Light control tutorial
The application below demonstrates a simple light control application, where devices can control the LED status of all devices in the network. You can build the application for the unsecure 6LoWPAN-ND network.
Download the application
mbed import mbed-os-example-mesh-minimal
cd mbed-os-example-mesh-minimal
Or click Import into Mbed IDE
in the example below:
/*
* Copyright (c) 2016 ARM Limited. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed.h"
#include "nanostack/socket_api.h"
#include "mesh_led_control_example.h"
#include "common_functions.h"
#include "ip6string.h"
#include "mbed-trace/mbed_trace.h"
static void init_socket();
static void handle_socket();
static void receive();
static void my_button_isr();
static void send_message();
static void blink();
static void update_state(uint8_t state);
static void handle_message(char* msg);
#define multicast_addr_str "ff15::810a:64d1"
#define TRACE_GROUP "example"
#define UDP_PORT 1234
#define MESSAGE_WAIT_TIMEOUT (30.0)
#define MASTER_GROUP 0
#define MY_GROUP 1
DigitalOut led_1(MBED_CONF_APP_LED, 1);
InterruptIn my_button(MBED_CONF_APP_BUTTON);
DigitalOut output(MBED_CONF_APP_RELAY_CONTROL, 1);
NetworkInterface * network_if;
UDPSocket* my_socket;
// queue for sending messages from button press.
EventQueue queue;
// for LED blinking
Ticker ticker;
// Handle for delayed message send
int queue_handle = 0;
uint8_t multi_cast_addr[16] = {0};
uint8_t receive_buffer[20];
// how many hops the multicast message can go
static const int16_t multicast_hops = 10;
bool button_status = 0;
void start_mesh_led_control_example(NetworkInterface * interface){
tr_debug("start_mesh_led_control_example()");
MBED_ASSERT(MBED_CONF_APP_LED != NC);
MBED_ASSERT(MBED_CONF_APP_BUTTON != NC);
network_if = interface;
stoip6(multicast_addr_str, strlen(multicast_addr_str), multi_cast_addr);
init_socket();
}
static void blink() {
led_1 = !led_1;
}
void start_blinking() {
ticker.attach(blink, 1.0);
}
void cancel_blinking() {
ticker.detach();
led_1=1;
}
static void send_message() {
tr_debug("send msg %d", button_status);
char buf[20];
int length;
/**
* Multicast control message is a NUL terminated string of semicolon separated
* <field identifier>:<value> pairs.
*
* Light control message format:
* t:lights;g:<group_id>;s:<1|0>;\0
*/
length = snprintf(buf, sizeof(buf), "t:lights;g:%03d;s:%s;", MY_GROUP, (button_status ? "1" : "0")) + 1;
MBED_ASSERT(length > 0);
tr_debug("Sending lightcontrol message, %d bytes: %s", length, buf);
SocketAddress send_sockAddr(multi_cast_addr, NSAPI_IPv6, UDP_PORT);
my_socket->sendto(send_sockAddr, buf, 20);
//After message is sent, it is received from the network
}
// As this comes from isr, we cannot use printing or network functions directly from here.
