Paclay-Saris pod racers / Mbed 2 deprecated Algo_charges_fictives_4

Dependencies:   mbed

Committer:
Mecaru
Date:
Fri May 31 12:05:59 2019 +0000
Revision:
7:dc7e66870bd0
Parent:
6:83dafe088914
Child:
8:2ce9493549e8
print lidar points

Who changed what in which revision?

UserRevisionLine numberNew contents of line
SolalNathan 0:5d6051eeabfe 1 #include "mbed.h"
SolalNathan 2:b2ce001ff8f5 2 #include <math.h>
SolalNathan 2:b2ce001ff8f5 3
SolalNathan 2:b2ce001ff8f5 4 // Définition des ports séries
Mecaru 7:dc7e66870bd0 5 Serial pc(USBTX, USBRX, 115200);
SolalNathan 2:b2ce001ff8f5 6 Serial lidar(PC_6, PC_7, 115200);
SolalNathan 2:b2ce001ff8f5 7
SolalNathan 2:b2ce001ff8f5 8 // Définition des variables globales
Mecaru 5:32434b497a9b 9 float tableau_distance[360] = {};
SolalNathan 2:b2ce001ff8f5 10 int compteur_tours_lidar = 0;
Mecaru 6:83dafe088914 11 int affiche_lidar = 0;
SolalNathan 2:b2ce001ff8f5 12
SolalNathan 2:b2ce001ff8f5 13 // Défintion des pwm
SolalNathan 2:b2ce001ff8f5 14 PwmOut pwm_lidar(PB_15); // pwm du Lidar
SolalNathan 2:b2ce001ff8f5 15 PwmOut pwm_moteur(PE_6); // pwm de la propulsion
SolalNathan 2:b2ce001ff8f5 16 PwmOut pwm_direction(PE_5); // pwm de la direction
SolalNathan 2:b2ce001ff8f5 17
SolalNathan 2:b2ce001ff8f5 18 void interrupt_lidar_rx(void);
SolalNathan 0:5d6051eeabfe 19
Mecaru 4:60e7e1c1d1d8 20
SolalNathan 2:b2ce001ff8f5 21 float distance(float x_1, float x_2, float y_1, float y_2)
SolalNathan 2:b2ce001ff8f5 22 {
SolalNathan 2:b2ce001ff8f5 23 // Fonction qui renvoie la distance entre deux points (norme 2)
SolalNathan 2:b2ce001ff8f5 24 float norm2;
SolalNathan 2:b2ce001ff8f5 25 norm2 = sqrt((x_1 - x_2)*(x_1 - x_2) + (y_1 - y_2)*(y_1 - y_2));
SolalNathan 2:b2ce001ff8f5 26 return norm2;
SolalNathan 2:b2ce001ff8f5 27 }
SolalNathan 2:b2ce001ff8f5 28
Mecaru 5:32434b497a9b 29 void update_direction(float* list_lidar, float* vecteur)
SolalNathan 2:b2ce001ff8f5 30 {
SolalNathan 2:b2ce001ff8f5 31 // Fonction de mise à jour de la direction
SolalNathan 2:b2ce001ff8f5 32 float direction[2];
SolalNathan 2:b2ce001ff8f5 33 direction[0] = 0;
SolalNathan 2:b2ce001ff8f5 34 direction[1] = 1;
SolalNathan 2:b2ce001ff8f5 35 float avg_x, avg_y, sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 36 list_lidar[180] = 50; // [mm], point fictif qui pousse la voiture
SolalNathan 2:b2ce001ff8f5 37 int i;
SolalNathan 2:b2ce001ff8f5 38 avg_x = 0;
SolalNathan 2:b2ce001ff8f5 39 avg_y = 0;
SolalNathan 2:b2ce001ff8f5 40
SolalNathan 2:b2ce001ff8f5 41 // Calcul de la direction à prende en fonction des charges fictives
