Paclay-Saris pod racers / Mbed 2 deprecated Algo_charges_fictives_4

Dependencies:   mbed

Committer:
SolalNathan
Date:
Fri May 10 10:07:11 2019 +0000
Revision:
2:b2ce001ff8f5
Parent:
1:e4b5a39729d2
Child:
3:46ea1b20397d
version du 10 Mai;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
SolalNathan 0:5d6051eeabfe 1 #include "mbed.h"
SolalNathan 2:b2ce001ff8f5 2 #include <math.h>
SolalNathan 2:b2ce001ff8f5 3
SolalNathan 2:b2ce001ff8f5 4 // Définition des ports séries
SolalNathan 2:b2ce001ff8f5 5 Serial pc(SERIAL_TX, SERIAL_RX, 115200);
SolalNathan 2:b2ce001ff8f5 6 Serial lidar(PC_6, PC_7, 115200);
SolalNathan 2:b2ce001ff8f5 7
SolalNathan 2:b2ce001ff8f5 8 // Définition des variables globales
SolalNathan 2:b2ce001ff8f5 9 int tableau_distance[360] = {};
SolalNathan 2:b2ce001ff8f5 10 int compteur_tours_lidar = 0;
SolalNathan 2:b2ce001ff8f5 11
SolalNathan 2:b2ce001ff8f5 12 // Défintion des pwm
SolalNathan 2:b2ce001ff8f5 13 PwmOut pwm_lidar(PB_15); // pwm du Lidar
SolalNathan 2:b2ce001ff8f5 14 PwmOut pwm_moteur(PE_6); // pwm de la propulsion
SolalNathan 2:b2ce001ff8f5 15 PwmOut pwm_direction(PE_5); // pwm de la direction
SolalNathan 2:b2ce001ff8f5 16
SolalNathan 2:b2ce001ff8f5 17 void interrupt_lidar_rx(void);
SolalNathan 0:5d6051eeabfe 18
SolalNathan 2:b2ce001ff8f5 19 float distance(float x_1, float x_2, float y_1, float y_2)
SolalNathan 2:b2ce001ff8f5 20 {
SolalNathan 2:b2ce001ff8f5 21 // Fonction qui renvoie la distance entre deux points (norme 2)
SolalNathan 2:b2ce001ff8f5 22 float norm2;
SolalNathan 2:b2ce001ff8f5 23 norm2 = sqrt((x_1 - x_2)*(x_1 - x_2) + (y_1 - y_2)*(y_1 - y_2));
SolalNathan 2:b2ce001ff8f5 24 return norm2;
SolalNathan 2:b2ce001ff8f5 25 }
SolalNathan 2:b2ce001ff8f5 26
SolalNathan 2:b2ce001ff8f5 27 void update_direction(int* list_lidar, float* vecteur)
SolalNathan 2:b2ce001ff8f5 28 {
SolalNathan 2:b2ce001ff8f5 29 // Fonction de mise à jour de la direction
SolalNathan 2:b2ce001ff8f5 30 float direction[2];
SolalNathan 2:b2ce001ff8f5 31 direction[0] = 0;
SolalNathan 2:b2ce001ff8f5 32 direction[1] = 1;
SolalNathan 2:b2ce001ff8f5 33 float avg_x, avg_y, sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 34 list_lidar[180] = 50; // [mm], point fictif qui pousse la voiture
SolalNathan 2:b2ce001ff8f5 35 int i;
SolalNathan 2:b2ce001ff8f5 36 avg_x = 0;
SolalNathan 2:b2ce001ff8f5 37 avg_y = 0;
SolalNathan 2:b2ce001ff8f5 38
SolalNathan 2:b2ce001ff8f5 39 // Calcul de la direction à prende en fonction des charges fictives
SolalNathan 2:b2ce001ff8f5 40 for (i=0; i<360; i++)
SolalNathan 2:b2ce001ff8f5 41 {
SolalNathan 2:b2ce001ff8f5 42 int theta;
SolalNathan 2:b2ce001ff8f5 43 float r, x, y;
SolalNathan 2:b2ce001ff8f5 44 theta = i;
SolalNathan 2:b2ce001ff8f5 45 r = list_lidar[theta];
SolalNathan 2:b2ce001ff8f5 46
SolalNathan 2:b2ce001ff8f5 47 if (r == 0) break; // non calcul en cas de distance nul (donnée non capté)
SolalNathan 2:b2ce001ff8f5 48
SolalNathan 2:b2ce001ff8f5 49 //x = 0;
SolalNathan 2:b2ce001ff8f5 50 //y = 0;
SolalNathan 2:b2ce001ff8f5 51 x = r*cosf(theta);
SolalNathan 2:b2ce001ff8f5 52 y = r*sinf(theta);
SolalNathan 2:b2ce001ff8f5 53 sum_inv_dist += 1/pow(r, 2);