static void my_button_isr() {
button_status = !button_status;
queue.call(send_message);
}
static void update_state(uint8_t state) {
if (state == 1) {
tr_debug("Turning led on\n");
led_1 = 0;
button_status=1;
if (MBED_CONF_APP_RELAY_CONTROL != NC) {
output = 0;
} else {
printf("Pins not configured. Skipping the RELAY control.\n");
}
}
else {
tr_debug("Turning led off\n");
led_1 = 1;
button_status=0;
if (MBED_CONF_APP_RELAY_CONTROL != NC) {
output = 1;
} else {
printf("Pins not configured. Skipping the RELAY control.\n");
}
}
}
static void handle_message(char* msg) {
// Check if this is lights message
uint8_t state=button_status;
uint16_t group=0xffff;
if (strstr(msg, "t:lights;") == NULL) {
return;
}
if (strstr(msg, "s:1;") != NULL) {
state = 1;
}
else if (strstr(msg, "s:0;") != NULL) {
state = 0;
}
// 0==master, 1==default group
char *msg_ptr = strstr(msg, "g:");
if (msg_ptr) {
char *ptr;
group = strtol(msg_ptr, &ptr, 10);
}
// in this example we only use one group
if (group==MASTER_GROUP || group==MY_GROUP) {
update_state(state);
}
}
static void receive() {
// Read data from the socket
SocketAddress source_addr;
memset(receive_buffer, 0, sizeof(receive_buffer));
bool something_in_socket=true;
// read all messages
while (something_in_socket) {
int length = my_socket->recvfrom(&source_addr, receive_buffer, sizeof(receive_buffer) - 1);
if (length > 0) {
int timeout_value = MESSAGE_WAIT_TIMEOUT;
tr_debug("Packet from %s\n", source_addr.get_ip_address());
timeout_value += rand() % 30;
tr_debug("Advertisiment after %d seconds", timeout_value);
queue.cancel(queue_handle);
queue_handle = queue.call_in((timeout_value * 1000), send_message);
// Handle command - "on", "off"
handle_message((char*)receive_buffer);
}
else if (length!=NSAPI_ERROR_WOULD_BLOCK) {
tr_error("Error happened when receiving %d\n", length);
something_in_socket=false;
}
else {
// there was nothing to read.
something_in_socket=false;
}
}
}
static void handle_socket() {
// call-back might come from ISR
queue.call(receive);
}
static void init_socket()
{
my_socket = new UDPSocket();
my_socket->open(network_if);
my_socket->set_blocking(false);
my_socket->bind(UDP_PORT);
my_socket->setsockopt(SOCKET_IPPROTO_IPV6, SOCKET_IPV6_MULTICAST_HOPS, &multicast_hops, sizeof(multicast_hops));
ns_ipv6_mreq_t mreq;
memcpy(mreq.ipv6mr_multiaddr, multi_cast_addr, 16);
mreq.ipv6mr_interface = 0;
my_socket->setsockopt(SOCKET_IPPROTO_IPV6, SOCKET_IPV6_JOIN_GROUP, &mreq, sizeof mreq);
if (MBED_CONF_APP_BUTTON != NC) {
my_button.fall(&my_button_isr);
my_button.mode(MBED_CONF_APP_BUTTON_MODE);
}
//let's register the call-back function.
//If something happens in socket (packets in or out), the call-back is called.
my_socket->sigio(callback(handle_socket));
// dispatch forever
queue.dispatch();
}
Change the channel settings (optional)
See the file mbed_app.json
for an example of defining an IEEE 802.15.4 channel to use.
Selecting optimal Nanostack configuration
To optimize the flash usage, select a proper configuration for Nanostack. The configuration depends mostly on the preferred use case.
Select the protocol the network is based on:
- 6LoWPAN-ND.
Select the device role:
- Mesh network. A router. (default)
- Star network. Nonrouting device. Also known as a host or sleepy host.
Modify your mbed_app.json
file to see which Nanostack and Mbed Mesh API configuration to use.
Example configuration files are provide under configs/
directory. You may override the mbed_app.json
with either of these.
configuration file | Use for |
---|---|
configs/mesh_6lowpan.json |
6LoWPAN-ND based mesh network. |
An example of the mbed_app.json
file:
"target_overrides": {
"*": {
"nanostack.configuration": "lowpan_router",
"nsapi.default-mesh-type": "LOWPAN",
"mbed-mesh-api.6lowpan-nd-panid-filter": "0xffff",
"mbed-mesh-api.6lowpan-nd-channel-page": 0,
"mbed-mesh-api.6lowpan-nd-channel": 12,
"mbed-mesh-api.6lowpan-nd-channel-mask": "(1<<12)",
"mbed-mesh-api.heap-size": 14000,
"mbed-trace.enable": false,
"platform.stdio-convert-newlines": true,
"platform.stdio-baud-rate": 115200,
"atmel-rf.provide-default": true,
"mcr20a.provide-default": false,
"target.device_has_add": ["802_15_4_PHY"],
"target.network-default-interface-type": "MESH"
}
}
The following tables show the values to use in the mbed_app.json
file for your devices in different networks.
- For a 6LoWPAN-ND based network, use
nsapi.default-mesh-type: LOWPAN
.
