Projet
Dependents: DISCO-F746NG_Scope_copy
Fork of BSP_DISCO_F746NG by
stm32746g_discovery_audio.c
- Committer:
- bcostm
- Date:
- 2016-01-04
- Revision:
- 1:ee089790cdbb
- Child:
- 2:458ab1edf6b2
File content as of revision 1:ee089790cdbb:
/** ****************************************************************************** * @file stm32746g_discovery_audio.c * @author MCD Application Team * @version V1.0.0 * @date 25-June-2015 * @brief This file provides the Audio driver for the STM32746G-Discovery board. @verbatim How To use this driver: ----------------------- + This driver supports STM32F7xx devices on STM32746G-Discovery (MB1191) board. + Call the function BSP_AUDIO_OUT_Init( OutputDevice: physical output mode (OUTPUT_DEVICE_SPEAKER, OUTPUT_DEVICE_HEADPHONE or OUTPUT_DEVICE_BOTH) Volume : Initial volume to be set (0 is min (mute), 100 is max (100%) AudioFreq : Audio frequency in Hz (8000, 16000, 22500, 32000...) this parameter is relative to the audio file/stream type. ) This function configures all the hardware required for the audio application (codec, I2C, SAI, GPIOs, DMA and interrupt if needed). This function returns AUDIO_OK if configuration is OK. If the returned value is different from AUDIO_OK or the function is stuck then the communication with the codec or the MFX has failed (try to un-plug the power or reset device in this case). - OUTPUT_DEVICE_SPEAKER : only speaker will be set as output for the audio stream. - OUTPUT_DEVICE_HEADPHONE: only headphones will be set as output for the audio stream. - OUTPUT_DEVICE_BOTH : both Speaker and Headphone are used as outputs for the audio stream at the same time. Note. On STM32746G-Discovery SAI_DMA is configured in CIRCULAR mode. Due to this the application does NOT need to call BSP_AUDIO_OUT_ChangeBuffer() to assure streaming. + Call the function BSP_DISCOVERY_AUDIO_OUT_Play( pBuffer: pointer to the audio data file address Size : size of the buffer to be sent in Bytes ) to start playing (for the first time) from the audio file/stream. + Call the function BSP_AUDIO_OUT_Pause() to pause playing + Call the function BSP_AUDIO_OUT_Resume() to resume playing. Note. After calling BSP_AUDIO_OUT_Pause() function for pause, only BSP_AUDIO_OUT_Resume() should be called for resume (it is not allowed to call BSP_AUDIO_OUT_Play() in this case). Note. This function should be called only when the audio file is played or paused (not stopped). + For each mode, you may need to implement the relative callback functions into your code. The Callback functions are named AUDIO_OUT_XXX_CallBack() and only their prototypes are declared in the stm32746g_discovery_audio.h file. (refer to the example for more details on the callbacks implementations) + To Stop playing, to modify the volume level, the frequency, the audio frame slot, the device output mode the mute or the stop, use the functions: BSP_AUDIO_OUT_SetVolume(), AUDIO_OUT_SetFrequency(), BSP_AUDIO_OUT_SetAudioFrameSlot(), BSP_AUDIO_OUT_SetOutputMode(), BSP_AUDIO_OUT_SetMute() and BSP_AUDIO_OUT_Stop(). + The driver API and the callback functions are at the end of the stm32746g_discovery_audio.h file. Driver architecture: -------------------- + This driver provides the High Audio Layer: consists of the function API exported in the stm32746g_discovery_audio.h file (BSP_AUDIO_OUT_Init(), BSP_AUDIO_OUT_Play() ...) + This driver provide also the Media Access Layer (MAL): which consists of functions allowing to access the media containing/ providing the audio file/stream. These functions are also included as local functions into the stm32746g_discovery_audio_codec.c file (SAIx_Out_Init() and SAIx_Out_DeInit(), SAIx_In_Init() and SAIx_In_DeInit()) Known Limitations: ------------------ 1- If the TDM Format used to play in parallel 2 audio Stream (the first Stream is configured in codec SLOT0 and second Stream in SLOT1) the Pause/Resume, volume and mute feature will control the both streams. 2- Parsing of audio file is not implemented (in order to determine audio file properties: Mono/Stereo, Data size, File size, Audio Frequency, Audio Data header size ...). The configuration is fixed for the given audio file. 3- Supports only Stereo audio streaming. 4- Supports only 16-bits audio data size. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32746g_discovery_audio.h" /** @addtogroup BSP * @{ */ /** @addtogroup STM32746G_DISCOVERY * @{ */ /** @defgroup STM32746G_DISCOVERY_AUDIO STM32746G_DISCOVERY AUDIO * @brief This file includes the low layer driver for wm8994 Audio Codec * available on STM32746G-Discovery board(MB1191). * @{ */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Types STM32746G_DISCOVERY AUDIO Private Types * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Defines STM32746G_DISCOVERY AUDIO Private Defines * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Macros STM32746G_DISCOVERY AUDIO Private Macros * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Variables STM32746G_DISCOVERY AUDIO Private Variables * @{ */ AUDIO_DrvTypeDef *audio_drv; SAI_HandleTypeDef haudio_out_sai={0}; SAI_HandleTypeDef haudio_in_sai={0}; TIM_HandleTypeDef haudio_tim; uint16_t __IO AudioInVolume = DEFAULT_AUDIO_IN_VOLUME; /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Function_Prototypes STM32746G_DISCOVERY AUDIO Private Function Prototypes * @{ */ static void SAIx_Out_Init(uint32_t AudioFreq); static void SAIx_Out_DeInit(void); static void SAIx_In_Init(uint32_t SaiOutMode, uint32_t SlotActive, uint32_t AudioFreq); static void SAIx_In_DeInit(void); /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_OUT_Exported_Functions STM32746G_DISCOVERY AUDIO Out Exported Functions * @{ */ /** * @brief Configures the audio peripherals. * @param OutputDevice: OUTPUT_DEVICE_SPEAKER, OUTPUT_DEVICE_HEADPHONE, * or OUTPUT_DEVICE_BOTH. * @param Volume: Initial volume level (from 0 (Mute) to 100 (Max)) * @param AudioFreq: Audio frequency used to play the audio stream. * @note The I2S PLL input clock must be done in the user application. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Init(uint16_t OutputDevice, uint8_t Volume, uint32_t AudioFreq) { uint8_t ret = AUDIO_ERROR; uint32_t deviceid = 0x00; /* Disable SAI */ SAIx_Out_DeInit(); /* PLL clock is set depending on the AudioFreq (44.1khz vs 48khz groups) */ BSP_AUDIO_OUT_ClockConfig(&haudio_out_sai, AudioFreq, NULL); /* SAI data transfer preparation: Prepare the Media to be used for the audio transfer from memory to SAI peripheral */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; if(HAL_SAI_GetState(&haudio_out_sai) == HAL_SAI_STATE_RESET) { /* Init the SAI MSP: this __weak function can be redefined by the application*/ BSP_AUDIO_OUT_MspInit(&haudio_out_sai, NULL); } SAIx_Out_Init(AudioFreq); /* wm8994 codec initialization */ deviceid = wm8994_drv.ReadID(AUDIO_I2C_ADDRESS); if((deviceid) == WM8994_ID) { /* Reset the Codec Registers */ wm8994_drv.Reset(AUDIO_I2C_ADDRESS); /* Initialize the audio driver structure */ audio_drv = &wm8994_drv; ret = AUDIO_OK; } else { ret = AUDIO_ERROR; } if(ret == AUDIO_OK) { /* Initialize the codec internal registers */ audio_drv->Init(AUDIO_I2C_ADDRESS, OutputDevice, Volume, AudioFreq); } return ret; } /** * @brief Starts playing audio stream from a data buffer for a determined size. * @param pBuffer: Pointer to the buffer * @param Size: Number of audio data in BYTES unit. * In memory, first element is for left channel, second element is for right channel * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Play(uint16_t* pBuffer, uint32_t Size) { /* Call the audio Codec Play function */ if(audio_drv->Play(AUDIO_I2C_ADDRESS, pBuffer, Size) != 0) { return AUDIO_ERROR; } else { /* Update the Media layer and enable it for play */ HAL_SAI_Transmit_DMA(&haudio_out_sai, (uint8_t*) pBuffer, DMA_MAX(Size / AUDIODATA_SIZE)); return AUDIO_OK; } } /** * @brief Sends n-Bytes on the SAI interface. * @param pData: pointer on data address * @param Size: number of data to be written * @retval None */ void BSP_AUDIO_OUT_ChangeBuffer(uint16_t *pData, uint16_t Size) { HAL_SAI_Transmit_DMA(&haudio_out_sai, (uint8_t*) pData, Size); } /** * @brief This function Pauses the audio file stream. In case * of using DMA, the DMA Pause feature is used. * @note When calling BSP_AUDIO_OUT_Pause() function for pause, only * BSP_AUDIO_OUT_Resume() function should be called for resume (use of BSP_AUDIO_OUT_Play() * function for resume could lead to unexpected behaviour). * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Pause(void) { /* Call the Audio Codec Pause/Resume function */ if(audio_drv->Pause(AUDIO_I2C_ADDRESS) != 0) { return AUDIO_ERROR; } else { /* Call the Media layer pause function */ HAL_SAI_DMAPause(&haudio_out_sai); /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief This function Resumes the audio file stream. * @note When calling BSP_AUDIO_OUT_Pause() function for pause, only * BSP_AUDIO_OUT_Resume() function should be called for resume (use of BSP_AUDIO_OUT_Play() * function for resume could lead to unexpected behaviour). * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Resume(void) { /* Call the Audio Codec Pause/Resume function */ if(audio_drv->Resume(AUDIO_I2C_ADDRESS) != 0) { return AUDIO_ERROR; } else { /* Call the Media layer pause/resume function */ HAL_SAI_DMAResume(&haudio_out_sai); /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Stops audio playing and Power down the Audio Codec. * @param Option: could be one of the following parameters * - CODEC_PDWN_SW: for software power off (by writing registers). * Then no need to reconfigure the Codec after power on. * - CODEC_PDWN_HW: completely shut down the codec (physically). * Then need to reconfigure the Codec after power on. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Stop(uint32_t Option) { /* Call the Media layer stop function */ HAL_SAI_DMAStop(&haudio_out_sai); /* Call Audio Codec Stop function */ if(audio_drv->Stop(AUDIO_I2C_ADDRESS, Option) != 0) { return AUDIO_ERROR; } else { if(Option == CODEC_PDWN_HW) { /* Wait at least 100us */ HAL_Delay(1); } /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Controls the current audio volume level. * @param Volume: Volume level to be set in percentage from 0% to 100% (0 for * Mute and 100 for Max volume level). * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_SetVolume(uint8_t Volume) { /* Call the codec volume control function with converted volume value */ if(audio_drv->SetVolume(AUDIO_I2C_ADDRESS, Volume) != 0) { return AUDIO_ERROR; } else { /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Enables or disables the MUTE mode by software * @param Cmd: Could be AUDIO_MUTE_ON to mute sound or AUDIO_MUTE_OFF to * unmute the codec and restore previous volume level. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_SetMute(uint32_t Cmd) { /* Call the Codec Mute function */ if(audio_drv->SetMute(AUDIO_I2C_ADDRESS, Cmd) != 0) { return AUDIO_ERROR; } else { /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Switch dynamically (while audio file is played) the output target * (speaker or headphone). * @param Output: The audio output target: OUTPUT_DEVICE_SPEAKER, * OUTPUT_DEVICE_HEADPHONE or OUTPUT_DEVICE_BOTH * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_SetOutputMode(uint8_t Output) { /* Call the Codec output device function */ if(audio_drv->SetOutputMode(AUDIO_I2C_ADDRESS, Output) != 0) { return AUDIO_ERROR; } else { /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Updates the audio frequency. * @param AudioFreq: Audio frequency used to play the audio stream. * @note This API should be called after the BSP_AUDIO_OUT_Init() to adjust the * audio frequency. * @retval None */ void BSP_AUDIO_OUT_SetFrequency(uint32_t AudioFreq) { /* PLL clock is set depending by the AudioFreq (44.1khz vs 48khz groups) */ BSP_AUDIO_OUT_ClockConfig(&haudio_out_sai, AudioFreq, NULL); /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_out_sai); /* Update the SAI audio frequency configuration */ haudio_out_sai.Init.AudioFrequency = AudioFreq; HAL_SAI_Init(&haudio_out_sai); /* Enable SAI peripheral to generate MCLK */ __HAL_SAI_ENABLE(&haudio_out_sai); } /** * @brief Updates the Audio frame slot configuration. * @param AudioFrameSlot: specifies the audio Frame slot * This parameter can be one of the following values * @arg CODEC_AUDIOFRAME_SLOT_0123 * @arg CODEC_AUDIOFRAME_SLOT_02 * @arg CODEC_AUDIOFRAME_SLOT_13 * @note This API should be called after the BSP_AUDIO_OUT_Init() to adjust the * audio frame slot. * @retval None */ void BSP_AUDIO_OUT_SetAudioFrameSlot(uint32_t AudioFrameSlot) { /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_out_sai); /* Update the SAI audio frame slot configuration */ haudio_out_sai.SlotInit.SlotActive = AudioFrameSlot; HAL_SAI_Init(&haudio_out_sai); /* Enable SAI peripheral to generate MCLK */ __HAL_SAI_ENABLE(&haudio_out_sai); } /** * @brief Deinit the audio peripherals. * @retval None */ void BSP_AUDIO_OUT_DeInit(void) { SAIx_Out_DeInit(); /* DeInit the SAI MSP : this __weak function can be rewritten by the application */ BSP_AUDIO_OUT_MspDeInit(&haudio_out_sai, NULL); } /** * @brief Tx Transfer completed callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai) { /* Manage the remaining file size and new address offset: This function should be coded by user (its prototype is already declared in stm32746g_discovery_audio.h) */ BSP_AUDIO_OUT_TransferComplete_CallBack(); } /** * @brief Tx Half Transfer completed callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai) { /* Manage the remaining file size and new address offset: This function should be coded by user (its prototype is already declared in stm32746g_discovery_audio.h) */ BSP_AUDIO_OUT_HalfTransfer_CallBack(); } /** * @brief SAI error callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_ErrorCallback(SAI_HandleTypeDef *hsai) { HAL_SAI_StateTypeDef audio_out_state; HAL_SAI_StateTypeDef audio_in_state; audio_out_state = HAL_SAI_GetState(&haudio_out_sai); audio_in_state = HAL_SAI_GetState(&haudio_in_sai); /* Determines if it is an audio out or audio in error */ if ((audio_out_state == HAL_SAI_STATE_BUSY) || (audio_out_state == HAL_SAI_STATE_BUSY_TX) || (audio_out_state == HAL_SAI_STATE_TIMEOUT) || (audio_out_state == HAL_SAI_STATE_ERROR)) { BSP_AUDIO_OUT_Error_CallBack(); } if ((audio_in_state == HAL_SAI_STATE_BUSY) || (audio_in_state == HAL_SAI_STATE_BUSY_RX) || (audio_in_state == HAL_SAI_STATE_TIMEOUT) || (audio_in_state == HAL_SAI_STATE_ERROR)) { BSP_AUDIO_IN_Error_CallBack(); } } /** * @brief Manages the DMA full Transfer complete event. * @retval None */ __weak void BSP_AUDIO_OUT_TransferComplete_CallBack(void) { } /** * @brief Manages the DMA Half Transfer complete event. * @retval None */ __weak void BSP_AUDIO_OUT_HalfTransfer_CallBack(void) { } /** * @brief