Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed
main.cpp@4:60e7e1c1d1d8, 2019-05-17 (annotated)
- Committer:
- Mecaru
- Date:
- Fri May 17 09:25:04 2019 +0000
- Revision:
- 4:60e7e1c1d1d8
- Parent:
- 3:46ea1b20397d
- Child:
- 5:32434b497a9b
Print Lidar data on serial
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
SolalNathan | 0:5d6051eeabfe | 1 | #include "mbed.h" |
SolalNathan | 2:b2ce001ff8f5 | 2 | #include <math.h> |
SolalNathan | 2:b2ce001ff8f5 | 3 | |
SolalNathan | 2:b2ce001ff8f5 | 4 | // Définition des ports séries |
SolalNathan | 2:b2ce001ff8f5 | 5 | Serial pc(SERIAL_TX, SERIAL_RX, 115200); |
SolalNathan | 2:b2ce001ff8f5 | 6 | Serial lidar(PC_6, PC_7, 115200); |
SolalNathan | 2:b2ce001ff8f5 | 7 | |
SolalNathan | 2:b2ce001ff8f5 | 8 | // Définition des variables globales |
SolalNathan | 2:b2ce001ff8f5 | 9 | int tableau_distance[360] = {}; |
SolalNathan | 2:b2ce001ff8f5 | 10 | int compteur_tours_lidar = 0; |
SolalNathan | 2:b2ce001ff8f5 | 11 | |
SolalNathan | 2:b2ce001ff8f5 | 12 | // Défintion des pwm |
SolalNathan | 2:b2ce001ff8f5 | 13 | PwmOut pwm_lidar(PB_15); // pwm du Lidar |
SolalNathan | 2:b2ce001ff8f5 | 14 | PwmOut pwm_moteur(PE_6); // pwm de la propulsion |
SolalNathan | 2:b2ce001ff8f5 | 15 | PwmOut pwm_direction(PE_5); // pwm de la direction |
SolalNathan | 2:b2ce001ff8f5 | 16 | |
SolalNathan | 2:b2ce001ff8f5 | 17 | void interrupt_lidar_rx(void); |
SolalNathan | 0:5d6051eeabfe | 18 | |
Mecaru | 4:60e7e1c1d1d8 | 19 | |
SolalNathan | 2:b2ce001ff8f5 | 20 | float distance(float x_1, float x_2, float y_1, float y_2) |
SolalNathan | 2:b2ce001ff8f5 | 21 | { |
SolalNathan | 2:b2ce001ff8f5 | 22 | // Fonction qui renvoie la distance entre deux points (norme 2) |
SolalNathan | 2:b2ce001ff8f5 | 23 | float norm2; |
SolalNathan | 2:b2ce001ff8f5 | 24 | norm2 = sqrt((x_1 - x_2)*(x_1 - x_2) + (y_1 - y_2)*(y_1 - y_2)); |
SolalNathan | 2:b2ce001ff8f5 | 25 | return norm2; |
SolalNathan | 2:b2ce001ff8f5 | 26 | } |
SolalNathan | 2:b2ce001ff8f5 | 27 | |
SolalNathan | 2:b2ce001ff8f5 | 28 | void update_direction(int* list_lidar, float* vecteur) |
SolalNathan | 2:b2ce001ff8f5 | 29 | { |
SolalNathan | 2:b2ce001ff8f5 | 30 | // Fonction de mise à jour de la direction |
SolalNathan | 2:b2ce001ff8f5 | 31 | float direction[2]; |
SolalNathan | 2:b2ce001ff8f5 | 32 | direction[0] = 0; |
SolalNathan | 2:b2ce001ff8f5 | 33 | direction[1] = 1; |
SolalNathan | 2:b2ce001ff8f5 | 34 | float avg_x, avg_y, sum_inv_dist; |
SolalNathan | 2:b2ce001ff8f5 | 35 | list_lidar[180] = 50; // [mm], point fictif qui pousse la voiture |
SolalNathan | 2:b2ce001ff8f5 | 36 | int i; |
SolalNathan | 2:b2ce001ff8f5 | 37 | avg_x = 0; |
SolalNathan | 2:b2ce001ff8f5 | 38 | avg_y = 0; |
SolalNathan | 2:b2ce001ff8f5 | 39 | |
SolalNathan | 2:b2ce001ff8f5 | 40 | // Calcul de la direction à prende en fonction des charges fictives |