SolalNathan 2:b2ce001ff8f5 54 avg_x -= x/sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 55 avg_y -= y/sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 56 }
SolalNathan 2:b2ce001ff8f5 57
SolalNathan 2:b2ce001ff8f5 58 avg_x /= sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 59 avg_y /= sum_inv_dist;
SolalNathan 2:b2ce001ff8f5 60 direction[0] = avg_x;
SolalNathan 2:b2ce001ff8f5 61 direction[1] = avg_y;
SolalNathan 2:b2ce001ff8f5 62
SolalNathan 2:b2ce001ff8f5 63 // mise à jour de la direction
SolalNathan 2:b2ce001ff8f5 64 for(i=0; i<2; i++)
SolalNathan 2:b2ce001ff8f5 65 vecteur[i] = direction[i];
SolalNathan 2:b2ce001ff8f5 66 }
SolalNathan 2:b2ce001ff8f5 67
SolalNathan 2:b2ce001ff8f5 68 float angle_servo(float *direction)
SolalNathan 2:b2ce001ff8f5 69 {
SolalNathan 2:b2ce001ff8f5 70 // Calcul basé sur la régression expérimental pour obetenir l'angle
SolalNathan 2:b2ce001ff8f5 71 // le pwm à donner au moteur en fonction de l'angle voulue
SolalNathan 2:b2ce001ff8f5 72
SolalNathan 2:b2ce001ff8f5 73 float angle;
SolalNathan 2:b2ce001ff8f5 74 double pwm;
SolalNathan 2:b2ce001ff8f5 75 float x, y;
SolalNathan 2:b2ce001ff8f5 76 x = direction[0];
SolalNathan 2:b2ce001ff8f5 77 y = direction[1];
SolalNathan 2:b2ce001ff8f5 78 angle = atan(x/y);
SolalNathan 2:b2ce001ff8f5 79 pwm = 14.662756 * angle - 1453.08; // à refaire
SolalNathan 2:b2ce001ff8f5 80
SolalNathan 2:b2ce001ff8f5 81 if (pwm < 1115) printf("trop petit\n\r");
SolalNathan 2:b2ce001ff8f5 82 if (pwm > 1625) printf("trop grand\n\r");
SolalNathan 2:b2ce001ff8f5 83
SolalNathan 2:b2ce001ff8f5 84 return pwm;
SolalNathan 2:b2ce001ff8f5 85 }
SolalNathan 0:5d6051eeabfe 86
SolalNathan 0:5d6051eeabfe 87 int main(){
SolalNathan 2:b2ce001ff8f5 88
SolalNathan 2:b2ce001ff8f5 89 pc.printf("\r-------------------------\n\r");
SolalNathan 2:b2ce001ff8f5 90
SolalNathan 2:b2ce001ff8f5 91 float dir[2]; // direction
SolalNathan 2:b2ce001ff8f5 92 float pwm_direction_value;
SolalNathan 2:b2ce001ff8f5 93
SolalNathan 2:b2ce001ff8f5 94 pc.printf("%f", cos(3.141592/4));
SolalNathan 2:b2ce001ff8f5 95
SolalNathan 2:b2ce001ff8f5 96 int i;
SolalNathan 2:b2ce001ff8f5 97
SolalNathan 2:b2ce001ff8f5 98 // pwm du LIDAR
SolalNathan 2:b2ce001ff8f5 99 pwm_lidar.period_us(40);
SolalNathan 2:b2ce001ff8f5 100 pwm_lidar.pulsewidth_us(22); // vitesse fixe
SolalNathan 2:b2ce001ff8f5 101
SolalNathan 2:b2ce001ff8f5 102 // pwm du Moteur
SolalNathan 0:5d6051eeabfe 103 pwm_moteur.period_ms(20);
SolalNathan 2:b2ce001ff8f5 104 pwm_moteur.pulsewidth_us(1470); // correspond à une vitesse nulle
SolalNathan 2:b2ce001ff8f5 105 // Gaspard : 1450, Solal : 1480. Tester les deux
SolalNathan 2:b2ce001ff8f5 106
SolalNathan 2:b2ce001ff8f5 107 // pwm de la direction
SolalNathan 2:b2ce001ff8f5 108 pwm_direction.period_ms(20);
SolalNathan 2:b2ce001ff8f5 109 pwm_direction.pulsewidth_us(1400); // correspond à un vitesse faible
SolalNathan 2:b2ce001ff8f5 110
SolalNathan 2:b2ce001ff8f5 111 // récupération du premier batch de données (7 bytes) du LIDAR
SolalNathan 2:b2ce001ff8f5 112 lidar.putc(0xA5);
SolalNathan 2:b2ce001ff8f5 113 lidar.putc(0x20);
