);
}
// Started during construction of rf, so variable
// rf isn't set at the start. Uses 'this' instead.
void RFBits::rf_if_irq_task(void)
{
for (;;) {
osEvent event = irq_thread.signal_wait(0);
if (event.status != osEventSignal) {
continue;
}
rf_if_lock();
if (event.value.signals & SIG_RADIO) {
rf_if_irq_task_process_irq();
}
if (event.value.signals & SIG_TIMER_ACK) {
rf_ack_wait_timer_interrupt();
}
if (event.value.signals & SIG_TIMER_CCA) {
rf_cca_timer_interrupt();
}
if (event.value.signals & SIG_TIMER_CAL) {
rf_calibration_timer_interrupt();
}
rf_if_unlock();
}
}
static void rf_if_irq_task_process_irq(void)
#else
/*
* \brief Function is a RF interrupt vector. End of frame in RX and TX are handled here as well as CCA process interrupt.
*
* \param none
*
* \return none
*/
static void rf_if_interrupt_handler(void)
#endif
{
uint8_t irq_status;
/*Read interrupt flag*/
irq_status = rf_if_read_register(IRQ_STATUS);
/*Disable interrupt on RF*/
rf_if_clear_bit(IRQ_MASK, irq_status);
/*RX start interrupt*/
if(irq_status & RX_START)
{
}
/*Address matching interrupt*/
if(irq_status & AMI)
{
}
if(irq_status & TRX_UR)
{
}
/*Frame end interrupt (RX and TX)*/
if(irq_status & TRX_END)
{
/*TX done interrupt*/
if(rf_if_read_trx_state() == PLL_ON || rf_if_read_trx_state() == TX_ARET_ON)
{
rf_handle_tx_end();
}
/*Frame received interrupt*/
else
{
rf_handle_rx_end();
}
}
if(irq_status & CCA_ED_DONE)
{
rf_handle_cca_ed_done();
}
}
/*
* \brief Function writes/read data in SPI interface
*
* \param out Output data
*
* \return Input data
*/
static uint8_t rf_if_spi_exchange(uint8_t out)
{
uint8_t v;
v = rf->spi.write(out);
// t9 = t5 = 250ns, delay between LSB of last byte to next MSB or delay between LSB & SEL rising
// [SPI setup assumed slow enough to not need manual delay]
// delay_ns(250);
return v;
}
/*
* \brief Function sets given RF flag on.
*
* \param x Given RF flag
*
* \return none
*/
static void rf_flags_set(uint8_t x)
{
rf_flags |= x;
}
/*
* \brief Function clears given RF flag on.
*
* \param x Given RF flag
*
* \return none
*/
static void rf_flags_clear(uint8_t x)
{
rf_flags &= ~x;
}
/*
* \brief Function checks if given RF flag is on.
*
* \param x Given RF flag
*
* \return states of the given flags
*/
static uint8_t rf_flags_check(uint8_t x)
{
return (rf_flags & x);
}
/*
* \brief Function clears all RF flags.
*
* \param none
*
* \return none
*/
static void rf_flags_reset(void)
{
rf_flags = 0;
}
/*
* \brief Function initialises and registers the RF driver.
*
* \param none
*
* \return rf_radio_driver_id Driver ID given by NET library
*/
static int8_t rf_device_register(const uint8_t *mac_addr)
{
rf_trx_part_e radio_type;
rf_init();
radio_type = rf_radio_type_read();
if(radio_type != ATMEL_UNKNOW_DEV)
{
/*Set pointer to MAC address*/
device_driver.PHY_MAC = (uint8_t *)mac_addr;
device_driver.driver_description = (char*)"ATMEL_MAC";
//Create setup Used Radio chips
if(radio_type == ATMEL_AT86RF212)
{
device_driver.link_type = PHY_LINK_15_4_SUBGHZ_TYPE;
}
else
{
device_driver.link_type = PHY_LINK_15_4_2_4GHZ_TYPE;
}
device_driver.phy_channel_pages = phy_channel_pages;
/*Maximum size of payload is 127*/
device_driver.phy_MTU = 127;
/*No header in PHY*/
device_driver.phy_header_length = 0;
/*No tail in PHY*/
device_driver.phy_tail_length = 0;
/*Set address write function*/
device_driver.address_write = &rf_address_write;
/*Set RF extension function*/
device_driver.extension = &rf_extension;
/*Set RF state control function*/
device_driver.state_control = &rf_interface_state_control;
/*Set transmit function*/
device_driver.tx = &rf_start_cca;
/*NULLIFY rx and tx_done callbacks*/
device_driver.phy_rx_cb = NULL;
device_driver.phy_tx_done_cb = NULL;
/*Register device driver*/
rf_radio_driver_id = arm_net_phy_register(&device_driver);
}
return rf_radio_driver_id;
}
/*
* \brief Function unregisters the RF driver.
