read acceleration and angler ratio from mpu6050 and estimate pitch and roll angle
Dependencies: mbed
Diff: Matrix.cpp
- Revision:
- 1:2eca9b376580
- Child:
- 2:4a6b46653abf
diff -r 5e220b09d315 -r 2eca9b376580 Matrix.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Matrix.cpp Thu Apr 16 08:51:04 2015 +0000 @@ -0,0 +1,298 @@ +#include "mbed.h" +#include "myConstants.h" +#include "Matrix.h" + + + +Matrix::Matrix(int row, int col) : row(row), col(col), components(0) { + components = new float[row*col]; + if (!components) AbortWithMsg("Memory Allocation Error"); + memset(components, 0, sizeof(float)*row*col); + if (row == col) { + for (int i = 0; i < row; i++) { + components[i * col + i] = 1.0f; + } + } +} + +Matrix::Matrix(int row, int col, float* comps) : row(row), col(col), components(0) { + components = new float[row*col]; + if (!components) AbortWithMsg("Memory Allocation Error"); + memcpy(components, comps, sizeof(float)*row*col); +} + + +Matrix::~Matrix() { + delete[] components; +} + +Matrix::Matrix(const Matrix& m) : row(m.row), col(m.col), components(0) { + components = new float[row*col]; + if (!components) AbortWithMsg("Memory Allocation Error"); + memcpy(components, m.GetpComponents(), sizeof(float)*row*col); +} + +Matrix& Matrix::operator=(const Matrix& m) { + if (this == &m) return *this; + row = m.row; + col = m.col; + delete[] components; + components = new float[row*col]; + if (!components) AbortWithMsg("Memory Allocation Error"); + memcpy(components, m.GetpComponents(), sizeof(float)*row*col); + + return *this; +} + +Matrix& Matrix::operator+=(const Matrix& m) { + if (row != m.GetRow() || col != m.GetCol()) AbortWithMsg("Irregular Dimention"); + + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + components[i * col + j] += m.components[i * col + j]; + } + } + + this->CleanUp(); + + return *this; +} + +Matrix& Matrix::operator-=(const Matrix& m) { + if (row != m.GetRow() || col != m.GetCol()) AbortWithMsg("Irregular Dimention"); + + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + components[i * col + j] -= m.components[i * col + j]; + } + } + + this->CleanUp(); + + return *this; +} + +Matrix& Matrix::operator*=(const Matrix& m) { + if (col != m.GetRow()) AbortWithMsg("Irregular Dimention"); + Matrix temp = Matrix(*this); + + col = m.GetCol(); + delete[] components; + components = new float[row*col]; + + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + components[i*col + j] = 0.0f; + for (int k = 0; k < m.GetRow(); k++) { + components[i * col + j] += temp.components[i * col + k] * m.components[k * col + j]; + } + } + } + + this->CleanUp(); + + return *this; +} + +Matrix& Matrix::operator*=(float c) { + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + components[i*col + j] *= c; + } + } + + return *this; +} + +Matrix& Matrix::operator/=(float c) { + if (fabs(c) < NEARLY_ZERO) AbortWithMsg("Division by Zero"); + for (int i = 0; i < row; i++) { + for (int j = 0; j < col; j++) { + components[i*col + j] /= c; + } + } + + return *this; +} + +void Matrix::SetComp(int rowNo, int colNo, float val) { + if (rowNo > row || colNo > col) AbortWithMsg("Index Out of Bounds Error"); + components[(rowNo-1)*col + (colNo-1)] = val; +} + +void Matrix::SetComps(float* pComps) { + memcpy(components, pComps, sizeof(float) * row * col); +} + +float Matrix::Determinant() const{ + if (row != col) AbortWithMsg("failed to calculate det. : matrix is not square"); + int decSign = 0; + float retVal = 1.0f; + + // 行列のLU分解 + Matrix LU(this->LU_Decompose(&decSign)); + + for (int i = 0; i < LU.row; i++) { + retVal *= LU.components[i * LU.col + i]; + } + + return retVal*decSign; +} + +Matrix Matrix::LU_Decompose(int* sign, Matrix* p) const{ + if (row != col) AbortWithMsg("failed to LU decomposition: matrix is not square"); + if (sign != 0) *sign = 1; + if (p != 0) { + if (p->row != row || p->row != p->col) AbortWithMsg("failed to LU decomposition: permitation matrix is