SolalNathan 2:b2ce001ff8f5 114 for(i=0;i<7;i++)
SolalNathan 2:b2ce001ff8f5 115 lidar.getc();
SolalNathan 2:b2ce001ff8f5 116
SolalNathan 2:b2ce001ff8f5 117 pc.printf("FIN intit \n\r");
SolalNathan 2:b2ce001ff8f5 118
SolalNathan 2:b2ce001ff8f5 119 lidar.attach(&interrupt_lidar_rx, Serial::RxIrq);
SolalNathan 2:b2ce001ff8f5 120
SolalNathan 2:b2ce001ff8f5 121 while (1){
SolalNathan 2:b2ce001ff8f5 122 printf("pwm_moteur = %f, pwm_direction = %f", pwm_moteur, pwm_direction);
SolalNathan 2:b2ce001ff8f5 123
SolalNathan 2:b2ce001ff8f5 124 update_direction(tableau_distance, dir); // mise à jour à la direction
SolalNathan 2:b2ce001ff8f5 125 pwm_direction_value = angle_servo(dir); // calcul du pwm
SolalNathan 0:5d6051eeabfe 126
SolalNathan 2:b2ce001ff8f5 127 pwm_direction.pulsewidth_us(pwm_direction_value); // commande du pwm du moteur
SolalNathan 2:b2ce001ff8f5 128 }
SolalNathan 2:b2ce001ff8f5 129
SolalNathan 2:b2ce001ff8f5 130 }
SolalNathan 2:b2ce001ff8f5 131
SolalNathan 2:b2ce001ff8f5 132
SolalNathan 2:b2ce001ff8f5 133 void interrupt_lidar_rx(void)
SolalNathan 2:b2ce001ff8f5 134 {
SolalNathan 2:b2ce001ff8f5 135
SolalNathan 2:b2ce001ff8f5 136 int SEUIL = 15; // Seuil de qualité
SolalNathan 0:5d6051eeabfe 137
SolalNathan 2:b2ce001ff8f5 138 static uint8_t data[5],i=0;
SolalNathan 2:b2ce001ff8f5 139 uint16_t Quality;
SolalNathan 2:b2ce001ff8f5 140 uint16_t Angle;
SolalNathan 2:b2ce001ff8f5 141 static uint16_t Angle_old=0;
SolalNathan 2:b2ce001ff8f5 142 uint16_t Distance;
SolalNathan 2:b2ce001ff8f5 143 uint16_t Angle_d;
SolalNathan 2:b2ce001ff8f5 144 uint16_t Distance_d;
SolalNathan 2:b2ce001ff8f5 145 data[i] = lidar.getc();
SolalNathan 2:b2ce001ff8f5 146 i++;
SolalNathan 2:b2ce001ff8f5 147 if(i==5)
SolalNathan 2:b2ce001ff8f5 148 {
SolalNathan 2:b2ce001ff8f5 149 i=0;
SolalNathan 2:b2ce001ff8f5 150 Quality = data[0] & 0xFC;
SolalNathan 2:b2ce001ff8f5 151 Quality = Quality >> 2;
SolalNathan 2:b2ce001ff8f5 152
SolalNathan 2:b2ce001ff8f5 153 Angle = data[1] & 0xFE;
SolalNathan 2:b2ce001ff8f5 154 Angle = (Angle>>1) | ((uint16_t)data[2] << 7);
SolalNathan 2:b2ce001ff8f5 155
SolalNathan 2:b2ce001ff8f5 156 Distance = data[3];
SolalNathan 2:b2ce001ff8f5 157 Distance = Distance | ((uint16_t)data[4] << 8);
SolalNathan 2:b2ce001ff8f5 158
SolalNathan 2:b2ce001ff8f5 159 Angle_d = Angle/64; // in degree
SolalNathan 2:b2ce001ff8f5 160 Distance_d = Distance>>2; // in mm
SolalNathan 2:b2ce001ff8f5 161
SolalNathan 2:b2ce001ff8f5 162 // On vérifie que l'on écrit pas en dehors du tableau
SolalNathan 2:b2ce001ff8f5 163 if(Angle_d>359) Angle_d=359;
SolalNathan 2:b2ce001ff8f5 164 if(Angle_d<0) Angle_d=0;
SolalNathan 2:b2ce001ff8f5 165
SolalNathan 2:b2ce001ff8f5 166 if (Quality < SEUIL) {
SolalNathan 2:b2ce001ff8f5 167 // Fiabilisation des données du LIDAR naïve
SolalNathan 2:b2ce001ff8f5 168 tableau_distance[Angle_d] = tableau_distance[Angle_d - 1];
SolalNathan 2:b2ce001ff8f5 169 }
SolalNathan 2:b2ce001ff8f5 170 else
SolalNathan 2:b2ce001ff8f5 171 tableau_distance[Angle_d] = Distance_d;
SolalNathan 2:b2ce001ff8f5 172
SolalNathan 2:b2ce001ff8f5 173 }
SolalNathan 2:b2ce001ff8f5 174 }