*
* \param none
*
* \return none
*/
static void rf_device_unregister()
{
if (rf_radio_driver_id >= 0) {
arm_net_phy_unregister(rf_radio_driver_id);
rf_radio_driver_id = -1;
}
}
/*
* \brief Enable frame buffer protection
*
* If protection is enabled, reception cannot start - the radio will
* not go into RX_BUSY or write into the frame buffer if in receive mode.
* Setting this won't abort an already-started reception.
* We can still write the frame buffer ourselves.
*/
static void rf_enable_static_frame_buffer_protection(void)
{
if (!rf_flags_check(RFF_PROT)) {
/* This also writes RX_PDT_LEVEL to 0 - maximum RX sensitivity */
/* Would need to modify this function if messing with that */
rf_if_write_register(RX_SYN, RX_PDT_DIS);
rf_flags_set(RFF_PROT);
}
}
/*
* \brief Disable frame buffer protection
*/
static void rf_disable_static_frame_buffer_protection(void)
{
if (rf_flags_check(RFF_PROT)) {
/* This also writes RX_PDT_LEVEL to 0 - maximum RX sensitivity */
/* Would need to modify this function if messing with that */
rf_if_write_register(RX_SYN, 0);
rf_flags_clear(RFF_PROT);
}
}
/*
* \brief Function is a call back for ACK wait timeout.
*
* \param none
*
* \return none
*/
static void rf_ack_wait_timer_interrupt(void)
{
rf_if_lock();
expected_ack_sequence = -1;
/*Force PLL state*/
rf_if_change_trx_state(FORCE_PLL_ON);
rf_poll_trx_state_change(PLL_ON);
/*Start receiver in RX_AACK_ON state*/
rf_rx_mode = 0;
rf_flags_clear(RFF_RX);
rf_receive();
rf_if_unlock();
}
/*
* \brief Function is a call back for calibration interval timer.
*
* \param none
*
* \return none
*/
static void rf_calibration_timer_interrupt(void)
{
/*Calibrate RF*/
rf_calibration_cb();
/*Start new calibration timeout*/
rf_calibration_timer_start(RF_CALIBRATION_INTERVAL);
}
/*
* \brief Function is a call back for cca interval timer.
*
* \param none
*
* \return none
*/
static void rf_cca_timer_interrupt(void)
{
/*Disable reception - locks against entering BUSY_RX and overwriting frame buffer*/
rf_enable_static_frame_buffer_protection();
if(rf_if_read_trx_state() == BUSY_RX_AACK)
{
/*Reception already started - re-enable reception and say CCA fail*/
rf_disable_static_frame_buffer_protection();
if(device_driver.phy_tx_done_cb){
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_FAIL, 0, 0);
}
}
else
{
/*Load the frame buffer with frame to transmit */
rf_if_write_frame_buffer(rf_tx_data, rf_tx_length);
/*Make sure we're in RX state to read channel (any way we could not be?)*/
rf_receive();
rf_flags_set(RFF_CCA);
/*Start CCA process*/
rf_if_enable_cca_ed_done_interrupt();
rf_if_start_cca_process();
}
}
/*
* \brief Function starts the ACK wait timeout.
*
* \param slots Given slots, resolution 50us
*
* \return none
*/
static void rf_ack_wait_timer_start(uint16_t slots)
{
rf_if_ack_wait_timer_start(slots);
}
/*
* \brief Function starts the calibration interval.
*
* \param slots Given slots, resolution 50us
*
* \return none
*/
static void rf_calibration_timer_start(uint32_t slots)
{
rf_if_calibration_timer_start(slots);
}
/*
* \brief Function starts the CCA backoff.
*
* \param slots Given slots, resolution 50us
*
* \return none
*/
static void rf_cca_timer_start(uint32_t slots)
{
rf_if_cca_timer_start(slots);
}
/*
* \brief Function stops the CCA backoff.
*
* \return none
*/
static void rf_cca_timer_stop(void)
{
rf_if_cca_timer_stop();
}
/*
* \brief Function stops the ACK wait timeout.
*
* \param none
*
* \return none
*/
static void rf_ack_wait_timer_stop(void)
{
rf_if_ack_wait_timer_stop();
}
/*
* \brief Function writes various RF settings in startup.
*
* \param none
*
* \return none
*/
static void rf_write_settings(void)
{
rf_if_lock();
rf_if_write_rf_settings();
/*Set output power*/
rf_if_write_set_tx_power_register(radio_tx_power);
/*Initialise Antenna Diversity*/
if(rf_use_antenna_diversity)
rf_if_write_antenna_diversity_settings();
rf_if_unlock();
}
/*
* \brief Function writes 16-bit address in RF address filter.
