control for robotic arm that can play chess using a granular gripper

Dependencies:   Encoder mbed HIDScope Servo MODSERIAL

Fork of chessRobot by a steenbeek

actuators.cpp

Committer:
annesteenbeek
Date:
2015-10-26
Revision:
106:1773bf7b95c5
Parent:
100:222c27f55b85
Child:
107:de47331612d9

File content as of revision 106:1773bf7b95c5:

#include "actuators.h"
#include "PID.h"
#include "mbed.h"
#include "config.h"
#include "encoder.h"
#include "HIDScope.h"

    // Motor control constants
    #define pwm_frequency 50000 // still High, could be lowered
    #define PI 3.14159265

    // functions for controlling the motors
    bool motorsEnable = false;
    bool safetyOn = true; 


    double encoder1Counts = 0;
    double encoder2Counts = 0;

    bool direction1 = false; // CCW is false(positive rotation), CW is true (neg rotation)
    bool direction2 = false;

    double motor1Pos = 0;
    double motor2Pos = 0;

    double motor1Speed = 0;
    double motor2Speed = 0;

    double motor1SetSpeed = 0;
    double motor2SetSpeed = 0;

    double motor1PWM = 0;
    double motor2PWM = 0;

    // Set PID values
    double Kp1 = 1; 
    double Ki1 = 0; 
    double Kd1 = 0;

    double Kp2 = 0.008; 
    double Ki2 = 0.08; 
    double Kd2 = 0;

    double motor1PrevCounts = 0;
    double motor2PrevCounts = 0;
    double prevTime = 0;
    double now = 0;
    double timechange;
    bool pidOut = 0;

    // Set servo values
    const double servoPeriod = 0.020;
    const double servo_range = 20;  // Servo range (-range/ range) [deg]
    const double servo_vel = 15;    // Servo velocity [deg/s]
    const double servo_inc = servo_vel * motorCall;     // Servo postion increment per cycle
    double servo_pos = 0;
    double servoPulsewidth = 0.0015;
    double servoSpeed = 0;
    
    // Set calibration values
    double motorCalSpeed = 10; // deg/sec
    double returnSpeed = -10;
    bool springHit = false;
    float lastCall = 0;
    bool calibrating1 = true;
    bool calibrating2 = false;

    // Create object instances
    // Safety Pin
    DigitalIn safetyIn(safetyPin);
    
    // Initialze motors
    PwmOut motor1(motor1PWMPin);
    PwmOut motor2(motor2PWMPin);

    // initialize Servo
    PwmOut servo(servoPin);


    // Initialize encoders
    Encoder encoder1(enc1A, enc1B);
    Encoder encoder2(enc2A, enc2B);

    // Set direction pins     
    DigitalOut motor1Dir(motor1DirPin);
    DigitalOut motor2Dir(motor2DirPin);  

    // create PID instances
    PID motor1PID(&motor1Speed, &motor1PWM, &motor1SetSpeed, Kp1, Ki1, Kd1);
    PID motor2PID(&motor2Speed, &motor2PWM, &motor2SetSpeed, Kp2, Ki2, Kd2);

    Timer t;  
    
void motorInit(){
    
    motor1Dir.write(direction1);
    motor2Dir.write(direction2);

    // Set motor PWM period
    motor1.period(1/pwm_frequency);
    motor2.period(1/pwm_frequency);
    
    motor1PID.SetSampleTime(motorCall);
    motor2PID.SetSampleTime(motorCall);
    
    motor1PID.SetOutputLimits(0,1);
    motor2PID.SetOutputLimits(0,1);
    
    // Turn PID on
    motor1PID.SetMode(AUTOMATIC);
    motor2PID.SetMode(AUTOMATIC);

    // set servo period
    servo.period(servoPeriod);               

    
    // start the timer
    t.start();
}


void motorControl(){
    // EMG signals to motor speeds
    const double scaleVel = 20;
    motor1SetSpeed = x_velocity*scaleVel;
    motor2SetSpeed = y_velocity*scaleVel;
    servoSpeed = z_velocity*scaleVel;

    // get encoder positions in degrees
        // 131.25:1 gear ratio
        // getPosition uses X2 configuration, so 32 counts per revolution
        // encoder reads CCW negative, and CW positive, so multiply by -1 to make CCW positive

        encoder1Counts = encoder1.getPosition();
        encoder2Counts = encoder2.getPosition();


        motor1Pos = -((encoder1Counts/32)/131.25)*360;
        motor2Pos = -((encoder2Counts/32)/131.25)*360;

        // check if motor's are within rotational boundarys
    // get  encoder speeds in deg/sec
        now = t.read(); 
        timechange = (now - prevTime);
        motor1Speed = -((((encoder1Counts - motor1PrevCounts)/32)/131.25)*360)/timechange;
        motor2Speed = -((((encoder2Counts - motor2PrevCounts)/32)/131.25)*360)/timechange;
        prevTime = now;
        motor1PrevCounts = encoder1Counts;
        motor2PrevCounts = encoder2Counts;
        