SolalNathan 2:b2ce001ff8f5 42 for (i=0; i<360; i++)
SolalNathan 2:b2ce001ff8f5 43 {
SolalNathan 2:b2ce001ff8f5 44 int theta;
SolalNathan 2:b2ce001ff8f5 45 float r, x, y;
SolalNathan 2:b2ce001ff8f5 46 theta = i;
SolalNathan 2:b2ce001ff8f5 47 r = list_lidar[theta];
SolalNathan 2:b2ce001ff8f5 48
Mecaru 7:dc7e66870bd0 49 if (r == 0) break; // non calcul en cas de distance nul (donnée non captée)
SolalNathan 2:b2ce001ff8f5 50
SolalNathan 2:b2ce001ff8f5 51 //x = 0;
SolalNathan 2:b2ce001ff8f5 52 //y = 0;
Mecaru 7:dc7e66870bd0 53 y = r*cosf(theta);
Mecaru 7:dc7e66870bd0 54 x = r*sinf(theta);
SolalNathan 2:b2ce001ff8f5 55 sum_inv_dist += 1/pow(r, 2);
SolalNathan 2:b2ce001ff8f5 56 avg_x -= x/sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 57 avg_y -= y/sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 58 }
SolalNathan 2:b2ce001ff8f5 59
SolalNathan 2:b2ce001ff8f5 60 avg_x /= sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 61 avg_y /= sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 62 direction[0] = avg_x;
SolalNathan 2:b2ce001ff8f5 63 direction[1] = avg_y;
SolalNathan 2:b2ce001ff8f5 64
SolalNathan 2:b2ce001ff8f5 65 // mise à jour de la direction
SolalNathan 2:b2ce001ff8f5 66 for(i=0; i<2; i++)
SolalNathan 2:b2ce001ff8f5 67 vecteur[i] = direction[i];
SolalNathan 2:b2ce001ff8f5 68 }
SolalNathan 2:b2ce001ff8f5 69
SolalNathan 2:b2ce001ff8f5 70 float angle_servo(float *direction)
SolalNathan 2:b2ce001ff8f5 71 {
SolalNathan 2:b2ce001ff8f5 72 // Calcul basé sur la régression expérimental pour obetenir l'angle
SolalNathan 2:b2ce001ff8f5 73 // le pwm à donner au moteur en fonction de l'angle voulue
SolalNathan 2:b2ce001ff8f5 74
SolalNathan 2:b2ce001ff8f5 75 float angle;
SolalNathan 2:b2ce001ff8f5 76 double pwm;
SolalNathan 2:b2ce001ff8f5 77 float x, y;
SolalNathan 2:b2ce001ff8f5 78 x = direction[0];
SolalNathan 2:b2ce001ff8f5 79 y = direction[1];
SolalNathan 2:b2ce001ff8f5 80 angle = atan(x/y);
Mecaru 3:46ea1b20397d 81 pwm = 14.662756 * angle*180/3.14 + 1453.08; // à refaire
SolalNathan 2:b2ce001ff8f5 82
Mecaru 6:83dafe088914 83 //if (pwm < 1115) printf("trop petit\n\r");
Mecaru 6:83dafe088914 84 //if (pwm > 1625) printf("trop grand\n\r");
SolalNathan 2:b2ce001ff8f5 85
SolalNathan 2:b2ce001ff8f5 86 return pwm;
SolalNathan 2:b2ce001ff8f5 87 }
SolalNathan 0:5d6051eeabfe 88
Mecaru 5:32434b497a9b 89 void afficher_lidar(float *tableau_distances)
Mecaru 4:60e7e1c1d1d8 90 {
Mecaru 4:60e7e1c1d1d8 91 //Affiche les données du lidar dans la liaison série
Mecaru 4:60e7e1c1d1d8 92 int angle;