*
* \param short_address Given short address
*
* \return none
*/
static void rf_set_short_adr(uint8_t * short_address)
{
rf_if_lock();
/*Wake up RF if sleeping*/
if(rf_flags_check(RFF_ON) == 0)
{
rf_if_disable_slptr();
rf_poll_trx_state_change(TRX_OFF);
}
/*Write address filter registers*/
rf_if_write_short_addr_registers(short_address);
/*RF back to sleep*/
if(rf_flags_check(RFF_ON) == 0)
{
rf_if_enable_slptr();
}
rf_if_unlock();
}
/*
* \brief Function writes PAN Id in RF PAN Id filter.
*
* \param pan_id Given PAN Id
*
* \return none
*/
static void rf_set_pan_id(uint8_t *pan_id)
{
rf_if_lock();
/*Wake up RF if sleeping*/
if(rf_flags_check(RFF_ON) == 0)
{
rf_if_disable_slptr();
rf_poll_trx_state_change(TRX_OFF);
}
/*Write address filter registers*/
rf_if_write_pan_id_registers(pan_id);
/*RF back to sleep*/
if(rf_flags_check(RFF_ON) == 0)
{
rf_if_enable_slptr();
}
rf_if_unlock();
}
/*
* \brief Function writes 64-bit address in RF address filter.
*
* \param address Given 64-bit address
*
* \return none
*/
static void rf_set_address(uint8_t *address)
{
rf_if_lock();
/*Wake up RF if sleeping*/
if(rf_flags_check(RFF_ON) == 0)
{
rf_if_disable_slptr();
rf_poll_trx_state_change(TRX_OFF);
}
/*Write address filter registers*/
rf_if_write_ieee_addr_registers(address);
/*RF back to sleep*/
if(rf_flags_check(RFF_ON) == 0)
{
rf_if_enable_slptr();
}
rf_if_unlock();
}
/*
* \brief Function sets the RF channel.
*
* \param ch New channel
*
* \return none
*/
static void rf_channel_set(uint8_t ch)
{
rf_if_lock();
rf_phy_channel = ch;
if(ch < 0x1f)
rf_if_set_channel_register(ch);
rf_if_unlock();
}
/*
* \brief Function initialises the radio driver and resets the radio.
*
* \param none
*
* \return none
*/
static void rf_init(void)
{
/*Reset RF module*/
rf_if_reset_radio();
rf_if_lock();
/*Write RF settings*/
rf_write_settings();
/*Initialise PHY mode*/
rf_init_phy_mode();
/*Clear RF flags*/
rf_flags_reset();
/*Set RF in TRX OFF state*/
rf_if_change_trx_state(TRX_OFF);
/*Set RF in PLL_ON state*/
rf_if_change_trx_state(PLL_ON);
/*Start receiver*/
rf_receive();
/*Read randomness, and add to seed*/
randLIB_add_seed(rf_if_read_rnd());
/*Start RF calibration timer*/
rf_calibration_timer_start(RF_CALIBRATION_INTERVAL);
rf_if_unlock();
}
/**
* \brief Function gets called when MAC is setting radio off.
*
* \param none
*
* \return none
*/
static void rf_off(void)
{
if(rf_flags_check(RFF_ON))
{
rf_if_lock();
rf_cca_abort();
uint16_t while_counter = 0;
/*Wait while receiving*/
while(rf_if_read_trx_state() == BUSY_RX_AACK)
{
while_counter++;
if(while_counter == 0xffff)
break;
}
/*RF state change: RX_AACK_ON->PLL_ON->TRX_OFF->SLEEP*/
if(rf_if_read_trx_state() == RX_AACK_ON)
{
rf_if_change_trx_state(PLL_ON);
}
rf_if_change_trx_state(TRX_OFF);
rf_if_enable_slptr();
/*Disable Antenna Diversity*/
if(rf_use_antenna_diversity)
rf_if_disable_ant_div();
rf_if_unlock();
}
/*Clears all flags*/
rf_flags_reset();
}
/*
* \brief Function polls the RF state until it has changed to desired state.
*
* \param trx_state RF state
*
* \return none
*/
static void rf_poll_trx_state_change(rf_trx_states_t trx_state)
{
uint16_t while_counter = 0;
// XXX lock apparently not needed
rf_if_lock();
if(trx_state != RF_TX_START)
{
if(trx_state == FORCE_PLL_ON)
trx_state = PLL_ON;
else if(trx_state == FORCE_TRX_OFF)
trx_state = TRX_OFF;
while(rf_if_read_trx_state() != trx_state)
{
while_counter++;
if(while_counter == 0x1ff)
break;
}
}
rf_if_unlock();
}
/*
* \brief Function starts the CCA process before starting data transmission and copies the data to RF TX FIFO.