    // calculate motor setpoint speed in deg/sec from setpoint x/y speed

        
    if(motorsEnable){  // only run motors if switch is enabled
    // compute new PID parameters using setpoint angle speeds and encoder speed
        writeMotors();
        servoControl();
    }else{
        // write 0 to motors
        motor1.write(0);
        motor2.write(0);
    }
}

void writeMotors(){
    motor1PID.Compute(); // calculate PID outputs, output changes automatically
    motor2PID.Compute();
// write new values to motor's
    if (motor1SetSpeed > 0 ){ // CCW rotation 
        direction1 = false;
        motor1PID.SetOutputLimits(0,1); // change pid output direction
    }else{
        direction1 = true; // CW rotation
        motor1PID.SetOutputLimits(-1,0);
    }
    if (motor2SetSpeed > 0 ){ // CCW rotation 
        direction2 = false;
        motor2PID.SetOutputLimits(0,1);
    }else{
        direction2 = true; // CW rotation
        motor2PID.SetOutputLimits(-1,0);
    }
    motor1Dir.write(direction1);
    motor2Dir.write(direction2);

    motor1.write(abs(motor1PWM));
    motor2.write(abs(motor2PWM));
}

void servoControl(){
    if (servoSpeed > 0) {
        if((servo_pos + servo_inc) <= servo_range) {       // If increment step does not exceed maximum range
            servo_pos += servo_inc;
        }
    }else if (servoSpeed < 0) {
        if((servo_pos - servo_inc) >= -servo_range) {       // If increment step does not exceed maximum range
            servo_pos -= servo_inc;
        }
    }
    servoPulsewidth = 0.0015 + (servo_pos/90)*0.001; 
    servo.pulsewidth(servoPulsewidth);
}

bool calibrateMotors(){
   safetyOn = false; // safety springs off
   motorsEnable = true; // motors on
   redLed.write(0); greenLed.write(1); blueLed.write(1);
   while (calibrating1 || calibrating2){
       if (calibrating1){
            redLed.write(1); greenLed.write(0); blueLed.write(1);
           if(safetyIn.read() !=1){ // check if arm reached safety position
               encoder1.setPosition(0); // set motor 1 cal angle
               motor1SetSpeed = returnSpeed; // move away
               springHit = true;
           }else{ 
               if(springHit){ // if hit and after is no longer touching spring
                motor1SetSpeed = 0;
                springHit = false;
                calibrating1 = false;
                calibrating2 = true; // start calibrating 2
               }
           }
       }
       if (calibrating2){
            motor2SetSpeed = motorCalSpeed; 
            redLed.write(1); greenLed.write(1); blueLed.write(0);
           if(safetyIn.read() !=1){ // check if arm reached safety position
               encoder2.setPosition(0); // set motor 2 cal angle
               motor2SetSpeed = returnSpeed; // move away
               springHit = true;
           }else{ 
               if(springHit){ // if hit and after is no longer touching spring
                motor2SetSpeed = 0;
                springHit = false;
                calibrating2 = false; // stop calibrating 2
               }
           }
       }
       now = t.read(); // call motor using timer instead of wait
       if(now - lastCall > motorCall){
           motorControl();
           lastCall = now;
       }

   }
    motorsEnable = false; // turn motor's off again
    safetyOn = true; // turn safety on after callibration
    return true; // return true wehn finished
}


void safety(){
    if (safetyOn){
        if (safetyIn.read() != 1){
            motorsEnable = false;
        }
    }
}


bool kinematics(){
    // calculate current x and Y
    X = L2*cos((motor1Pos + motor2Pos)*PI/180) + L1*cos(motor1Pos*PI/180);
    Y = L2*sin((motor1Pos + motor2Pos)*PI/180) + L1*sin(motor1Pos*PI/180);
    // check if x and y are within limits
    //  else  Store the constraint line
    //      check if movement is in direction of constraint
    //      else return false no movement (anglespeed = 0)
    // calculate required angle speeds
    if( (X>Xmax && setXSpeed > 0 )|| \
        (X<Xmin && setXSpeed < 0 )|| \
        (Y>Ymax && setYSpeed > 0 )|| \
        (Y<Ymin && setYSpeed < 0 )   \
    ){
        motor1SetSpeed = 0;
        motor2SetSpeed = 0;
        return false;
        break;
    }
motor1SetSpeed = (setXSpeed*cos((motor1Pos + motor2Pos)*PI/180) + \
    setYSpeed*sin((motor1Pos + motor2Pos)*PI/180))/(L1*sin(motor2Pos*PI/180));
motor2SetSpeed = -(setXSpeed*L2*cos((motor1Pos + motor2Pos)*PI/180) + \
    setYSpeed*L2*sin((motor1Pos + motor2Pos)*PI/180) + \
    setXSpeed*L1*cos(motor1Pos*PI/180) + \
    setYSpeed*L1*sin(motor1Pos*PI/180))/(L1*L2*sin(motor2Pos*PI/180));

}