SolalNathan | 2:b2ce001ff8f5 | 41 | for (i=0; i<360; i++) |
SolalNathan | 2:b2ce001ff8f5 | 42 | { |
SolalNathan | 2:b2ce001ff8f5 | 43 | int theta; |
SolalNathan | 2:b2ce001ff8f5 | 44 | float r, x, y; |
SolalNathan | 2:b2ce001ff8f5 | 45 | theta = i; |
SolalNathan | 2:b2ce001ff8f5 | 46 | r = list_lidar[theta]; |
SolalNathan | 2:b2ce001ff8f5 | 47 | |
SolalNathan | 2:b2ce001ff8f5 | 48 | if (r == 0) break; // non calcul en cas de distance nul (donnée non capté) |
SolalNathan | 2:b2ce001ff8f5 | 49 | |
SolalNathan | 2:b2ce001ff8f5 | 50 | //x = 0; |
SolalNathan | 2:b2ce001ff8f5 | 51 | //y = 0; |
SolalNathan | 2:b2ce001ff8f5 | 52 | x = r*cosf(theta); |
SolalNathan | 2:b2ce001ff8f5 | 53 | y = r*sinf(theta); |
SolalNathan | 2:b2ce001ff8f5 | 54 | sum_inv_dist += 1/pow(r, 2); |
SolalNathan | 2:b2ce001ff8f5 | 55 | avg_x -= x/sum_inv_dist; |
SolalNathan | 2:b2ce001ff8f5 | 56 | avg_y -= y/sum_inv_dist; |
SolalNathan | 2:b2ce001ff8f5 | 57 | } |
SolalNathan | 2:b2ce001ff8f5 | 58 | |
SolalNathan | 2:b2ce001ff8f5 | 59 | avg_x /= sum_inv_dist; |
SolalNathan | 2:b2ce001ff8f5 | 60 | avg_y /= sum_inv_dist; |
SolalNathan | 2:b2ce001ff8f5 | 61 | direction[0] = avg_x; |
SolalNathan | 2:b2ce001ff8f5 | 62 | direction[1] = avg_y; |
SolalNathan | 2:b2ce001ff8f5 | 63 | |
SolalNathan | 2:b2ce001ff8f5 | 64 | // mise à jour de la direction |
SolalNathan | 2:b2ce001ff8f5 | 65 | for(i=0; i<2; i++) |
SolalNathan | 2:b2ce001ff8f5 | 66 | vecteur[i] = direction[i]; |
SolalNathan | 2:b2ce001ff8f5 | 67 | } |
SolalNathan | 2:b2ce001ff8f5 | 68 | |
SolalNathan | 2:b2ce001ff8f5 | 69 | float angle_servo(float *direction) |
SolalNathan | 2:b2ce001ff8f5 | 70 | { |
SolalNathan | 2:b2ce001ff8f5 | 71 | // Calcul basé sur la régression expérimental pour obetenir l'angle |
SolalNathan | 2:b2ce001ff8f5 | 72 | // le pwm à donner au moteur en fonction de l'angle voulue |
SolalNathan | 2:b2ce001ff8f5 | 73 | |
SolalNathan | 2:b2ce001ff8f5 | 74 | float angle; |
SolalNathan | 2:b2ce001ff8f5 | 75 | double pwm; |
SolalNathan | 2:b2ce001ff8f5 | 76 | float x, y; |
SolalNathan | 2:b2ce001ff8f5 | 77 | x = direction[0]; |
SolalNathan | 2:b2ce001ff8f5 | 78 | y = direction[1]; |
SolalNathan | 2:b2ce001ff8f5 | 79 | angle = atan(x/y); |
Mecaru | 3:46ea1b20397d | 80 | pwm = 14.662756 * angle*180/3.14 + 1453.08; // à refaire |
SolalNathan | 2:b2ce001ff8f5 | 81 | |
SolalNathan | 2:b2ce001ff8f5 | 82 | if (pwm < 1115) printf("trop petit\n\r"); |
SolalNathan | 2:b2ce001ff8f5 | 83 | if (pwm > 1625) printf("trop grand\n\r"); |
SolalNathan | 2:b2ce001ff8f5 | 84 | |
SolalNathan | 2:b2ce001ff8f5 | 85 | return pwm; |
SolalNathan | 2:b2ce001ff8f5 | 86 | } |
SolalNathan | 0:5d6051eeabfe | 87 | |
Mecaru | 4:60e7e1c1d1d8 | 88 | void afficher_lidar(int *tableau_distances) |
Mecaru | 4:60e7e1c1d1d8 | 89 | { |
Mecaru | 4:60e7e1c1d1d8 | 90 | //Affiche les données du lidar dans la liaison série |