*
* \param data_ptr Pointer to TX data (excluding FCS)
* \param data_length Length of the TX data (excluding FCS)
* \param tx_handle Handle to transmission
* \return 0 Success
* \return -1 Busy
*/
static int8_t rf_start_cca(uint8_t *data_ptr, uint16_t data_length, uint8_t tx_handle, data_protocol_e data_protocol )
{
(void)data_protocol;
rf_if_lock();
/*Check if transmitter is busy*/
if(rf_if_read_trx_state() == BUSY_RX_AACK || data_length > RF_MTU - 2)
{
rf_if_unlock();
/*Return busy*/
return -1;
}
else
{
expected_ack_sequence = -1;
/*Nanostack has a static TX buffer, which will remain valid until we*/
/*generate a callback, so we just note the pointer for reading later.*/
rf_tx_data = data_ptr;
rf_tx_length = data_length;
/*Start CCA timeout*/
rf_cca_timer_start(RF_CCA_BASE_BACKOFF + randLIB_get_random_in_range(0, RF_CCA_RANDOM_BACKOFF));
/*Store TX handle*/
mac_tx_handle = tx_handle;
rf_if_unlock();
}
/*Return success*/
return 0;
}
/*
* \brief Function aborts CCA process.
*
* \param none
*
* \return none
*/
static void rf_cca_abort(void)
{
rf_cca_timer_stop();
rf_flags_clear(RFF_CCA);
rf_disable_static_frame_buffer_protection();
}
/*
* \brief Function starts the transmission of the frame.
*
* \param none
*
* \return none
*/
static void rf_start_tx(void)
{
/*Only start transmitting from RX state*/
uint8_t trx_state = rf_if_read_trx_state();
if(trx_state != RX_AACK_ON)
{
rf_disable_static_frame_buffer_protection();
if(device_driver.phy_tx_done_cb){
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_FAIL, 0, 0);
}
}
else
{
/*RF state change: ->PLL_ON->RF_TX_START*/
rf_if_change_trx_state(FORCE_PLL_ON);
rf_flags_clear(RFF_RX);
/*Now we're out of receive mode, can release protection*/
rf_disable_static_frame_buffer_protection();
rf_if_enable_tx_end_interrupt();
rf_flags_set(RFF_TX);
rf_if_change_trx_state(RF_TX_START);
}
}
/*
* \brief Function sets the RF in RX state.
*
* \param none
*
* \return none
*/
static void rf_receive(void)
{
uint16_t while_counter = 0;
if(rf_flags_check(RFF_ON) == 0)
{
rf_on();
}
/*If not yet in RX state set it*/
if(rf_flags_check(RFF_RX) == 0)
{
rf_if_lock();
/*Wait while receiving data*/
while(rf_if_read_trx_state() == BUSY_RX_AACK)
{
while_counter++;
if(while_counter == 0xffff)
{
break;
}
}
rf_if_change_trx_state(PLL_ON);
if((rf_mode == RF_MODE_SNIFFER) || (rf_mode == RF_MODE_ED))
{
rf_if_change_trx_state(RX_ON);
}
else
{
/*ACK is always received in promiscuous mode to bypass address filters*/
if(rf_rx_mode)
{
rf_rx_mode = 0;
rf_if_enable_promiscuous_mode();
}
else
{
rf_if_disable_promiscuous_mode();
}
rf_if_change_trx_state(RX_AACK_ON);
}
/*If calibration timer was unable to calibrate the RF, run calibration now*/
if(!rf_tuned)
{
/*Start calibration. This can be done in states TRX_OFF, PLL_ON or in any receive state*/
rf_if_calibration();
/*RF is tuned now*/
rf_tuned = 1;
}
rf_channel_set(rf_phy_channel);
rf_flags_set(RFF_RX);
// Don't receive packets when ED mode enabled
if (rf_mode != RF_MODE_ED)
{
rf_if_enable_rx_end_interrupt();
}
rf_if_unlock();
}
}
/*
* \brief Function calibrates the radio.
*
* \param none
*
* \return none
*/
static void rf_calibration_cb(void)
{
/*clear tuned flag to start tuning in rf_receive*/
rf_tuned = 0;
/*If RF is in default receive state, start calibration*/
if(rf_if_read_trx_state() == RX_AACK_ON)
{
rf_if_lock();
/*Set RF in PLL_ON state*/
rf_if_change_trx_state(PLL_ON);
/*Set RF in TRX_OFF state to start PLL tuning*/
rf_if_change_trx_state(TRX_OFF);
/*Set RF in RX_ON state to calibrate*/
rf_if_change_trx_state(RX_ON);
/*Calibrate FTN*/
rf_if_calibration();
/*RF is tuned now*/
rf_tuned = 1;
/*Back to default receive state*/
rf_flags_clear(RFF_RX);
rf_receive();
rf_if_unlock();
}
}
/*
* \brief Function sets RF_ON flag when radio is powered.
