read acceleration and angler ratio from mpu6050 and estimate pitch and roll angle
Dependencies: mbed
Matrix.cpp
- Committer:
- ojan
- Date:
- 2015-04-16
- Revision:
- 1:2eca9b376580
- Child:
- 2:4a6b46653abf
File content as of revision 1:2eca9b376580:
#include "mbed.h" #include "myConstants.h" #include "Matrix.h" Matrix::Matrix(int row, int col) : row(row), col(col), components(0) { components = new float[row*col]; if (!components) AbortWithMsg("Memory Allocation Error"); memset(components, 0, sizeof(float)*row*col); if (row == col) { for (int i = 0; i < row; i++) { components[i * col + i] = 1.0f; } } } Matrix::Matrix(int row, int col, float* comps) : row(row), col(col), components(0) { components = new float[row*col]; if (!components) AbortWithMsg("Memory Allocation Error"); memcpy(components, comps, sizeof(float)*row*col); } Matrix::~Matrix() { delete[] components; } Matrix::Matrix(const Matrix& m) : row(m.row), col(m.col), components(0) { components = new float[row*col]; if (!components) AbortWithMsg("Memory Allocation Error"); memcpy(components, m.GetpComponents(), sizeof(float)*row*col); } Matrix& Matrix::operator=(const Matrix& m) { if (this == &m) return *this; row = m.row; col = m.col; delete[] components; components = new float[row*col]; if (!components) AbortWithMsg("Memory Allocation Error"); memcpy(components, m.GetpComponents(), sizeof(float)*row*col); return *this; } Matrix& Matrix::operator+=(const Matrix& m) { if (row != m.GetRow() || col != m.GetCol()) AbortWithMsg("Irregular Dimention"); for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { components[i * col + j] += m.components[i * col + j]; } } this->CleanUp(); return *this; } Matrix& Matrix::operator-=(const Matrix& m) { if (row != m.GetRow() || col != m.GetCol()) AbortWithMsg("Irregular Dimention"); for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { components[i * col + j] -= m.components[i * col + j]; } } this->CleanUp(); return *this; } Matrix& Matrix::operator*=(const Matrix& m) { if (col != m.GetRow()) AbortWithMsg("Irregular Dimention"); Matrix temp = Matrix(*this); col = m.GetCol(); delete[] components; components = new float[row*col]; for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { components[i*col + j] = 0.0f; for (int k = 0; k < m.GetRow(); k++) { components[i * col + j] += temp.components[i * col + k] * m.components[k * col + j]; } } } this->CleanUp(); return *this; } Matrix& Matrix::operator*=(float c) { for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { components[i*col + j] *= c; } } return *this; } Matrix& Matrix::operator/=(float c) { if (fabs(c) < NEARLY_ZERO) AbortWithMsg("Division by Zero"); for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { components[i*col + j] /= c; } } return *this; } void Matrix::SetComp(int rowNo, int colNo, float val) { if (rowNo > row || colNo > col) AbortWithMsg("Index Out of Bounds Error"); components[(rowNo-1)*col + (colNo-1)] = val; } void Matrix::SetComps(float* pComps) { memcpy(components, pComps, sizeof(float) * row * col); } float Matrix::Determinant() const{ if (row != col) AbortWithMsg("failed to calculate det. : matrix is not square"); int decSign = 0; float retVal = 1.0f; // 行列のLU分解 Matrix LU(this->LU_Decompose(&decSign)); for (int i = 0; i < LU.row; i++) { retVal *= LU.components[i * LU.col + i]; } return retVal*decSign; } Matrix Matrix::LU_Decompose(int* sign, Matrix* p) const{ if (row != col) AbortWithMsg("failed to LU decomposition: matrix is not square"); if (sign != 0) *sign = 1; if (p != 0) { if (p->row != row || p->row != p->col) AbortWithMsg("failed to LU decomposition: permitation matrix