Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Diff: SRNN.cpp
- Revision:
- 0:0d42047e140c
- Child:
- 1:da597cb284a2
diff -r 000000000000 -r 0d42047e140c SRNN.cpp
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/SRNN.cpp Thu Jan 15 08:22:24 2015 +0000
@@ -0,0 +1,356 @@
+#include "SRNN.hpp"
+
+/* コンストラクタ - 最小の初期化パラメタ
+ * 適宜追加する可能性あり
+ */
+SRNN::SRNN(int dim,
+ int num_mid,
+ int len_seq,
+ float* input_sample,
+ float* input_sample_maxmin)
+{
+
+ this->dim_signal = dim;
+ this->num_mid_neuron = num_mid; // Advice : number of hidden layter shuld be as large as possible.
+ this->len_seqence = len_seq;
+
+ // sample/sample_maxmin allocation
+ this->sample = new float[len_seqence * dim_signal];
+ this->sample_maxmin = new float[dim_signal * 2];
+
+ memcpy(this->sample, input_sample, sizeof(float) * len_seqence * dim_signal);
+ memcpy(this->sample_maxmin, input_sample_maxmin, sizeof(float) * dim_signal * 2);
+
+ this->predict_signal = new float[dim_signal];
+
+ // coffecience matrix allocation
+ // final +1 for bias
+ this->Win_mid = new float[num_mid_neuron * (dim_signal + num_mid_neuron + 1)];
+ this->Wmid_out = new float[dim_signal * (num_mid_neuron + 1)];
+
+
+ // input/hidden layer signal allocation
+ expand_in_signal = new float[dim_signal + num_mid_neuron + 1];
+ expand_mid_signal = new float[num_mid_neuron + 1];
+
+ // Parameter settings (Tuning by taiyo)
+ this->squareError = FLT_MAX; // (large value)
+ this->maxIteration = 5000;
+ this->goalError = float(0.001);
+ this->epsilon = float(0.00001);
+ this->learnRate = float(0.9); // 敏感に反応できるように, 高めに設定した. 時系列データなので, サンプルの時間間隔によって変えるべき
+ this->alpha = float(0.8 * learnRate);
+ this->alpha_context = float(0.8);
+ this->width_initW = float(1.0/num_mid_neuron);
+
+ // random seed decide by time
+ srand((unsigned int)time(NULL));
+
+}
+
+SRNN::~SRNN(void)
+{
+ delete [] sample; delete [] sample_maxmin;
+ delete [] predict_signal;
+ delete [] Win_mid; delete [] Wmid_out;
+ delete [] expand_in_signal;
+ delete [] expand_mid_signal;
+}
+
+/* utilにいどうするべき */
+void SRNN::sigmoid_vec(float* net,
+ float* out,
+ int dim)
+{
+ for (int n=0;n<dim;n++)
+ out[n] = sigmoid_func(net[n]);
+}
+
+/* Predict : predicting next sequence of input */
+void SRNN::predict(float* input)
+{
+ float *norm_input = new float[this->dim_signal];
+
+ // normalize signal
+ for (int n=0; n < dim_signal; n++) {
+ norm_input[n] =
+ normalize_signal(input[n],
+ MATRIX_AT(this->sample_maxmin,2,n,0),
+ MATRIX_AT(this->sample_maxmin,2,n,1));
+ }
+
+ // output signal
+ float* out_signal = new float[dim_signal];
+ // value of network in input->hidden layer
+ float* in_mid_net = new float[num_mid_neuron];
+ // value of network in hidden->output layer
+ float* mid_out_net = new float[dim_signal];
+
+ /* Calcurate output signal */
+ // Get input signal
+ memcpy(expand_in_signal, norm_input, sizeof(float) * dim_signal);
+ // Signal of input layer : 中間層との線形和をシグモイド関数に通す.
+ for (int d = 0; d < num_mid_neuron; d++) {
+ expand_in_signal[dim_signal + d] = sigmoid_func(alpha_context * expand_in_signal[dim_signal + d] + expand_mid_signal[d]);
+ }
+ // Bias fixed at 1.