6LoWPAN-ND
nsapi.default-mesh-type: LOWPAN
Device role | nanostack.configuration value |
mbed-mesh-api.6lowpan-nd-device-type value |
---|---|---|
Mesh router (default) | lowpan_router | NET_6LOWPAN_ROUTER |
Nonrouting device | lowpan_host | NET_6LOWPAN_HOST |
Requirements for hardware
The networking stack in this example requires TLS functionality to be enabled on Mbed TLS. On devices where hardware entropy is not present, TLS is disabled by default. This results in compile time failures or linking failures.
To learn why entropy is required, read the TLS porting guide.
See Notes on different hardware for known combinations of development boards and RF shields that have been tested.
You also need to check how LEDs and buttons are configured for your hardware, and update the .json
file accordingly.
Changing the radio driver
To run a 6LoWPAN-ND network, you need a working RF driver for Nanostack. This example uses the Atmel AT86RF233 by default.
To change the RF driver, modify the mbed_app.json
file by setting preferred RF driver provide_default
value to true, For example, to use MCR20a RF driver:
"atmel-rf.provide-default": false,
"mcr20a.provide-default": true
Compile the application
mbed compile -m K64F -t GCC_ARM
A binary is generated in the end of the build process.
Connect the RF shield to the board
This example uses the Atmel AT86RF233, which you can purchase. Place the shield on top of your board, and power it on.
Program the target
Drag and drop the binary to the target to program the application.
Update the firmware of the border router
This example supports the following border router:
The border router supports static and dynamic backhaul configuration. The static configuration is good for testing, but the dynamic one works if your network infrastructure is supplying an IPv6 address. Make sure that you use the appropiate mode.
Remember to connect the Ethernet cable between the border router and your router. Then power on the board.
Testing
By default, the application is built for the LED control demo, in which the device sends a multicast message to all devices in the network when the button is pressed. All devices that receive the multicast message will change the LED status (red LED on/off) to the state defined in the message.
As soon as both the border router and the target are running, you can verify the correct behavior. Open a serial console, and see the IP address obtained by the device.
Note: This application uses the baud rate of 115200.
connected. IP = 2001:db8:a0b:12f0::1
You can use this IP address to ping
from your PC and verify that the connection is working correctly.
Memory optimizations
On some limited platforms, for example NCS36510 or KW24D, building this application might run out of RAM or ROM. In those cases, you can try these instructions to optimize the memory use.
Mbed TLS configuration
You can set the custom Mbed TLS configuration by adding "macros": ["MBEDTLS_USER_CONFIG_FILE=\"mbedtls_config.h\""]
to the .json
file. The example Mbed TLS configuration minimizes the RAM and ROM use of the application. The is not guaranteed to work on every Mbed Enabled platform.
This configuration file saves you 8.7 kB of RAM but uses 6.8 kB of more flash.
Disabling the LED control example
You can disable the LED control example by specifying enable-led-control-example": false
in mbed_app.json
.
This saves you about 2.5 kB of flash.
Change network stack's event loop stack size
Nanostack's internal event loop is shared with Mbed Client and therefore requires lots of stack to complete the security handshakes using TLS protocols. If you're not using client functionality, you can define the following to use 2 kB of stack:
"nanostack-hal.event_loop_thread_stack_size": 2048
This saves you 4 kB of RAM.
Change Nanostack's heap size
Nanostack uses internal heap, which you can configure in the .json
:
"mbed-mesh-api.heap-size": 12000
For 6LoWPAN, you can try 12 kB. For the smallest memory use, configure the node to be in nonrouting mode. See module-configuration for more detail.
Move Nanostack's heap inside the system heap
You can move Nanostack's internal heap within the system heap. This helps on devices with split RAM and on devices in which the compiler fails to fit statically allocated symbols into one section, for example, the NXP KW24D device.
The Mesh API has the use-malloc-for-heap option to help this.
Add the following line to mbed_app.json
to test:
"mbed-mesh-api.use-malloc-for-heap": true
Use release profile
For devices with small memory, we recommend using release profiles for building and exporting. Please see the documentation about build profiles.
Examples:
$ mbed export -m KW24D -i make_iar --profile release
OR
$ mbed compile -m KW24D -t IAR --profile release
Troubleshooting
If you have problems, you can review the documentation for suggestions on what could be wrong and how to fix it.