incorrect"); + // 置換行列は最初に単位行列にしておく + memset(p->components, 0, sizeof(float) * row * col); + for (int i = 0; i < row; i++) { + p->components[i * col + i] = 1.0f; + } + } + Matrix retVal(*this); + + for (int d = 0; d < row - 1; d++) { // 1行1列ずつ分解を行う + // d列目の最大の要素を探索し、見つけた要素の行とd行目を交換する + int maxNo = d; + for (int i = d; i < row; i++) { + if (retVal.components[i * col + d] > retVal.components[maxNo * col + d]) maxNo = i; + } + if (maxNo != d) { + retVal.SwapRow(d + 1, maxNo + 1); + if (sign != 0) *sign *= -1; + if (p != 0) { + p->SwapRow(d + 1, maxNo + 1); + } + } + float c = retVal.components[d * col + d]; + if (fabs(c) < NEARLY_ZERO) AbortWithMsg("failed to LU decomposition: Division by Zero"); + + // d行d列目以降の行列について計算 + for (int i = d+1; i < row; i++) { + retVal.components[i * col + d] /= c; + for (int j = d+1; j < col; j++) { + retVal.components[i * col + j] -= retVal.components[d * col + j] * retVal.components[i * col + d]; + } + } + } + + retVal.CleanUp(); + + return retVal; +} + +bool Matrix::Inverse(Matrix& invm) const{ + if (row != col) AbortWithMsg("failed to get Inv. : matrix is not square"); + + Matrix P(*this); + Matrix LU(LU_Decompose(0, &P)); + + // 分解した行列の対角成分の積から行列式を求める + // det = 0 ならfalse + float det = 1.0f; + for (int i = 0; i < row; i++) { + det *= LU.components[i * col + i]; + } + if (fabs(det) < NEARLY_ZERO) return false; + + // U、Lそれぞれの逆行列を計算する + Matrix U_inv = Matrix(row, col); + Matrix L_inv = Matrix(row, col); + + for (int j = 0; j < col; j++) { + for (int i = 0; i <= j; i++) { + int i_U = j - i; // U行列の逆行列は対角成分から上へ向かって + // 左から順番に値を計算する + + int j_L = col - 1 - j; // L行列の逆行列は右から順番に + int i_L = j_L + i; // 対角成分から下へ向かって計算する + + if (i_U != j) { // 非対角成分 + float temp_U = 0.0f; + float temp_L = 0.0f; + + for (int k = 0; k < i; k++) { + + temp_U -= U_inv.components[(j - k) * col + j] * LU.components[i_U * col + (j - k)]; + + if (k == 0) { + temp_L -= LU.components[i_L * col + j_L]; + } else { + temp_L -= L_inv.components[(j_L + k) * col + j_L] * LU.components[i_L * col + j_L + k]; + } + + } + + U_inv.components[i_U * col + j] = temp_U / LU.components[i_U * col + i_U]; + L_inv.components[i_L * col + j_L] = temp_L; + + } else { // 対角成分 + if (fabs(LU.components[i_U * col + i_U]) >= NEARLY_ZERO) { + U_inv.components[i_U * col + i_U] = 1.0f / LU.components[i_U * col + i_U]; + } + } + } + } + + invm = U_inv * L_inv * P; + + return true; +} + +Matrix Matrix::Transpose() const{ + if (row != col) AbortWithMsg("failed to get Trans. : matrix is not square"); + Matrix retVal(*this); + + for (int i = 0; i < row; i++) { + for (int j = i + 1; j < col; j++) { + float temp = retVal.components[i * col + j]; + retVal.components[i * col + j] = retVal.components[j * col + i]; + retVal.components[j * col + i] = temp; + } + } + + return retVal; +} + +Matrix operator+(const Matrix& lhm, const Matrix& rhm) { + Matrix temp = Matrix(lhm); + temp += rhm; + return temp; +} + +Matrix operator-(const Matrix& lhm, const Matrix& rhm) { + Matrix temp = Matrix(lhm); + temp -= rhm; + return temp; +} + +Matrix operator*(const Matrix& lhm, const Matrix& rhm) { + Matrix temp = Matrix(lhm); + temp *= rhm; + return temp; +} + +void Matrix::CleanUp() { + int num = row*col; + float maxComp = 0.0f; + for (int i = 0; i < num; i++) { + if (maxComp < fabs(components[i])) maxComp = fabs(components[i]); + } + if (maxComp > NEARLY_ZERO) { + for (int i = 0; i < num; i++) { + if (fabs(components[i]) / maxComp < ZERO_TOLERANCE) components[i] = 0.0f; + } + } +} + +void Matrix::SwapRow(int rowNo1, int rowNo2) { + if (rowNo1 > row || rowNo2 > row) AbortWithMsg("Index Out of Bounds Error !!"); + float* temp = new float[col]; + + memcpy(temp, components + (rowNo1 - 1) * col, sizeof(float) * col); + memcpy(components + (rowNo1 - 1) * col, components + (rowNo2 - 1) * col, sizeof(float) * col); + memcpy(components + (rowNo2 - 1) * col, temp, sizeof(float) * col); + + delete[] temp; +} \ No newline at end of file