Mecaru | 4:60e7e1c1d1d8 | 91 | int angle; |
Mecaru | 4:60e7e1c1d1d8 | 92 | for(angle=0;angle<360;angle++){ |
Mecaru | 4:60e7e1c1d1d8 | 93 | float distance = tableau_distances[angle]; |
Mecaru | 4:60e7e1c1d1d8 | 94 | pc.printf("%i,%f\n\r",angle,distance); |
Mecaru | 4:60e7e1c1d1d8 | 95 | |
Mecaru | 4:60e7e1c1d1d8 | 96 | } |
Mecaru | 4:60e7e1c1d1d8 | 97 | } |
Mecaru | 4:60e7e1c1d1d8 | 98 | |
SolalNathan | 0:5d6051eeabfe | 99 | int main(){ |
SolalNathan | 2:b2ce001ff8f5 | 100 | |
SolalNathan | 2:b2ce001ff8f5 | 101 | pc.printf("\r-------------------------\n\r"); |
SolalNathan | 2:b2ce001ff8f5 | 102 | |
SolalNathan | 2:b2ce001ff8f5 | 103 | float dir[2]; // direction |
SolalNathan | 2:b2ce001ff8f5 | 104 | float pwm_direction_value; |
SolalNathan | 2:b2ce001ff8f5 | 105 | |
SolalNathan | 2:b2ce001ff8f5 | 106 | |
SolalNathan | 2:b2ce001ff8f5 | 107 | int i; |
SolalNathan | 2:b2ce001ff8f5 | 108 | |
SolalNathan | 2:b2ce001ff8f5 | 109 | // pwm du LIDAR |
SolalNathan | 2:b2ce001ff8f5 | 110 | pwm_lidar.period_us(40); |
SolalNathan | 2:b2ce001ff8f5 | 111 | pwm_lidar.pulsewidth_us(22); // vitesse fixe |
SolalNathan | 2:b2ce001ff8f5 | 112 | |
SolalNathan | 2:b2ce001ff8f5 | 113 | // pwm du Moteur |
SolalNathan | 0:5d6051eeabfe | 114 | pwm_moteur.period_ms(20); |
Mecaru | 3:46ea1b20397d | 115 | pwm_moteur.pulsewidth_us(1400); // correspond à une vitesse nulle |
SolalNathan | 2:b2ce001ff8f5 | 116 | // Gaspard : 1450, Solal : 1480. Tester les deux |
SolalNathan | 2:b2ce001ff8f5 | 117 | |
SolalNathan | 2:b2ce001ff8f5 | 118 | // pwm de la direction |
SolalNathan | 2:b2ce001ff8f5 | 119 | pwm_direction.period_ms(20); |
Mecaru | 3:46ea1b20397d | 120 | pwm_direction.pulsewidth_us(1469); // correspond à un vitesse faible |
SolalNathan | 2:b2ce001ff8f5 | 121 | |
SolalNathan | 2:b2ce001ff8f5 | 122 | // récupération du premier batch de données (7 bytes) du LIDAR |
SolalNathan | 2:b2ce001ff8f5 | 123 | lidar.putc(0xA5); |
SolalNathan | 2:b2ce001ff8f5 | 124 | lidar.putc(0x20); |
SolalNathan | 2:b2ce001ff8f5 | 125 | for(i=0;i<7;i++) |
SolalNathan | 2:b2ce001ff8f5 | 126 | lidar.getc(); |
SolalNathan | 2:b2ce001ff8f5 | 127 | |
SolalNathan | 2:b2ce001ff8f5 | 128 | pc.printf("FIN intit \n\r"); |
SolalNathan | 2:b2ce001ff8f5 | 129 | |
SolalNathan | 2:b2ce001ff8f5 | 130 | lidar.attach(&interrupt_lidar_rx, Serial::RxIrq); |
SolalNathan | 2:b2ce001ff8f5 | 131 | |
SolalNathan | 2:b2ce001ff8f5 | 132 | while (1){ |
Mecaru | 4:60e7e1c1d1d8 | 133 | //printf("pwm_moteur = %f, pwm_direction = %f", pwm_moteur, pwm_direction); |
Mecaru | 4:60e7e1c1d1d8 | 134 | afficher_lidar(tableau_distance); |
Mecaru | 4:60e7e1c1d1d8 | 135 | |
SolalNathan | 2:b2ce001ff8f5 | 136 | update_direction(tableau_distance, dir); // mise à jour à la direction |
SolalNathan | 2:b2ce001ff8f5 | 137 | pwm_direction_value = angle_servo(dir); // calcul du pwm |