Manages the DMA FIFO error event. * @retval None */ __weak void BSP_AUDIO_OUT_Error_CallBack(void) { } /** * @brief Initializes BSP_AUDIO_OUT MSP. * @param hsai: SAI handle * @param Params * @retval None */ __weak void BSP_AUDIO_OUT_MspInit(SAI_HandleTypeDef *hsai, void *Params) { static DMA_HandleTypeDef hdma_sai_tx; GPIO_InitTypeDef gpio_init_structure; /* Enable SAI clock */ AUDIO_OUT_SAIx_CLK_ENABLE(); /* Enable GPIO clock */ AUDIO_OUT_SAIx_MCLK_ENABLE(); AUDIO_OUT_SAIx_SCK_SD_ENABLE(); AUDIO_OUT_SAIx_FS_ENABLE(); /* CODEC_SAI pins configuration: FS, SCK, MCK and SD pins ------------------*/ gpio_init_structure.Pin = AUDIO_OUT_SAIx_FS_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_HIGH; gpio_init_structure.Alternate = AUDIO_OUT_SAIx_FS_SD_MCLK_AF; HAL_GPIO_Init(AUDIO_OUT_SAIx_FS_GPIO_PORT, &gpio_init_structure); gpio_init_structure.Pin = AUDIO_OUT_SAIx_SCK_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_HIGH; gpio_init_structure.Alternate = AUDIO_OUT_SAIx_SCK_AF; HAL_GPIO_Init(AUDIO_OUT_SAIx_SCK_SD_GPIO_PORT, &gpio_init_structure); gpio_init_structure.Pin = AUDIO_OUT_SAIx_SD_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_HIGH; gpio_init_structure.Alternate = AUDIO_OUT_SAIx_FS_SD_MCLK_AF; HAL_GPIO_Init(AUDIO_OUT_SAIx_SCK_SD_GPIO_PORT, &gpio_init_structure); gpio_init_structure.Pin = AUDIO_OUT_SAIx_MCLK_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_HIGH; gpio_init_structure.Alternate = AUDIO_OUT_SAIx_FS_SD_MCLK_AF; HAL_GPIO_Init(AUDIO_OUT_SAIx_MCLK_GPIO_PORT, &gpio_init_structure); /* Enable the DMA clock */ AUDIO_OUT_SAIx_DMAx_CLK_ENABLE(); if(hsai->Instance == AUDIO_OUT_SAIx) { /* Configure the hdma_saiTx handle parameters */ hdma_sai_tx.Init.Channel = AUDIO_OUT_SAIx_DMAx_CHANNEL; hdma_sai_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_sai_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_sai_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_sai_tx.Init.PeriphDataAlignment = AUDIO_OUT_SAIx_DMAx_PERIPH_DATA_SIZE; hdma_sai_tx.Init.MemDataAlignment = AUDIO_OUT_SAIx_DMAx_MEM_DATA_SIZE; hdma_sai_tx.Init.Mode = DMA_CIRCULAR; hdma_sai_tx.Init.Priority = DMA_PRIORITY_HIGH; hdma_sai_tx.Init.FIFOMode = DMA_FIFOMODE_ENABLE; hdma_sai_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_sai_tx.Init.MemBurst = DMA_MBURST_SINGLE; hdma_sai_tx.Init.PeriphBurst = DMA_PBURST_SINGLE; hdma_sai_tx.Instance = AUDIO_OUT_SAIx_DMAx_STREAM; /* Associate the DMA handle */ __HAL_LINKDMA(hsai, hdmatx, hdma_sai_tx); /* Deinitialize the Stream for new transfer */ HAL_DMA_DeInit(&hdma_sai_tx); /* Configure the DMA Stream */ HAL_DMA_Init(&hdma_sai_tx); } /* SAI DMA IRQ Channel configuration */ HAL_NVIC_SetPriority(AUDIO_OUT_SAIx_DMAx_IRQ, AUDIO_OUT_IRQ_PREPRIO, 0); HAL_NVIC_EnableIRQ(AUDIO_OUT_SAIx_DMAx_IRQ); } /** * @brief Deinitializes SAI MSP. * @param hsai: SAI handle * @param Params * @retval None */ __weak void BSP_AUDIO_OUT_MspDeInit(SAI_HandleTypeDef *hsai, void *Params) { GPIO_InitTypeDef gpio_init_structure; /* SAI DMA IRQ Channel deactivation */ HAL_NVIC_DisableIRQ(AUDIO_OUT_SAIx_DMAx_IRQ); if(hsai->Instance == AUDIO_OUT_SAIx) { /* Deinitialize the DMA stream */ HAL_DMA_DeInit(hsai->hdmatx); } /* Disable SAI peripheral */ __HAL_SAI_DISABLE(hsai); /* Deactives CODEC_SAI pins FS, SCK, MCK and SD by putting them in input mode */ gpio_init_structure.Pin = AUDIO_OUT_SAIx_FS_PIN; HAL_GPIO_DeInit(AUDIO_OUT_SAIx_FS_GPIO_PORT, gpio_init_structure.Pin); gpio_init_structure.Pin = AUDIO_OUT_SAIx_SCK_PIN; HAL_GPIO_DeInit(AUDIO_OUT_SAIx_SCK_SD_GPIO_PORT, gpio_init_structure.Pin); gpio_init_structure.Pin = AUDIO_OUT_SAIx_SD_PIN; HAL_GPIO_DeInit(AUDIO_OUT_SAIx_SCK_SD_GPIO_PORT, gpio_init_structure.Pin); gpio_init_structure.Pin = AUDIO_OUT_SAIx_MCLK_PIN; HAL_GPIO_DeInit(AUDIO_OUT_SAIx_MCLK_GPIO_PORT, gpio_init_structure.Pin); /* Disable SAI clock */ AUDIO_OUT_SAIx_CLK_DISABLE(); /* GPIO pins clock and DMA clock can be shut down in the application by surcharging this __weak function */ } /** * @brief Clock Config. * @param hsai: might be required to set audio peripheral predivider if any. * @param AudioFreq: Audio frequency used to play the audio stream. * @param Params * @note This API is called by BSP_AUDIO_OUT_Init() and BSP_AUDIO_OUT_SetFrequency() * Being __weak it can be overwritten by the application * @retval None */ __weak void BSP_AUDIO_OUT_ClockConfig(SAI_HandleTypeDef *hsai, uint32_t AudioFreq, void *Params) { RCC_PeriphCLKInitTypeDef rcc_ex_clk_init_struct; HAL_RCCEx_GetPeriphCLKConfig(&rcc_ex_clk_init_struct); /* Set the PLL configuration according to the audio frequency */ if((AudioFreq == AUDIO_FREQUENCY_11K) || (AudioFreq == AUDIO_FREQUENCY_22K) || (AudioFreq == AUDIO_FREQUENCY_44K)) { /* Configure PLLI2S prescalers */ /* PLLI2S_VCO: VCO_429M I2S_CLK(first level) = PLLI2S_VCO/PLLI2SQ = 429/2 = 214.5 Mhz I2S_CLK_x = I2S_CLK(first level)/PLLI2SDIVQ = 214.5/19 = 11.289 Mhz */ rcc_ex_clk_init_struct.PeriphClockSelection = RCC_PERIPHCLK_SAI2; rcc_ex_clk_init_struct.Sai2ClockSelection = RCC_SAI2CLKSOURCE_PLLI2S; rcc_ex_clk_init_struct.PLLI2S.PLLI2SN = 429; rcc_ex_clk_init_struct.PLLI2S.PLLI2SQ = 2; rcc_ex_clk_init_struct.PLLI2SDivQ = 19; HAL_RCCEx_PeriphCLKConfig(&rcc_ex_clk_init_struct); } else /* AUDIO_FREQUENCY_8K, AUDIO_FREQUENCY_16K, AUDIO_FREQUENCY_48K), AUDIO_FREQUENCY_96K */ { /* I2S clock config PLLI2S_VCO: VCO_344M I2S_CLK(first level) = PLLI2S_VCO/PLLI2SQ = 344/7 = 49.142 Mhz I2S_CLK_x = I2S_CLK(first level)/PLLI2SDIVQ = 49.142/1 = 49.142 Mhz */ rcc_ex_clk_init_struct.PeriphClockSelection = RCC_PERIPHCLK_SAI2; rcc_ex_clk_init_struct.Sai2ClockSelection = RCC_SAI2CLKSOURCE_PLLI2S; rcc_ex_clk_init_struct.PLLI2S.PLLI2SN = 344; rcc_ex_clk_init_struct.PLLI2S.PLLI2SQ = 7; rcc_ex_clk_init_struct.PLLI2SDivQ = 1; HAL_RCCEx_PeriphCLKConfig(&rcc_ex_clk_init_struct); } } /******************************************************************************* Static Functions *******************************************************************************/ /** * @brief Initializes the output Audio Codec audio interface (SAI). * @param AudioFreq: Audio frequency to be configured for the SAI peripheral. * @note The default SlotActive configuration is set to CODEC_AUDIOFRAME_SLOT_0123 * and user can update this configuration using * @retval None */ static void SAIx_Out_Init(uint32_t AudioFreq) { /* Initialize the haudio_out_sai Instance parameter */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_out_sai); /* Configure SAI_Block_x LSBFirst: Disabled DataSize: 16 */ haudio_out_sai.Init.AudioFrequency = AudioFreq; haudio_out_sai.Init.AudioMode = SAI_MODEMASTER_TX; haudio_out_sai.Init.NoDivider = SAI_MASTERDIVIDER_ENABLED; haudio_out_sai.Init.Protocol = SAI_FREE_PROTOCOL; haudio_out_sai.Init.DataSize = SAI_DATASIZE_16; haudio_out_sai.Init.FirstBit = SAI_FIRSTBIT_MSB; haudio_out_sai.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE; haudio_out_sai.Init.Synchro = SAI_ASYNCHRONOUS; haudio_out_sai.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLED; haudio_out_sai.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF; /* Configure SAI_Block_x Frame Frame Length: 64 Frame active Length: 32 FS Definition: Start frame + Channel Side identification FS Polarity: FS active Low FS Offset: FS asserted one bit before the first bit of slot 0 */ haudio_out_sai.FrameInit.FrameLength = 64; haudio_out_sai.FrameInit.ActiveFrameLength = 32; haudio_out_sai.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; haudio_out_sai.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; haudio_out_sai.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; /* Configure SAI Block_x Slot Slot First Bit Offset: 0 Slot Size : 16 Slot Number: 4 Slot Active: All slot actives */ haudio_out_sai.SlotInit.FirstBitOffset = 0; haudio_out_sai.SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE; haudio_out_sai.SlotInit.SlotNumber = 4; haudio_out_sai.SlotInit.SlotActive = CODEC_AUDIOFRAME_SLOT_0123; HAL_SAI_Init(&haudio_out_sai); /* Enable SAI peripheral to generate MCLK */ __HAL_SAI_ENABLE(&haudio_out_sai); } /** * @brief Deinitializes the output Audio Codec audio interface (SAI). * @retval None */ static void SAIx_Out_DeInit(void) { /* Initialize the haudio_out_sai Instance parameter */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; /* Disable SAI peripheral */ __HAL_SAI_DISABLE(&haudio_out_sai); HAL_SAI_DeInit(&haudio_out_sai); } /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Out_Private_Functions STM32746G_DISCOVERY_AUDIO Out Private Functions * @{ */ /** * @brief Initializes wave recording. * @param InputDevice: INPUT_DEVICE_DIGITAL_MICROPHONE_2 or INPUT_DEVICE_INPUT_LINE_1 * @param Volume: Initial volume level (in range 0(Mute)..80(+0dB)..100(+17.625dB)) * @param AudioFreq: Audio frequency to be configured for the SAI peripheral. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Init(uint16_t InputDevice, uint8_t Volume, uint32_t AudioFreq) { uint8_t ret = AUDIO_ERROR; uint32_t deviceid = 0x00; uint32_t slot_active; if ((InputDevice != INPUT_DEVICE_INPUT_LINE_1) && /* Only INPUT_LINE_1 and MICROPHONE_2 inputs supported */ (InputDevice != INPUT_DEVICE_DIGITAL_MICROPHONE_2)) { ret = AUDIO_ERROR; } else { /* Disable SAI */ SAIx_In_DeInit(); /* PLL clock is set depending on the AudioFreq (44.1khz vs 48khz groups) */ BSP_AUDIO_OUT_ClockConfig(&haudio_in_sai, AudioFreq, NULL); /* Clock config is shared between AUDIO IN and OUT */ /* SAI data transfer preparation: Prepare the Media to be used for the audio transfer from SAI peripheral to memory */ haudio_in_sai.Instance = AUDIO_IN_SAIx; if(HAL_SAI_GetState(&haudio_in_sai) == HAL_SAI_STATE_RESET) { /* Init the SAI MSP: this __weak function can be redefined by the application*/ BSP_AUDIO_OUT_MspInit(&haudio_in_sai, NULL); /* Initialize GPIOs for SAI2 block A Master signals */ BSP_AUDIO_IN_MspInit(&haudio_in_sai, NULL); } /* Configure SAI in master RX mode : * - SAI2_block_A