*
* \param none
*
* \return none
*/
static void rf_on(void)
{
/*Set RFF_ON flag*/
if(rf_flags_check(RFF_ON) == 0)
{
rf_if_lock();
rf_flags_set(RFF_ON);
/*Enable Antenna diversity*/
if(rf_use_antenna_diversity)
/*Set ANT_EXT_SW_EN to enable controlling of antenna diversity*/
rf_if_enable_ant_div();
/*Wake up from sleep state*/
rf_if_disable_slptr();
rf_poll_trx_state_change(TRX_OFF);
rf_if_unlock();
}
}
/*
* \brief Function handles the received ACK frame.
*
* \param seq_number Sequence number of received ACK
* \param data_pending Pending bit state in received ACK
*
* \return none
*/
static void rf_handle_ack(uint8_t seq_number, uint8_t data_pending)
{
phy_link_tx_status_e phy_status;
rf_if_lock();
/*Received ACK sequence must be equal with transmitted packet sequence*/
if(expected_ack_sequence == seq_number)
{
rf_ack_wait_timer_stop();
expected_ack_sequence = -1;
/*When data pending bit in ACK frame is set, inform NET library*/
if(data_pending)
phy_status = PHY_LINK_TX_DONE_PENDING;
else
phy_status = PHY_LINK_TX_DONE;
/*Call PHY TX Done API*/
if(device_driver.phy_tx_done_cb){
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle,phy_status, 0, 0);
}
}
rf_if_unlock();
}
/*
* \brief Function is a call back for RX end interrupt.
*
* \param none
*
* \return none
*/
static void rf_handle_rx_end(void)
{
/*Start receiver*/
rf_flags_clear(RFF_RX);
rf_receive();
/*Frame received interrupt*/
if(!rf_flags_check(RFF_RX)) {
return;
}
static uint8_t rf_buffer[RF_MTU];
uint8_t rf_lqi, rf_ed;
int8_t rf_rssi;
bool crc_good;
/*Read received packet*/
uint8_t len = rf_if_read_packet(rf_buffer, &rf_lqi, &rf_ed, &crc_good);
if (len < 5 || !crc_good) {
return;
}
/* Convert raw ED to dBm value (chip-dependent) */
rf_rssi = rf_if_scale_rssi(rf_ed);
/* Create a virtual LQI using received RSSI, forgetting actual HW LQI */
/* (should be done through PHY_EXTENSION_CONVERT_SIGNAL_INFO) */
rf_lqi = rf_scale_lqi(rf_rssi);
/*Handle received ACK*/
if((rf_buffer[0] & 0x07) == 0x02 && rf_mode != RF_MODE_SNIFFER)
{
/*Check if data is pending*/
bool pending = (rf_buffer[0] & 0x10);
/*Send sequence number in ACK handler*/
rf_handle_ack(rf_buffer[2], pending);
} else {
if( device_driver.phy_rx_cb ){
device_driver.phy_rx_cb(rf_buffer, len - 2, rf_lqi, rf_rssi, rf_radio_driver_id);
}
}
}
/*
* \brief Function is called when MAC is shutting down the radio.
*
* \param none
*
* \return none
*/
static void rf_shutdown(void)
{
/*Call RF OFF*/
rf_off();
}
/*
* \brief Function is a call back for TX end interrupt.
*
* \param none
*
* \return none
*/
static void rf_handle_tx_end(void)
{
rf_rx_mode = 0;
/*If ACK is needed for this transmission*/
if((rf_tx_data[0] & 0x20) && rf_flags_check(RFF_TX))
{
expected_ack_sequence = rf_tx_data[2];
rf_ack_wait_timer_start(rf_ack_wait_duration);
rf_rx_mode = 1;
}
rf_flags_clear(RFF_RX);
/*Start receiver*/
rf_receive();
/*Call PHY TX Done API*/
if(device_driver.phy_tx_done_cb){
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_SUCCESS, 0, 0);
}
}
/*
* \brief Function is a call back for CCA ED done interrupt.
*
* \param none
*
* \return none
*/
static void rf_handle_cca_ed_done(void)
{
if (!rf_flags_check(RFF_CCA)) {
return;
}
rf_flags_clear(RFF_CCA);
/*Check the result of CCA process*/
if(rf_if_check_cca())
{
rf_start_tx();
}
else
{
/*Re-enable reception*/
rf_disable_static_frame_buffer_protection();
/*Send CCA fail notification*/
if(device_driver.phy_tx_done_cb){
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_CCA_FAIL, 0, 0);
}
}
}
/*
* \brief Function returns the TX power variable.