+ expand_in_signal[dim_signal + num_mid_neuron] = 1;
+
+ // 入力->中間層の出力信号和計算
+ multiply_mat_vec(Win_mid, expand_in_signal, in_mid_net, num_mid_neuron, dim_signal + num_mid_neuron + 1);
+ // 中間層の出力信号計算
+ sigmoid_vec(in_mid_net, expand_mid_signal, num_mid_neuron);
+ expand_mid_signal[num_mid_neuron] = 1;
+
+ // 中間->出力層の出力信号和計算
+ multiply_mat_vec(Wmid_out, expand_mid_signal, mid_out_net, dim_signal, num_mid_neuron + 1);
+ // 出力層の出力信号計算
+ sigmoid_vec(mid_out_net, out_signal, dim_signal);
+
+ // expand output signal to origin width.
+ for (int n=0;n < dim_signal;n++) {
+ predict_signal[n] = expand_signal(out_signal[n],sample_maxmin[n * 2],sample_maxmin[n * 2 + 1]);
+ }
+
+ delete [] norm_input; delete [] out_signal;
+ delete [] in_mid_net; delete [] mid_out_net;
+
+}
+
+/* 逆誤差伝搬法による学習 局所解?なんのこったよ(すっとぼけ)*/
+float SRNN::learning(void)
+{
+ int iteration = 0; // 学習繰り返し回数
+ int seq = 0; // 現在学習中の系列番号[0,...,len_seqence-1]
+ int end_flag = 0; // 学習終了フラグ.このフラグが成立したら今回のsequenceを最後まで回して終了する.
+ // 係数行列のサイズ
+ int row_in_mid = num_mid_neuron;
+ int col_in_mid = dim_signal + num_mid_neuron + 1;
+ int row_mid_out = dim_signal;
+ int col_mid_out = num_mid_neuron + 1;
+
+ // 行列のアロケート
+ // 係数行列の更新量
+ float* dWin_mid = new float[row_in_mid * col_in_mid];
+ float* dWmid_out = new float[row_mid_out * col_mid_out];
+ // 前回の更新量:慣性項に用いる.
+ float* prevdWin_mid = new float[row_in_mid * col_in_mid];
+ float* prevdWmid_out = new float[row_mid_out * col_mid_out];
+ float* norm_sample = new float[len_seqence * dim_signal]; // 正規化したサンプル信号; 実際の学習は正規化した信号を用います.
+
+ // 係数行列の初期化
+ for (int i=0; i < row_in_mid; i++)
+ for (int j=0; j < col_in_mid; j++)
+ MATRIX_AT(Win_mid,col_in_mid,i,j) = uniform_rand(width_initW);
+
+ for (int i=0; i < row_mid_out; i++)
+ for (int j=0; j < col_mid_out; j++)
+ MATRIX_AT(Wmid_out,col_mid_out,i,j) = uniform_rand(width_initW);
+
+ // 信号の正規化:経験上,非常に大切な処理
+ for (int seq=0; seq < len_seqence; seq++) {
+ for (int n=0; n < dim_signal; n++) {
+ MATRIX_AT(norm_sample,dim_signal,seq,n) =
+ normalize_signal(MATRIX_AT(this->sample,dim_signal,seq,n),
+ MATRIX_AT(this->sample_maxmin,2,n,0),
+ MATRIX_AT(this->sample_maxmin,2,n,1));
+ // printf("%f ", MATRIX_AT(norm_sample,dim_signal,seq,n));
+ }
+ // printf("\r\n");
+ }
+
+ // 出力層の信号
+ float* out_signal = new float[dim_signal];
+
+ // 入力層->中間層の信号和
+ float* in_mid_net = new float[num_mid_neuron];
+ // 中間層->出力層の信号和.
+ float* mid_out_net = new float[dim_signal];
+
+ // 誤差信号
+ float* sigma = new float[dim_signal];
+
+ // 前回の二乗誤差値:収束判定に用いる.
+ float prevError;
+
+ /* 学習ループ */
+ while (1) {
+
+ // 終了条件を満たすか確認
+ if (!end_flag) {
+ end_flag = !(iteration < this->maxIteration
+ && (iteration <= this->len_seqence
+ || this->squareError > this->goalError)
+ );
+ }
+
+ // printf("ite:%d err:%f \r\n", iteration, squareError);
+
+ // 系列の末尾に到達していたら,最初からリセットする.