in master RX mode * - SAI2_block_B in slave RX mode synchronous from SAI2_block_A */ if (InputDevice == INPUT_DEVICE_DIGITAL_MICROPHONE_2) { slot_active = CODEC_AUDIOFRAME_SLOT_13; } else { slot_active = CODEC_AUDIOFRAME_SLOT_02; } SAIx_In_Init(SAI_MODEMASTER_RX, slot_active, AudioFreq); /* wm8994 codec initialization */ deviceid = wm8994_drv.ReadID(AUDIO_I2C_ADDRESS); if((deviceid) == WM8994_ID) { /* Reset the Codec Registers */ wm8994_drv.Reset(AUDIO_I2C_ADDRESS); /* Initialize the audio driver structure */ audio_drv = &wm8994_drv; ret = AUDIO_OK; } else { ret = AUDIO_ERROR; } if(ret == AUDIO_OK) { /* Initialize the codec internal registers */ audio_drv->Init(AUDIO_I2C_ADDRESS, InputDevice, Volume, AudioFreq); } } return ret; } /** * @brief Initializes wave recording and playback in parallel. * @param InputDevice: INPUT_DEVICE_DIGITAL_MICROPHONE_2 * @param OutputDevice: OUTPUT_DEVICE_SPEAKER, OUTPUT_DEVICE_HEADPHONE, * or OUTPUT_DEVICE_BOTH. * @param Volume: Initial volume level (in range 0(Mute)..80(+0dB)..100(+17.625dB)) * @param AudioFreq: Audio frequency to be configured for the SAI peripheral. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_OUT_Init(uint16_t InputDevice, uint16_t OutputDevice, uint8_t Volume, uint32_t AudioFreq) { uint8_t ret = AUDIO_ERROR; uint32_t deviceid = 0x00; uint32_t slot_active; if (InputDevice != INPUT_DEVICE_DIGITAL_MICROPHONE_2) /* Only MICROPHONE_2 input supported */ { ret = AUDIO_ERROR; } else { /* Disable SAI */ SAIx_In_DeInit(); SAIx_Out_DeInit(); /* PLL clock is set depending on the AudioFreq (44.1khz vs 48khz groups) */ BSP_AUDIO_OUT_ClockConfig(&haudio_in_sai, AudioFreq, NULL); /* Clock config is shared between AUDIO IN and OUT */ /* SAI data transfer preparation: Prepare the Media to be used for the audio transfer from SAI peripheral to memory */ haudio_in_sai.Instance = AUDIO_IN_SAIx; if(HAL_SAI_GetState(&haudio_in_sai) == HAL_SAI_STATE_RESET) { /* Init the SAI MSP: this __weak function can be redefined by the application*/ BSP_AUDIO_IN_MspInit(&haudio_in_sai, NULL); } /* SAI data transfer preparation: Prepare the Media to be used for the audio transfer from memory to SAI peripheral */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; if(HAL_SAI_GetState(&haudio_out_sai) == HAL_SAI_STATE_RESET) { /* Init the SAI MSP: this __weak function can be redefined by the application*/ BSP_AUDIO_OUT_MspInit(&haudio_out_sai, NULL); } /* Configure SAI in master mode : * - SAI2_block_A in master TX mode * - SAI2_block_B in slave RX mode synchronous from SAI2_block_A */ if (InputDevice == INPUT_DEVICE_DIGITAL_MICROPHONE_2) { slot_active = CODEC_AUDIOFRAME_SLOT_13; } else { slot_active = CODEC_AUDIOFRAME_SLOT_02; } SAIx_In_Init(SAI_MODEMASTER_TX, slot_active, AudioFreq); /* wm8994 codec initialization */ deviceid = wm8994_drv.ReadID(AUDIO_I2C_ADDRESS); if((deviceid) == WM8994_ID) { /* Reset the Codec Registers */ wm8994_drv.Reset(AUDIO_I2C_ADDRESS); /* Initialize the audio driver structure */ audio_drv = &wm8994_drv; ret = AUDIO_OK; } else { ret = AUDIO_ERROR; } if(ret == AUDIO_OK) { /* Initialize the codec internal registers */ audio_drv->Init(AUDIO_I2C_ADDRESS, InputDevice | OutputDevice, Volume, AudioFreq); } } return ret; } /** * @brief Starts audio recording. * @param pbuf: Main buffer pointer for the recorded data storing * @param size: size of the recorded buffer in number of elements (typically number of half-words) * Be careful that it is not the same unit than BSP_AUDIO_OUT_Play function * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Record(uint16_t* pbuf, uint32_t size) { uint32_t ret = AUDIO_ERROR; /* Start the process receive DMA */ HAL_SAI_Receive_DMA(&haudio_in_sai, (uint8_t*)pbuf, size); /* Return AUDIO_OK when all operations are correctly done */ ret = AUDIO_OK; return ret; } /** * @brief Stops audio recording. * @param Option: could be one of the following parameters * - CODEC_PDWN_SW: for software power off (by writing registers). * Then no need to reconfigure the Codec after power on. * - CODEC_PDWN_HW: completely shut down the codec (physically). * Then need to reconfigure the Codec after power on. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Stop(uint32_t Option) { /* Call the Media layer stop function */ HAL_SAI_DMAStop(&haudio_in_sai); /* Call Audio Codec Stop function */ if(audio_drv->Stop(AUDIO_I2C_ADDRESS, Option) != 0) { return AUDIO_ERROR; } else { if(Option == CODEC_PDWN_HW) { /* Wait at least 100us */ HAL_Delay(1); } /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Pauses the audio file stream. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Pause(void) { /* Call the Media layer pause function */ HAL_SAI_DMAPause(&haudio_in_sai); /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } /** * @brief Resumes the audio file stream. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Resume(void) { /* Call the Media layer pause/resume function */ HAL_SAI_DMAResume(&haudio_in_sai); /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } /** * @brief Controls the audio in volume level. * @param Volume: Volume level in range 0(Mute)..80(+0dB)..100(+17.625dB) * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_SetVolume(uint8_t Volume) { /* Call the codec volume control function with converted volume value */ if(audio_drv->SetVolume(AUDIO_I2C_ADDRESS, Volume) != 0) { return AUDIO_ERROR; } else { /* Set the Global variable AudioInVolume */ AudioInVolume = Volume; /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Deinit the audio IN peripherals. * @retval None */ void BSP_AUDIO_IN_DeInit(void) { SAIx_In_DeInit(); /* DeInit the SAI MSP : this __weak function can be rewritten by the application */ BSP_AUDIO_IN_MspDeInit(&haudio_in_sai, NULL); } /** * @brief Rx Transfer completed callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_RxCpltCallback(SAI_HandleTypeDef *hsai) { /* Call the record update function to get the next buffer to fill and its size (size is ignored) */ BSP_AUDIO_IN_TransferComplete_CallBack(); } /** * @brief Rx Half Transfer completed callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_RxHalfCpltCallback(SAI_HandleTypeDef *hsai) { /* Manage the remaining file size and new address offset: This function should be coded by user (its prototype is already declared in stm32746g_discovery_audio.h) */ BSP_AUDIO_IN_HalfTransfer_CallBack(); } /** * @brief User callback when record buffer is filled. * @retval None */ __weak void BSP_AUDIO_IN_TransferComplete_CallBack(void) { /* This function should be implemented by the user application. It is called into this driver when the current buffer is filled to prepare the next buffer pointer and its size. */ } /** * @brief Manages the DMA Half Transfer complete event. * @retval None */ __weak void BSP_AUDIO_IN_HalfTransfer_CallBack(void) { /* This function should be implemented by the user application. It is called into this driver when the current buffer is filled to prepare the next buffer pointer and its size. */ } /** * @brief Audio IN Error callback function. * @retval None */ __weak void BSP_AUDIO_IN_Error_CallBack(void) { /* This function is called when an Interrupt due to transfer error on or peripheral error occurs. */ } /** * @brief Initializes BSP_AUDIO_IN MSP. * @param hsai: SAI handle * @param Params * @retval None */ __weak void BSP_AUDIO_IN_MspInit(SAI_HandleTypeDef *hsai, void *Params) { static DMA_HandleTypeDef hdma_sai_rx; GPIO_InitTypeDef gpio_init_structure; /* Enable SAI clock */ AUDIO_IN_SAIx_CLK_ENABLE(); /* Enable SD GPIO clock */ AUDIO_IN_SAIx_SD_ENABLE(); /* CODEC_SAI pin configuration: SD pin */ gpio_init_structure.Pin = AUDIO_IN_SAIx_SD_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_FAST; gpio_init_structure.Alternate = AUDIO_IN_SAIx_SD_AF; HAL_GPIO_Init(AUDIO_IN_SAIx_SD_GPIO_PORT, &gpio_init_structure); /* Enable Audio INT GPIO clock */ AUDIO_IN_INT_GPIO_ENABLE(); /* Audio INT pin configuration: input */ gpio_init_structure.Pin = AUDIO_IN_INT_GPIO_PIN; gpio_init_structure.Mode = GPIO_MODE_INPUT; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(AUDIO_IN_INT_GPIO_PORT, &gpio_init_structure); /* Enable the DMA clock */ AUDIO_IN_SAIx_DMAx_CLK_ENABLE(); if(hsai->Instance == AUDIO_IN_SAIx) { /* Configure the hdma_sai_rx handle parameters */ hdma_sai_rx.Init.Channel = AUDIO_IN_SAIx_DMAx_CHANNEL; hdma_sai_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_sai_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_sai_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_sai_rx.Init.PeriphDataAlignment = AUDIO_IN_SAIx_DMAx_PERIPH_DATA_SIZE; hdma_sai_rx.Init.MemDataAlignment = AUDIO_IN_SAIx_DMAx_MEM_DATA_SIZE; hdma_sai_rx.Init.Mode = DMA_CIRCULAR; hdma_sai_rx.Init.Priority = DMA_PRIORITY_HIGH; hdma_sai_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; hdma_sai_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_sai_rx.Init.MemBurst = DMA_MBURST_SINGLE; hdma_sai_rx.Init.PeriphBurst = DMA_MBURST_SINGLE; hdma_sai_rx.Instance = AUDIO_IN_SAIx_DMAx_STREAM; /* Associate the DMA handle */ __HAL_LINKDMA(hsai, hdmarx, hdma_sai_rx); /* Deinitialize the Stream for new transfer */ HAL_DMA_DeInit(&hdma_sai_rx); /* Configure the DMA Stream */ HAL_DMA_Init(&hdma_sai_rx); } /* SAI DMA IRQ Channel configuration */ HAL_NVIC_SetPriority(AUDIO_IN_SAIx_DMAx_IRQ, AUDIO_IN_IRQ_PREPRIO, 0); HAL_NVIC_EnableIRQ(AUDIO_IN_SAIx_DMAx_IRQ); /* Audio INT IRQ Channel configuration */ HAL_NVIC_SetPriority(AUDIO_IN_INT_IRQ, AUDIO_IN_IRQ_PREPRIO, 0); HAL_NVIC_EnableIRQ(AUDIO_IN_INT_IRQ); } /** * @brief DeInitializes BSP_AUDIO_IN MSP. * @param hsai: SAI handle * @param Params * @retval None */ __weak void BSP_AUDIO_IN_MspDeInit(SAI_HandleTypeDef *hsai, void *Params) { GPIO_InitTypeDef gpio_init_structure; static DMA_HandleTypeDef hdma_sai_rx; /* SAI IN DMA IRQ Channel deactivation */ HAL_NVIC_DisableIRQ(AUDIO_IN_SAIx_DMAx_IRQ); if(hsai->Instance == AUDIO_IN_SAIx) { /* Deinitialize the Stream for new transfer */ HAL_DMA_DeInit(&hdma_sai_rx); } /* Disable SAI block */ __HAL_SAI_DISABLE(hsai); /* Disable pin: SD pin */ gpio_init_structure.Pin = AUDIO_IN_SAIx_SD_PIN; HAL_GPIO_DeInit(AUDIO_IN_SAIx_SD_GPIO_PORT, gpio_init_structure.Pin); /* Disable SAI clock */ AUDIO_IN_SAIx_CLK_DISABLE(); /* GPIO pins clock and DMA clock can be shut down in the application by surcharging this __weak function */ } /******************************************************************************* Static Functions *******************************************************************************/ /** * @brief Initializes the input Audio Codec audio interface (SAI). * @param SaiOutMode: SAI_MODEMASTER_TX (for record and playback in parallel) * or SAI_MODEMASTER_RX (for record only). * @param SlotActive: CODEC_AUDIOFRAME_SLOT_02 or CODEC_AUDIOFRAME_SLOT_13 * @param AudioFreq: Audio frequency to be configured for the SAI peripheral. * @retval None */ static void SAIx_In_Init(uint32_t SaiOutMode, uint32_t SlotActive, uint32_t AudioFreq) { /* Initialize SAI2 block A in MASTER RX */ /* Initialize the haudio_out_sai Instance parameter */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_out_sai); /* Configure SAI_Block_x LSBFirst: Disabled DataSize: 16 */ haudio_out_sai.Init.AudioFrequency = AudioFreq; haudio_out_sai.Init.AudioMode = SaiOutMode; haudio_out_sai.Init.NoDivider = SAI_MASTERDIVIDER_ENABLED; haudio_out_sai.Init.Protocol = SAI_FREE_PROTOCOL; haudio_out_sai.Init.DataSize = SAI_DATASIZE_16; haudio_out_sai.Init.FirstBit = SAI_FIRSTBIT_MSB; haudio_out_sai.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE; haudio_out_sai.Init.Synchro = SAI_ASYNCHRONOUS; haudio_out_sai.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLED; haudio_out_sai.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF; /* Configure SAI_Block_x Frame Frame Length: 64 Frame active Length: 32 FS Definition: Start frame + Channel Side identification FS Polarity: FS active Low FS Offset: FS asserted one bit before the first bit of slot 0 */ haudio_out_sai.FrameInit.FrameLength = 64; haudio_out_sai.FrameInit.ActiveFrameLength = 32; haudio_out_sai.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; haudio_out_sai.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; haudio_out_sai.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; /* Configure SAI Block_x Slot Slot First Bit Offset: 0 Slot Size : 16 Slot Number: 4 Slot Active: All slot actives */ haudio_out_sai.SlotInit.FirstBitOffset = 0; haudio_out_sai.SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE; haudio_out_sai.SlotInit.SlotNumber = 4; haudio_out_sai.SlotInit.SlotActive = SlotActive; HAL_SAI_Init(&haudio_out_sai); /* Initialize SAI2 block B in SLAVE RX synchronous from SAI2 block A */ /* Initialize the haudio_in_sai Instance parameter */ haudio_in_sai.Instance = AUDIO_IN_SAIx; /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_in_sai); /* Configure SAI_Block_x LSBFirst: Disabled DataSize: 16 */ haudio_in_sai.Init.AudioFrequency = AudioFreq; haudio_in_sai.Init.AudioMode = SAI_MODESLAVE_RX; haudio_in_sai.Init.NoDivider = SAI_MASTERDIVIDER_ENABLED; haudio_in_sai.Init.Protocol = SAI_FREE_PROTOCOL; haudio_in_sai.Init.DataSize = SAI_DATASIZE_16; haudio_in_sai.Init.FirstBit = SAI_FIRSTBIT_MSB; haudio_in_sai.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE; haudio_in_sai.Init.Synchro = SAI_SYNCHRONOUS; haudio_in_sai.Init.OutputDrive = SAI_OUTPUTDRIVE_DISABLED; haudio_in_sai.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF; /* Configure SAI_Block_x Frame Frame Length: 64 Frame active Length: 32 FS Definition: Start frame + Channel Side identification FS Polarity: FS active Low FS Offset: FS asserted one bit before the first bit of slot 0 */ haudio_in_sai.FrameInit.FrameLength = 64; haudio_in_sai.FrameInit.ActiveFrameLength = 32; haudio_in_sai.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; haudio_in_sai.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; haudio_in_sai.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; /* Configure SAI Block_x Slot Slot First Bit Offset: 0 Slot Size : 16 Slot Number: 4 Slot Active: All slot active */ haudio_in_sai.SlotInit.FirstBitOffset = 0; haudio_in_sai.SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE; haudio_in_sai.SlotInit.SlotNumber = 4; haudio_in_sai.SlotInit.SlotActive = SlotActive; HAL_SAI_Init(&haudio_in_sai); /* Enable SAI peripheral to generate MCLK */ __HAL_SAI_ENABLE(&haudio_out_sai); /* Enable SAI peripheral */ __HAL_SAI_ENABLE(&haudio_in_sai); } /** * @brief Deinitializes the output Audio Codec audio interface (SAI). * @retval None */ static void SAIx_In_DeInit(void) { /* Initialize the haudio_in_sai Instance parameter */ haudio_in_sai.Instance = AUDIO_IN_SAIx; /* Disable SAI peripheral */ __HAL_SAI_DISABLE(&haudio_in_sai); HAL_SAI_DeInit(&haudio_in_sai); } /** * @} */ /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/