Mbed side code that supports OpenRoACH communication with ROS (Robot Operating System)
Dependencies: MPU6050IMU QEI RPCInterface TSL1401CL mbed-src
Fork of mbed_zumy_rpc by
main.cpp
- Committer:
- abuchan
- Date:
- 2016-05-31
- Revision:
- 0:966d81803039
- Child:
- 1:7b8696baf8ff
File content as of revision 0:966d81803039:
#include "mbed.h" #include "SerialRPCInterface.h" #include "MPU6050.h" #include "QEI.h" SerialRPCInterface SerialRPC(USBTX, USBRX, 115200); float accel_x, accel_y, accel_z, gyro_x, gyro_y, gyro_z; int r_enc, l_enc; RPCVariable<float> rpc_accel_x(&accel_x, "accel_x"); RPCVariable<float> rpc_accel_y(&accel_y, "accel_y"); RPCVariable<float> rpc_accel_z(&accel_z, "accel_z"); RPCVariable<float> rpc_gryo_x(&gyro_x, "gyro_x"); RPCVariable<float> rpc_gryo_y(&gyro_y, "gyro_y"); RPCVariable<float> rpc_gryo_z(&gyro_z, "gyro_z"); RPCVariable<int> rpc_r_enc(&r_enc, "r_enc"); RPCVariable<int> rpc_l_enc(&l_enc, "l_enc"); QEI l_wheel (p29, p30, NC, 624); QEI r_wheel (p11, p12, NC, 624); MPU6050 mpu6050; DigitalOut init_done(LED1); DigitalOut imu_good(LED2); DigitalOut main_loop(LED3); int main() { init_done = 0; imu_good = 0; main_loop = 0; //Set up I2C i2c.frequency(400000); // use fast (400 kHz) I2C volatile bool imu_ready = false; wait_ms(100); uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); if (whoami == 0x68) // WHO_AM_I should always be 0x68 { mpu6050.MPU6050SelfTest(SelfTest); if(SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) { mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers mpu6050.initMPU6050(); mpu6050.getAres(); mpu6050.getGres(); imu_ready = true; imu_good = 1; } } init_done = 1; uint8_t loop_count = 10; while(1) { wait_ms(10); // Handle the encoders r_enc=r_wheel.getPulses(); l_enc=l_wheel.getPulses(); //pc.printf("Pulses are: %i, %i\r\n", l_enc,r_enc); if (!(--loop_count)) { loop_count = 10; main_loop = !main_loop; } if (imu_ready) { if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt mpu6050.readAccelData(accelCount); // Read the x/y/z adc values mpu6050.readGyroData(gyroCount); // Read the x/y/z adc values // Now we'll calculate the accleration value into actual g's accel_x = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set accel_y = (float)accelCount[1]*aRes - accelBias[1]; accel_z = (float)accelCount[2]*aRes - accelBias[2]; // Calculate the gyro value into actual degrees per second gyro_x = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set gyro_y = (float)gyroCount[1]*gRes - gyroBias[1]; gyro_z = (float)gyroCount[2]*gRes - gyroBias[2]; } } } }