SolalNathan | 0:5d6051eeabfe | 138 | |
SolalNathan | 2:b2ce001ff8f5 | 139 | pwm_direction.pulsewidth_us(pwm_direction_value); // commande du pwm du moteur |
SolalNathan | 2:b2ce001ff8f5 | 140 | } |
SolalNathan | 2:b2ce001ff8f5 | 141 | |
SolalNathan | 2:b2ce001ff8f5 | 142 | } |
SolalNathan | 2:b2ce001ff8f5 | 143 | |
SolalNathan | 2:b2ce001ff8f5 | 144 | |
SolalNathan | 2:b2ce001ff8f5 | 145 | void interrupt_lidar_rx(void) |
SolalNathan | 2:b2ce001ff8f5 | 146 | { |
SolalNathan | 2:b2ce001ff8f5 | 147 | |
SolalNathan | 2:b2ce001ff8f5 | 148 | int SEUIL = 15; // Seuil de qualité |
SolalNathan | 0:5d6051eeabfe | 149 | |
SolalNathan | 2:b2ce001ff8f5 | 150 | static uint8_t data[5],i=0; |
SolalNathan | 2:b2ce001ff8f5 | 151 | uint16_t Quality; |
SolalNathan | 2:b2ce001ff8f5 | 152 | uint16_t Angle; |
SolalNathan | 2:b2ce001ff8f5 | 153 | static uint16_t Angle_old=0; |
SolalNathan | 2:b2ce001ff8f5 | 154 | uint16_t Distance; |
SolalNathan | 2:b2ce001ff8f5 | 155 | uint16_t Angle_d; |
SolalNathan | 2:b2ce001ff8f5 | 156 | uint16_t Distance_d; |
SolalNathan | 2:b2ce001ff8f5 | 157 | data[i] = lidar.getc(); |
SolalNathan | 2:b2ce001ff8f5 | 158 | i++; |
SolalNathan | 2:b2ce001ff8f5 | 159 | if(i==5) |
SolalNathan | 2:b2ce001ff8f5 | 160 | { |
SolalNathan | 2:b2ce001ff8f5 | 161 | i=0; |
SolalNathan | 2:b2ce001ff8f5 | 162 | Quality = data[0] & 0xFC; |
SolalNathan | 2:b2ce001ff8f5 | 163 | Quality = Quality >> 2; |
SolalNathan | 2:b2ce001ff8f5 | 164 | |
SolalNathan | 2:b2ce001ff8f5 | 165 | Angle = data[1] & 0xFE; |
SolalNathan | 2:b2ce001ff8f5 | 166 | Angle = (Angle>>1) | ((uint16_t)data[2] << 7); |
SolalNathan | 2:b2ce001ff8f5 | 167 | |
SolalNathan | 2:b2ce001ff8f5 | 168 | Distance = data[3]; |
SolalNathan | 2:b2ce001ff8f5 | 169 | Distance = Distance | ((uint16_t)data[4] << 8); |
SolalNathan | 2:b2ce001ff8f5 | 170 | |
SolalNathan | 2:b2ce001ff8f5 | 171 | Angle_d = Angle/64; // in degree |
SolalNathan | 2:b2ce001ff8f5 | 172 | Distance_d = Distance>>2; // in mm |
SolalNathan | 2:b2ce001ff8f5 | 173 | |
SolalNathan | 2:b2ce001ff8f5 | 174 | // On vérifie que l'on écrit pas en dehors du tableau |
SolalNathan | 2:b2ce001ff8f5 | 175 | if(Angle_d>359) Angle_d=359; |
SolalNathan | 2:b2ce001ff8f5 | 176 | if(Angle_d<0) Angle_d=0; |
SolalNathan | 2:b2ce001ff8f5 | 177 | |
SolalNathan | 2:b2ce001ff8f5 | 178 | if (Quality < SEUIL) { |
SolalNathan | 2:b2ce001ff8f5 | 179 | // Fiabilisation des données du LIDAR naïve |
SolalNathan | 2:b2ce001ff8f5 | 180 | tableau_distance[Angle_d] = tableau_distance[Angle_d - 1]; |
SolalNathan | 2:b2ce001ff8f5 | 181 | } |
SolalNathan | 2:b2ce001ff8f5 | 182 | else |
SolalNathan | 2:b2ce001ff8f5 | 183 | tableau_distance[Angle_d] = Distance_d; |
SolalNathan | 2:b2ce001ff8f5 | 184 | |
SolalNathan | 2:b2ce001ff8f5 | 185 | } |
SolalNathan | 2:b2ce001ff8f5 | 186 | } |