Projet
Dependents: DISCO-F746NG_Scope_copy
Fork of BSP_DISCO_F746NG by
stm32746g_discovery_sdram.c
- Committer:
- bcostm
- Date:
- 2015-09-28
- Revision:
- 0:c9112f0c67e3
- Child:
- 5:5a395e126678
File content as of revision 0:c9112f0c67e3:
/** ****************************************************************************** * @file stm32746g_discovery_sdram.c * @author MCD Application Team * @version V1.0.0 * @date 25-June-2015 * @brief This file includes the SDRAM driver for the MT48LC4M32B2B5-7 memory * device mounted on STM32746G-Discovery board. @verbatim 1. How To use this driver: -------------------------- - This driver is used to drive the MT48LC4M32B2B5-7 SDRAM external memory mounted on STM32746G-Discovery board. - This driver does not need a specific component driver for the SDRAM device to be included with. 2. Driver description: --------------------- + Initialization steps: o Initialize the SDRAM external memory using the BSP_SDRAM_Init() function. This function includes the MSP layer hardware resources initialization and the FMC controller configuration to interface with the external SDRAM memory. o It contains the SDRAM initialization sequence to program the SDRAM external device using the function BSP_SDRAM_Initialization_sequence(). Note that this sequence is standard for all SDRAM devices, but can include some differences from a device to another. If it is the case, the right sequence should be implemented separately. + SDRAM read/write operations o SDRAM external memory can be accessed with read/write operations once it is initialized. Read/write operation can be performed with AHB access using the functions BSP_SDRAM_ReadData()/BSP_SDRAM_WriteData(), or by DMA transfer using the functions BSP_SDRAM_ReadData_DMA()/BSP_SDRAM_WriteData_DMA(). o The AHB access is performed with 32-bit width transaction, the DMA transfer configuration is fixed at single (no burst) word transfer (see the SDRAM_MspInit() static function). o User can implement his own functions for read/write access with his desired configurations. o If interrupt mode is used for DMA transfer, the function BSP_SDRAM_DMA_IRQHandler() is called in IRQ handler file, to serve the generated interrupt once the DMA transfer is complete. o You can send a command to the SDRAM device in runtime using the function BSP_SDRAM_Sendcmd(), and giving the desired command as parameter chosen between the predefined commands of the "FMC_SDRAM_CommandTypeDef" structure. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32746g_discovery_sdram.h" // mbed function to replace HAL_Delay function void wait_ms(int ms); /** @addtogroup BSP * @{ */ /** @addtogroup STM32746G_DISCOVERY * @{ */ /** @defgroup STM32746G_DISCOVERY_SDRAM STM32746G_DISCOVERY_SDRAM * @{ */ /** @defgroup STM32746G_DISCOVERY_SDRAM_Private_Types_Definitions STM32746G_DISCOVERY_SDRAM Private Types Definitions * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_SDRAM_Private_Defines STM32746G_DISCOVERY_SDRAM Private Defines * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_SDRAM_Private_Macros STM32746G_DISCOVERY_SDRAM Private Macros * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_SDRAM_Private_Variables STM32746G_DISCOVERY_SDRAM Private Variables * @{ */ static SDRAM_HandleTypeDef sdramHandle; static FMC_SDRAM_TimingTypeDef Timing; static FMC_SDRAM_CommandTypeDef Command; /** * @} */ /** @defgroup STM32746G_DISCOVERY_SDRAM_Private_Function_Prototypes STM32746G_DISCOVERY_SDRAM Private Function Prototypes * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_SDRAM_Exported_Functions STM32746G_DISCOVERY_SDRAM Exported Functions * @{ */ /** * @brief Initializes the SDRAM device. * @retval SDRAM status */ uint8_t BSP_SDRAM_Init(void) { static uint8_t sdramstatus = SDRAM_ERROR; /* SDRAM device configuration */ sdramHandle.Instance = FMC_SDRAM_DEVICE; /* Timing configuration for 100Mhz as SD clock frequency (System clock is up to 200Mhz) */ Timing.LoadToActiveDelay = 2; Timing.ExitSelfRefreshDelay = 7; Timing.SelfRefreshTime = 4; Timing.RowCycleDelay = 7; Timing.WriteRecoveryTime = 2; Timing.RPDelay = 2; Timing.RCDDelay = 2; sdramHandle.Init.SDBank = FMC_SDRAM_BANK1; sdramHandle.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8; sdramHandle.