*
* \param none
*
* \return radio_tx_power TX power variable
*/
MBED_UNUSED static uint8_t rf_tx_power_get(void)
{
return radio_tx_power;
}
/*
* \brief Function enables the usage of Antenna diversity.
*
* \param none
*
* \return 0 Success
*/
MBED_UNUSED static int8_t rf_enable_antenna_diversity(void)
{
int8_t ret_val = 0;
rf_use_antenna_diversity = 1;
return ret_val;
}
/*
* \brief Function gives the control of RF states to MAC.
*
* \param new_state RF state
* \param rf_channel RF channel
*
* \return 0 Success
*/
static int8_t rf_interface_state_control(phy_interface_state_e new_state, uint8_t rf_channel)
{
int8_t ret_val = 0;
switch (new_state)
{
/*Reset PHY driver and set to idle*/
case PHY_INTERFACE_RESET:
break;
/*Disable PHY Interface driver*/
case PHY_INTERFACE_DOWN:
rf_shutdown();
break;
/*Enable PHY Interface driver*/
case PHY_INTERFACE_UP:
rf_mode = RF_MODE_NORMAL;
rf_channel_set(rf_channel);
rf_receive();
rf_if_enable_irq();
break;
/*Enable wireless interface ED scan mode*/
case PHY_INTERFACE_RX_ENERGY_STATE:
rf_mode = RF_MODE_ED;
rf_channel_set(rf_channel);
rf_receive();
rf_if_disable_irq();
// Read status to clear pending flags.
rf_if_read_register(IRQ_STATUS);
// Must set interrupt mask to be able to read IRQ status. GPIO interrupt is disabled.
rf_if_enable_cca_ed_done_interrupt();
// ED can be initiated by writing arbitrary value to PHY_ED_LEVEL
rf_if_write_register(PHY_ED_LEVEL, 0xff);
break;
case PHY_INTERFACE_SNIFFER_STATE: /**< Enable Sniffer state */
rf_mode = RF_MODE_SNIFFER;
rf_channel_set(rf_channel);
rf_flags_clear(RFF_RX);
rf_receive();
rf_if_enable_irq();
break;
}
return ret_val;
}
/*
* \brief Function controls the ACK pending, channel setting and energy detection.
*
* \param extension_type Type of control
* \param data_ptr Data from NET library
*
* \return 0 Success
*/
static int8_t rf_extension(phy_extension_type_e extension_type, uint8_t *data_ptr)
{
switch (extension_type)
{
/*Control MAC pending bit for Indirect data transmission*/
case PHY_EXTENSION_CTRL_PENDING_BIT:
if(*data_ptr)
{
rf_if_ack_pending_ctrl(1);
}
else
{
rf_if_ack_pending_ctrl(0);
}
break;
/*Return frame pending status*/
case PHY_EXTENSION_READ_LAST_ACK_PENDING_STATUS:
*data_ptr = rf_if_last_acked_pending();
break;
/*Set channel*/
case PHY_EXTENSION_SET_CHANNEL:
break;
/*Read energy on the channel*/
case PHY_EXTENSION_READ_CHANNEL_ENERGY:
// End of the ED measurement is indicated by CCA_ED_DONE
while (!(rf_if_read_register(IRQ_STATUS) & CCA_ED_DONE));
// RF input power: RSSI base level + 1[db] * PHY_ED_LEVEL
*data_ptr = rf_sensitivity + rf_if_read_register(PHY_ED_LEVEL);
// Read status to clear pending flags.
rf_if_read_register(IRQ_STATUS);
// Next ED measurement is started, next PHY_EXTENSION_READ_CHANNEL_ENERGY call will return the result.
rf_if_write_register(PHY_ED_LEVEL, 0xff);
break;
/*Read status of the link*/
case PHY_EXTENSION_READ_LINK_STATUS:
break;
default:
break;
}
return 0;
}
/*
* \brief Function sets the addresses to RF address filters.
*
* \param address_type Type of address
* \param address_ptr Pointer to given address
*
* \return 0 Success
*/
static int8_t rf_address_write(phy_address_type_e address_type, uint8_t *address_ptr)
{
int8_t ret_val = 0;
switch (address_type)
{
/*Set 48-bit address*/
case PHY_MAC_48BIT:
break;
/*Set 64-bit address*/
case PHY_MAC_64BIT:
rf_set_address(address_ptr);
break;
/*Set 16-bit address*/
case PHY_MAC_16BIT:
rf_set_short_adr(address_ptr);
break;
/*Set PAN Id*/
case PHY_MAC_PANID:
rf_set_pan_id(address_ptr);
break;
}
return ret_val;
}
/*
* \brief Function initialises the ACK wait time and returns the used PHY mode.