Mecaru 4:60e7e1c1d1d8 93 for(angle=0;angle<360;angle++){
Mecaru 7:dc7e66870bd0 94 float distance = tableau_distances[angle];
Mecaru 7:dc7e66870bd0 95 pc.printf("%i,%f\n\r",angle,distance);
Mecaru 7:dc7e66870bd0 96 }
Mecaru 4:60e7e1c1d1d8 97 }
Mecaru 4:60e7e1c1d1d8 98
SolalNathan 0:5d6051eeabfe 99 int main(){
SolalNathan 2:b2ce001ff8f5 100
SolalNathan 2:b2ce001ff8f5 101 pc.printf("\r-------------------------\n\r");
SolalNathan 2:b2ce001ff8f5 102
SolalNathan 2:b2ce001ff8f5 103 float dir[2]; // direction
SolalNathan 2:b2ce001ff8f5 104 float pwm_direction_value;
SolalNathan 2:b2ce001ff8f5 105
SolalNathan 2:b2ce001ff8f5 106
SolalNathan 2:b2ce001ff8f5 107 int i;
Mecaru 7:dc7e66870bd0 108
Mecaru 7:dc7e66870bd0 109
Mecaru 7:dc7e66870bd0 110
Mecaru 7:dc7e66870bd0 111
Mecaru 7:dc7e66870bd0 112
SolalNathan 2:b2ce001ff8f5 113 // pwm du LIDAR
SolalNathan 2:b2ce001ff8f5 114 pwm_lidar.period_us(40);
Mecaru 5:32434b497a9b 115 pwm_lidar.pulsewidth_us(40); // vitesse fixe
SolalNathan 2:b2ce001ff8f5 116
SolalNathan 2:b2ce001ff8f5 117 // pwm du Moteur
SolalNathan 0:5d6051eeabfe 118 pwm_moteur.period_ms(20);
Mecaru 7:dc7e66870bd0 119 pwm_moteur.pulsewidth_us(1440); // correspond à une vitesse nulle
SolalNathan 2:b2ce001ff8f5 120 // Gaspard : 1450, Solal : 1480. Tester les deux
SolalNathan 2:b2ce001ff8f5 121
SolalNathan 2:b2ce001ff8f5 122 // pwm de la direction
SolalNathan 2:b2ce001ff8f5 123 pwm_direction.period_ms(20);
Mecaru 6:83dafe088914 124 pwm_direction.pulsewidth_us(1480); // correspond à un vitesse faible
SolalNathan 2:b2ce001ff8f5 125
SolalNathan 2:b2ce001ff8f5 126 // récupération du premier batch de données (7 bytes) du LIDAR
SolalNathan 2:b2ce001ff8f5 127 lidar.putc(0xA5);
SolalNathan 2:b2ce001ff8f5 128 lidar.putc(0x20);
SolalNathan 2:b2ce001ff8f5 129 for(i=0;i<7;i++)
SolalNathan 2:b2ce001ff8f5 130 lidar.getc();
SolalNathan 2:b2ce001ff8f5 131
SolalNathan 2:b2ce001ff8f5 132 pc.printf("FIN intit \n\r");
SolalNathan 2:b2ce001ff8f5 133
SolalNathan 2:b2ce001ff8f5 134 lidar.attach(&interrupt_lidar_rx, Serial::RxIrq);
SolalNathan 2:b2ce001ff8f5 135
SolalNathan 2:b2ce001ff8f5 136 while (1){
Mecaru 4:60e7e1c1d1d8 137 //printf("pwm_moteur = %f, pwm_direction = %f", pwm_moteur, pwm_direction);
Mecaru 7:dc7e66870bd0 138 if(1){
Mecaru 6:83dafe088914 139 afficher_lidar(tableau_distance);
Mecaru 6:83dafe088914 140 affiche_lidar = 0;
Mecaru 6:83dafe088914 141 }
Mecaru 6:83dafe088914 142
Mecaru 4:60e7e1c1d1d8 143
SolalNathan 2:b2ce001ff8f5 144 update_direction(tableau_distance, dir); // mise à jour à la direction