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12; sdramHandle.Init.MemoryDataWidth = SDRAM_MEMORY_WIDTH; sdramHandle.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4; sdramHandle.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_2; sdramHandle.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE; sdramHandle.Init.SDClockPeriod = SDCLOCK_PERIOD; sdramHandle.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE; sdramHandle.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0; /* SDRAM controller initialization */ BSP_SDRAM_MspInit(&sdramHandle, NULL); /* __weak function can be rewritten by the application */ if(HAL_SDRAM_Init(&sdramHandle, &Timing) != HAL_OK) { sdramstatus = SDRAM_ERROR; } else { sdramstatus = SDRAM_OK; } /* SDRAM initialization sequence */ BSP_SDRAM_Initialization_sequence(REFRESH_COUNT); return sdramstatus; } /** * @brief DeInitializes the SDRAM device. * @retval SDRAM status */ uint8_t BSP_SDRAM_DeInit(void) { static uint8_t sdramstatus = SDRAM_ERROR; /* SDRAM device de-initialization */ sdramHandle.Instance = FMC_SDRAM_DEVICE; if(HAL_SDRAM_DeInit(&sdramHandle) != HAL_OK) { sdramstatus = SDRAM_ERROR; } else { sdramstatus = SDRAM_OK; } /* SDRAM controller de-initialization */ BSP_SDRAM_MspDeInit(&sdramHandle, NULL); return sdramstatus; } /** * @brief Programs the SDRAM device. * @param RefreshCount: SDRAM refresh counter value * @retval None */ void BSP_SDRAM_Initialization_sequence(uint32_t RefreshCount) { __IO uint32_t tmpmrd = 0; /* Step 1: Configure a clock configuration enable command */ Command.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 1; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT); /* Step 2: Insert 100 us minimum delay */ /* Inserted delay is equal to 1 ms due to systick time base unit (ms) */ //HAL_Delay(1); wait_ms(1); /* Step 3: Configure a PALL (precharge all) command */ Command.CommandMode = FMC_SDRAM_CMD_PALL; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 1; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT); /* Step 4: Configure an Auto Refresh command */ Command.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 8; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT); /* Step 5: Program the external memory mode register */ tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |\ SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |\ SDRAM_MODEREG_CAS_LATENCY_2 |\ SDRAM_MODEREG_OPERATING_MODE_STANDARD |\ SDRAM_MODEREG_WRITEBURST_MODE_SINGLE; Command.CommandMode = FMC_SDRAM_CMD_LOAD_MODE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 1; Command.ModeRegisterDefinition = tmpmrd; /* Send the command */ HAL_SDRAM_SendCommand(&sdramHandle, &Command, SDRAM_TIMEOUT); /* Step 6: Set the refresh rate counter */ /* Set the device refresh rate */ HAL_SDRAM_ProgramRefreshRate(&sdramHandle, RefreshCount); } /** * @brief Reads an amount of data from the SDRAM memory in polling mode. * @param uwStartAddress: Read start address * @param pData: Pointer to data to be read * @param uwDataSize: Size of read data from the memory * @retval SDRAM status */ uint8_t BSP_SDRAM_ReadData(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize) { if(HAL_SDRAM_Read_32b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK) { return SDRAM_ERROR; } else { return SDRAM_OK; } } /** * @brief Reads an amount of data from the SDRAM memory in DMA mode. * @param uwStartAddress: Read start address * @param pData: Pointer to data to be read * @param uwDataSize: Size of read data from the memory * @retval SDRAM status */ uint8_t BSP_SDRAM_ReadData_DMA(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize) { if(HAL_SDRAM_Read_DMA(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK) { return SDRAM_ERROR; } else { return SDRAM_OK; } } /** * @brief Writes an amount of data to the SDRAM memory in polling mode. * @param uwStartAddress: Write start address * @param pData: Pointer to data to be written * @param uwDataSize: Size of written data from the memory * @retval SDRAM status */ uint8_t BSP_SDRAM_WriteData(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize) { if(HAL_SDRAM_Write_32b(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK) { return SDRAM_ERROR; } else { return