*
* \param none
*
* \return tmp Used PHY mode
*/
static void rf_init_phy_mode(void)
{
uint8_t tmp = 0;
uint8_t part = rf_if_read_part_num();
/*Read used PHY Mode*/
tmp = rf_if_read_register(TRX_CTRL_2);
/*Set ACK wait time for used data rate*/
if(part == PART_AT86RF212)
{
if((tmp & 0x1f) == 0x00)
{
rf_sensitivity = -110;
rf_ack_wait_duration = 938;
tmp = BPSK_20;
}
else if((tmp & 0x1f) == 0x04)
{
rf_sensitivity = -108;
rf_ack_wait_duration = 469;
tmp = BPSK_40;
}
else if((tmp & 0x1f) == 0x14)
{
rf_sensitivity = -108;
rf_ack_wait_duration = 469;
tmp = BPSK_40_ALT;
}
else if((tmp & 0x1f) == 0x08)
{
rf_sensitivity = -101;
rf_ack_wait_duration = 50;
tmp = OQPSK_SIN_RC_100;
}
else if((tmp & 0x1f) == 0x09)
{
rf_sensitivity = -99;
rf_ack_wait_duration = 30;
tmp = OQPSK_SIN_RC_200;
}
else if((tmp & 0x1f) == 0x18)
{
rf_sensitivity = -102;
rf_ack_wait_duration = 50;
tmp = OQPSK_RC_100;
}
else if((tmp & 0x1f) == 0x19)
{
rf_sensitivity = -100;
rf_ack_wait_duration = 30;
tmp = OQPSK_RC_200;
}
else if((tmp & 0x1f) == 0x0c)
{
rf_sensitivity = -100;
rf_ack_wait_duration = 20;
tmp = OQPSK_SIN_250;
}
else if((tmp & 0x1f) == 0x0d)
{
rf_sensitivity = -98;
rf_ack_wait_duration = 25;
tmp = OQPSK_SIN_500;
}
else if((tmp & 0x1f) == 0x0f)
{
rf_sensitivity = -98;
rf_ack_wait_duration = 25;
tmp = OQPSK_SIN_500_ALT;
}
else if((tmp & 0x1f) == 0x1c)
{
rf_sensitivity = -101;
rf_ack_wait_duration = 20;
tmp = OQPSK_RC_250;
}
else if((tmp & 0x1f) == 0x1d)
{
rf_sensitivity = -99;
rf_ack_wait_duration = 25;
tmp = OQPSK_RC_500;
}
else if((tmp & 0x1f) == 0x1f)
{
rf_sensitivity = -99;
rf_ack_wait_duration = 25;
tmp = OQPSK_RC_500_ALT;
}
else if((tmp & 0x3f) == 0x2A)
{
rf_sensitivity = -91;
rf_ack_wait_duration = 25;
tmp = OQPSK_SIN_RC_400_SCR_ON;
}
else if((tmp & 0x3f) == 0x0A)
{
rf_sensitivity = -91;
rf_ack_wait_duration = 25;
tmp = OQPSK_SIN_RC_400_SCR_OFF;
}
else if((tmp & 0x3f) == 0x3A)
{
rf_sensitivity = -97;
rf_ack_wait_duration = 25;
tmp = OQPSK_RC_400_SCR_ON;
}
else if((tmp & 0x3f) == 0x1A)
{
rf_sensitivity = -97;
rf_ack_wait_duration = 25;
tmp = OQPSK_RC_400_SCR_OFF;
}
else if((tmp & 0x3f) == 0x2E)
{
rf_sensitivity = -93;
rf_ack_wait_duration = 13;
tmp = OQPSK_SIN_1000_SCR_ON;
}
else if((tmp & 0x3f) == 0x0E)
{
rf_sensitivity = -93;
rf_ack_wait_duration = 13;
tmp = OQPSK_SIN_1000_SCR_OFF;
}
else if((tmp & 0x3f) == 0x3E)
{
rf_sensitivity = -95;
rf_ack_wait_duration = 13;
tmp = OQPSK_RC_1000_SCR_ON;
}
else if((tmp & 0x3f) == 0x1E)
{
rf_sensitivity = -95;
rf_ack_wait_duration = 13;
tmp = OQPSK_RC_1000_SCR_OFF;
}
}
else
{
rf_sensitivity = -101;
rf_ack_wait_duration = 20;
}
/*Board design might reduces the sensitivity*/
//rf_sensitivity += RF_SENSITIVITY_CALIBRATION;
}
static uint8_t rf_scale_lqi(int8_t rssi)
{
uint8_t scaled_lqi;
/*rssi < RF sensitivity*/
if(rssi < rf_sensitivity)
scaled_lqi=0;
/*-91 dBm < rssi < -81 dBm (AT86RF233 XPro)*/
/*-90 dBm < rssi < -80 dBm (AT86RF212B XPro)*/