SolalNathan 2:b2ce001ff8f5 145 pwm_direction_value = angle_servo(dir); // calcul du pwm
SolalNathan 0:5d6051eeabfe 146
SolalNathan 2:b2ce001ff8f5 147 pwm_direction.pulsewidth_us(pwm_direction_value); // commande du pwm du moteur
SolalNathan 2:b2ce001ff8f5 148 }
SolalNathan 2:b2ce001ff8f5 149
SolalNathan 2:b2ce001ff8f5 150 }
SolalNathan 2:b2ce001ff8f5 151
SolalNathan 2:b2ce001ff8f5 152
SolalNathan 2:b2ce001ff8f5 153 void interrupt_lidar_rx(void)
SolalNathan 2:b2ce001ff8f5 154 {
SolalNathan 2:b2ce001ff8f5 155
Mecaru 5:32434b497a9b 156 int SEUIL = 0; // Seuil de qualité
SolalNathan 0:5d6051eeabfe 157
SolalNathan 2:b2ce001ff8f5 158 static uint8_t data[5],i=0;
SolalNathan 2:b2ce001ff8f5 159 uint16_t Quality;
SolalNathan 2:b2ce001ff8f5 160 uint16_t Angle;
SolalNathan 2:b2ce001ff8f5 161 static uint16_t Angle_old=0;
SolalNathan 2:b2ce001ff8f5 162 uint16_t Distance;
SolalNathan 2:b2ce001ff8f5 163 uint16_t Angle_d;
SolalNathan 2:b2ce001ff8f5 164 uint16_t Distance_d;
Mecaru 6:83dafe088914 165 affiche_lidar ++;
SolalNathan 2:b2ce001ff8f5 166 data[i] = lidar.getc();
SolalNathan 2:b2ce001ff8f5 167 i++;
SolalNathan 2:b2ce001ff8f5 168 if(i==5)
SolalNathan 2:b2ce001ff8f5 169 {
SolalNathan 2:b2ce001ff8f5 170 i=0;
SolalNathan 2:b2ce001ff8f5 171 Quality = data[0] & 0xFC;
SolalNathan 2:b2ce001ff8f5 172 Quality = Quality >> 2;
SolalNathan 2:b2ce001ff8f5 173
SolalNathan 2:b2ce001ff8f5 174 Angle = data[1] & 0xFE;
SolalNathan 2:b2ce001ff8f5 175 Angle = (Angle>>1) | ((uint16_t)data[2] << 7);
SolalNathan 2:b2ce001ff8f5 176
SolalNathan 2:b2ce001ff8f5 177 Distance = data[3];
SolalNathan 2:b2ce001ff8f5 178 Distance = Distance | ((uint16_t)data[4] << 8);
SolalNathan 2:b2ce001ff8f5 179
SolalNathan 2:b2ce001ff8f5 180 Angle_d = Angle/64; // in degree
SolalNathan 2:b2ce001ff8f5 181 Distance_d = Distance>>2; // in mm
SolalNathan 2:b2ce001ff8f5 182
SolalNathan 2:b2ce001ff8f5 183 // On vérifie que l'on écrit pas en dehors du tableau
SolalNathan 2:b2ce001ff8f5 184 if(Angle_d>359) Angle_d=359;
SolalNathan 2:b2ce001ff8f5 185 if(Angle_d<0) Angle_d=0;
Mecaru 7:dc7e66870bd0 186
SolalNathan 2:b2ce001ff8f5 187 if (Quality < SEUIL) {
SolalNathan 2:b2ce001ff8f5 188 // Fiabilisation des données du LIDAR naïve
SolalNathan 2:b2ce001ff8f5 189 tableau_distance[Angle_d] = tableau_distance[Angle_d - 1];
SolalNathan 2:b2ce001ff8f5 190 }
SolalNathan 2:b2ce001ff8f5 191 else
SolalNathan 2:b2ce001ff8f5 192 tableau_distance[Angle_d] = Distance_d;
Mecaru 7:dc7e66870bd0 193
Mecaru 7:dc7e66870bd0 194 //tableau_distance[Angle_d] = Distance_d;
SolalNathan 2:b2ce001ff8f5 195 }
SolalNathan 2:b2ce001ff8f5 196 }