SDRAM_OK; } } /** * @brief Writes an amount of data to the SDRAM memory in DMA mode. * @param uwStartAddress: Write start address * @param pData: Pointer to data to be written * @param uwDataSize: Size of written data from the memory * @retval SDRAM status */ uint8_t BSP_SDRAM_WriteData_DMA(uint32_t uwStartAddress, uint32_t *pData, uint32_t uwDataSize) { if(HAL_SDRAM_Write_DMA(&sdramHandle, (uint32_t *)uwStartAddress, pData, uwDataSize) != HAL_OK) { return SDRAM_ERROR; } else { return SDRAM_OK; } } /** * @brief Sends command to the SDRAM bank. * @param SdramCmd: Pointer to SDRAM command structure * @retval SDRAM status */ uint8_t BSP_SDRAM_Sendcmd(FMC_SDRAM_CommandTypeDef *SdramCmd) { if(HAL_SDRAM_SendCommand(&sdramHandle, SdramCmd, SDRAM_TIMEOUT) != HAL_OK) { return SDRAM_ERROR; } else { return SDRAM_OK; } } /** * @brief Handles SDRAM DMA transfer interrupt request. * @retval None */ void BSP_SDRAM_DMA_IRQHandler(void) { HAL_DMA_IRQHandler(sdramHandle.hdma); } /** * @brief Initializes SDRAM MSP. * @param hsdram: SDRAM handle * @param Params * @retval None */ __weak void BSP_SDRAM_MspInit(SDRAM_HandleTypeDef *hsdram, void *Params) { static DMA_HandleTypeDef dma_handle; GPIO_InitTypeDef gpio_init_structure; /* Enable FMC clock */ __HAL_RCC_FMC_CLK_ENABLE(); /* Enable chosen DMAx clock */ __DMAx_CLK_ENABLE(); /* Enable GPIOs clock */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); /* Common GPIO configuration */ gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_PULLUP; gpio_init_structure.Speed = GPIO_SPEED_FAST; gpio_init_structure.Alternate = GPIO_AF12_FMC; /* GPIOC configuration */ gpio_init_structure.Pin = GPIO_PIN_3; HAL_GPIO_Init(GPIOC, &gpio_init_structure); /* GPIOD configuration */ gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_14 | GPIO_PIN_15; HAL_GPIO_Init(GPIOD, &gpio_init_structure); /* GPIOE configuration */ gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_7| GPIO_PIN_8 | GPIO_PIN_9 |\ GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\ GPIO_PIN_15; HAL_GPIO_Init(GPIOE, &gpio_init_structure); /* GPIOF configuration */ gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2| GPIO_PIN_3 | GPIO_PIN_4 |\ GPIO_PIN_5 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\ GPIO_PIN_15; HAL_GPIO_Init(GPIOF, &gpio_init_structure); /* GPIOG configuration */ gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4| GPIO_PIN_5 | GPIO_PIN_8 |\ GPIO_PIN_15; HAL_GPIO_Init(GPIOG, &gpio_init_structure); /* GPIOH configuration */ gpio_init_structure.Pin = GPIO_PIN_3 | GPIO_PIN_5; HAL_GPIO_Init(GPIOH, &gpio_init_structure); /* Configure common DMA parameters */ dma_handle.Init.Channel = SDRAM_DMAx_CHANNEL; dma_handle.Init.Direction = DMA_MEMORY_TO_MEMORY; dma_handle.Init.PeriphInc = DMA_PINC_ENABLE; dma_handle.Init.MemInc = DMA_MINC_ENABLE; dma_handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; dma_handle.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; dma_handle.Init.Mode = DMA_NORMAL; dma_handle.Init.Priority = DMA_PRIORITY_HIGH; dma_handle.Init.FIFOMode = DMA_FIFOMODE_DISABLE; dma_handle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; dma_handle.Init.MemBurst = DMA_MBURST_SINGLE; dma_handle.Init.PeriphBurst = DMA_PBURST_SINGLE; dma_handle.Instance = SDRAM_DMAx_STREAM; /* Associate the DMA handle */ __HAL_LINKDMA(hsdram, hdma, dma_handle); /* Deinitialize the stream for new transfer */ HAL_DMA_DeInit(&dma_handle); /* Configure the DMA stream */ HAL_DMA_Init(&dma_handle); /* NVIC configuration for DMA transfer complete interrupt */ HAL_NVIC_SetPriority(SDRAM_DMAx_IRQn, 5, 0); HAL_NVIC_EnableIRQ(SDRAM_DMAx_IRQn); } /** * @brief DeInitializes SDRAM MSP. * @param hsdram: SDRAM handle * @param Params * @retval None */ __weak void BSP_SDRAM_MspDeInit(SDRAM_HandleTypeDef *hsdram, void *Params) { static DMA_HandleTypeDef dma_handle; /* Disable NVIC configuration for DMA interrupt */ HAL_NVIC_DisableIRQ(SDRAM_DMAx_IRQn); /* Deinitialize the stream for new transfer */ dma_handle.Instance = SDRAM_DMAx_STREAM; HAL_DMA_DeInit(&dma_handle); /* GPIO pins clock, FMC clock and DMA clock can be shut down in the applications by surcharging this __weak function */ } /** * @} */ /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/