else if(rssi < (rf_sensitivity + 10))
scaled_lqi=31;
/*-81 dBm < rssi < -71 dBm (AT86RF233 XPro)*/
/*-80 dBm < rssi < -70 dBm (AT86RF212B XPro)*/
else if(rssi < (rf_sensitivity + 20))
scaled_lqi=207;
/*-71 dBm < rssi < -61 dBm (AT86RF233 XPro)*/
/*-70 dBm < rssi < -60 dBm (AT86RF212B XPro)*/
else if(rssi < (rf_sensitivity + 30))
scaled_lqi=255;
/*-61 dBm < rssi < -51 dBm (AT86RF233 XPro)*/
/*-60 dBm < rssi < -50 dBm (AT86RF212B XPro)*/
else if(rssi < (rf_sensitivity + 40))
scaled_lqi=255;
/*-51 dBm < rssi < -41 dBm (AT86RF233 XPro)*/
/*-50 dBm < rssi < -40 dBm (AT86RF212B XPro)*/
else if(rssi < (rf_sensitivity + 50))
scaled_lqi=255;
/*-41 dBm < rssi < -31 dBm (AT86RF233 XPro)*/
/*-40 dBm < rssi < -30 dBm (AT86RF212B XPro)*/
else if(rssi < (rf_sensitivity + 60))
scaled_lqi=255;
/*-31 dBm < rssi < -21 dBm (AT86RF233 XPro)*/
/*-30 dBm < rssi < -20 dBm (AT86RF212B XPro)*/
else if(rssi < (rf_sensitivity + 70))
scaled_lqi=255;
/*rssi > RF saturation*/
else if(rssi > (rf_sensitivity + 80))
scaled_lqi=111;
/*-21 dBm < rssi < -11 dBm (AT86RF233 XPro)*/
/*-20 dBm < rssi < -10 dBm (AT86RF212B XPro)*/
else
scaled_lqi=255;
return scaled_lqi;
}
NanostackRfPhyAtmel::NanostackRfPhyAtmel(PinName spi_mosi, PinName spi_miso,
PinName spi_sclk, PinName spi_cs, PinName spi_rst, PinName spi_slp, PinName spi_irq,
PinName i2c_sda, PinName i2c_scl)
: _mac(i2c_sda, i2c_scl), _mac_addr(), _rf(NULL), _mac_set(false),
_spi_mosi(spi_mosi), _spi_miso(spi_miso), _spi_sclk(spi_sclk),
_spi_cs(spi_cs), _spi_rst(spi_rst), _spi_slp(spi_slp), _spi_irq(spi_irq)
{
_rf = new RFBits(_spi_mosi, _spi_miso, _spi_sclk, _spi_cs, _spi_rst, _spi_slp, _spi_irq);
}
NanostackRfPhyAtmel::~NanostackRfPhyAtmel()
{
delete _rf;
}
int8_t NanostackRfPhyAtmel::rf_register()
{
if (NULL == _rf) {
return -1;
}
rf_if_lock();
if (rf != NULL) {
rf_if_unlock();
error("Multiple registrations of NanostackRfPhyAtmel not supported");
return -1;
}
// Read the mac address if it hasn't been set by a user
rf = _rf;
if (!_mac_set) {
int ret = _mac.read_eui64((void*)_mac_addr);
if (ret < 0) {
rf = NULL;
rf_if_unlock();
return -1;
}
}
int8_t radio_id = rf_device_register(_mac_addr);
if (radio_id < 0) {
rf = NULL;
}
rf_if_unlock();
return radio_id;
}
void NanostackRfPhyAtmel::rf_unregister()
{
rf_if_lock();
if (NULL == rf) {
rf_if_unlock();
return;
}
rf_device_unregister();
rf = NULL;
rf_if_unlock();
}
void NanostackRfPhyAtmel::get_mac_address(uint8_t *mac)
{
rf_if_lock();
if (NULL == rf) {
error("NanostackRfPhyAtmel Must be registered to read mac address");
rf_if_unlock();
return;
}
memcpy((void*)mac, (void*)_mac_addr, sizeof(_mac_addr));
rf_if_unlock();
}
void NanostackRfPhyAtmel::set_mac_address(uint8_t *mac)
{
rf_if_lock();
if (NULL != rf) {
error("NanostackRfPhyAtmel cannot change mac address when running");
rf_if_unlock();
return;
}
memcpy((void*)_mac_addr, (void*)mac, sizeof(_mac_addr));
_mac_set = true;
rf_if_unlock();
}