is incorrect"); // 置換行列は最初に単位行列にしておく memset(p->components, 0, sizeof(float) * row * col); for (int i = 0; i < row; i++) { p->components[i * col + i] = 1.0f; } } Matrix retVal(*this); for (int d = 0; d < row - 1; d++) { // 1行1列ずつ分解を行う // d列目の最大の要素を探索し、見つけた要素の行とd行目を交換する int maxNo = d; for (int i = d; i < row; i++) { if (retVal.components[i * col + d] > retVal.components[maxNo * col + d]) maxNo = i; } if (maxNo != d) { retVal.SwapRow(d + 1, maxNo + 1); if (sign != 0) *sign *= -1; if (p != 0) { p->SwapRow(d + 1, maxNo + 1); } } float c = retVal.components[d * col + d]; if (fabs(c) < NEARLY_ZERO) AbortWithMsg("failed to LU decomposition: Division by Zero"); // d行d列目以降の行列について計算 for (int i = d+1; i < row; i++) { retVal.components[i * col + d] /= c; for (int j = d+1; j < col; j++) { retVal.components[i * col + j] -= retVal.components[d * col + j] * retVal.components[i * col + d]; } } } retVal.CleanUp(); return retVal; } bool Matrix::Inverse(Matrix& invm) const{ if (row != col) AbortWithMsg("failed to get Inv. : matrix is not square"); Matrix P(*this); Matrix LU(LU_Decompose(0, &P)); // 分解した行列の対角成分の積から行列式を求める // det = 0 ならfalse float det = 1.0f; for (int i = 0; i < row; i++) { det *= LU.components[i * col + i]; } if (fabs(det) < NEARLY_ZERO) return false; // U、Lそれぞれの逆行列を計算する Matrix U_inv = Matrix(row, col); Matrix L_inv = Matrix(row, col); for (int j = 0; j < col; j++) { for (int i = 0; i <= j; i++) { int i_U = j - i; // U行列の逆行列は対角成分から上へ向かって // 左から順番に値を計算する int j_L = col - 1 - j; // L行列の逆行列は右から順番に int i_L = j_L + i; // 対角成分から下へ向かって計算する if (i_U != j) { // 非対角成分 float temp_U = 0.0f; float temp_L = 0.0f; for (int k = 0; k < i; k++) { temp_U -= U_inv.components[(j - k) * col + j] * LU.components[i_U * col + (j - k)]; if (k == 0) { temp_L -= LU.components[i_L * col + j_L]; } else { temp_L -= L_inv.components[(j_L + k) * col + j_L] * LU.components[i_L * col + j_L + k]; } } U_inv.components[i_U * col + j] = temp_U / LU.components[i_U * col + i_U]; L_inv.components[i_L * col + j_L] = temp_L; } else { // 対角成分 if (fabs(LU.components[i_U * col + i_U]) >= NEARLY_ZERO) { U_inv.components[i_U * col + i_U] = 1.0f / LU.components[i_U * col + i_U]; } } } } invm = U_inv * L_inv * P; return true; } Matrix Matrix::Transpose() const{ if (row != col) AbortWithMsg("failed to get Trans. : matrix is not square"); Matrix retVal(*this); for (int i = 0; i < row; i++) { for (int j = i + 1; j < col; j++) { float temp = retVal.components[i * col + j]; retVal.components[i * col + j] = retVal.components[j * col + i]; retVal.components[j * col + i] = temp; } } return retVal; } Matrix operator+(const Matrix& lhm, const Matrix& rhm) { Matrix temp = Matrix(lhm); temp += rhm; return temp; } Matrix operator-(const Matrix& lhm, const Matrix& rhm) { Matrix temp = Matrix(lhm); temp -= rhm; return temp; } Matrix operator*(const Matrix& lhm, const Matrix& rhm) { Matrix temp = Matrix(lhm); temp *= rhm; return temp; } void Matrix::CleanUp() { int num = row*col; float maxComp = 0.0f; for (int i = 0; i < num; i++) { if (maxComp < fabs(components[i])) maxComp = fabs(components[i]); } if (maxComp > NEARLY_ZERO) { for (int i = 0; i < num; i++) { if (fabs(components[i]) / maxComp < ZERO_TOLERANCE) components[i] = 0.0f; } } } void Matrix::SwapRow(int rowNo1, int rowNo2) { if (rowNo1 > row || rowNo2 > row) AbortWithMsg("Index Out of Bounds Error !!"); float* temp = new float[col]; memcpy(temp, components + (rowNo1 - 1) * col, sizeof(float) * col); memcpy(components + (rowNo1 - 1) * col, components + (rowNo2 - 1) * col, sizeof(float) * col); memcpy(components + (rowNo2 - 1) * col, temp, sizeof(float) * col); delete[] temp; }