+ if (seq == len_seqence && !end_flag) {
+ seq = 0;
+ }
+
+ // 前回の更新量/二乗誤差を保存
+ if (iteration >= 1) {
+ memcpy(prevdWin_mid, dWin_mid, sizeof(float) * row_in_mid * col_in_mid);
+ memcpy(prevdWmid_out, dWmid_out, sizeof(float) * row_mid_out * col_mid_out);
+ prevError = squareError;
+ } else {
+ // 初回は0埋め
+ memset(prevdWin_mid, float(0), sizeof(float) * row_in_mid * col_in_mid);
+ memset(prevdWmid_out, float(0), sizeof(float) * row_mid_out * col_mid_out);
+ }
+
+ /* 学習ステップその1:ニューラルネットの出力信号を求める */
+
+ // 入力値を取得
+ memcpy(expand_in_signal, &(norm_sample[seq * dim_signal]), sizeof(float) * dim_signal);
+ // SRNN特有:入力層に中間層のコピーが追加され,中間層に入力される.
+ if (iteration == 0) {
+ // 初回は0埋めする
+ memset(&(expand_in_signal[dim_signal]), float(0), sizeof(float) * num_mid_neuron);
+ } else {
+ // コンテキスト層 = 前回のコンテキスト層の出力
+ // 前回の中間層信号との線形和をシグモイド関数に通す.
+ for (int d = 0; d < num_mid_neuron; d++) {
+ expand_in_signal[dim_signal + d] = sigmoid_func(alpha_context * expand_in_signal[dim_signal + d] + expand_mid_signal[d]);
+ }
+ }
+ // バイアス項は常に1に固定.
+ expand_in_signal[dim_signal + num_mid_neuron] = 1;
+
+ // 入力->中間層の出力信号和計算
+ multiply_mat_vec(Win_mid,
+ expand_in_signal,
+ in_mid_net,
+ num_mid_neuron,
+ dim_signal + num_mid_neuron + 1);
+ // 中間層の出力信号計算
+ sigmoid_vec(in_mid_net,
+ expand_mid_signal,
+ num_mid_neuron);
+ expand_mid_signal[num_mid_neuron] = 1;
+ // 中間->出力層の出力信号和計算
+ multiply_mat_vec(Wmid_out,
+ expand_mid_signal,
+ mid_out_net,
+ dim_signal,
+ num_mid_neuron + 1);
+ // 出力層の出力信号計算
+ sigmoid_vec(mid_out_net,
+ out_signal,
+ dim_signal);
+
+
+ for (int i = 0; i < dim_signal; i++) {
+ predict_signal[i] = expand_signal(out_signal[i],
+ MATRIX_AT(sample_maxmin,2,i,0),
+ MATRIX_AT(sample_maxmin,2,i,1));
+ }
+ printf("predict : %f %f %f \r\n", predict_signal[0], predict_signal[1], predict_signal[2]);
+
+ // print_mat(Wmid_out, row_mid_out, col_mid_out);
+
+ // この時点での二乗誤差計算
+ squareError = 0;
+ // 次の系列との誤差を見ている!! ここが注目ポイント
+ // ==> つまり,次系列を予測させようとしている.
+ for (int n = 0;n < dim_signal;n++) {
+ if (seq < len_seqence - 1) {
+ squareError += powf((out_signal[n] - MATRIX_AT(norm_sample,dim_signal,(seq + 1),n)),2);
+ } else {
+ squareError += powf((out_signal[n] - MATRIX_AT(norm_sample,dim_signal,0,n)),2);
+ }
+ }
+ squareError /= dim_signal;
+
+ /* 学習の終了 */
+ // 終了フラグが立ち,かつ系列の最後に達していたら学習終了
+ if (end_flag && (seq == (len_seqence-1))) {
+ // 予測結果をセット.
+ for (int i = 0; i < dim_signal; i++) {
+ predict_signal[i] = expand_signal(out_signal[i],
+ MATRIX_AT(sample_maxmin,2,i,0),
+ MATRIX_AT(sample_maxmin,2,i,1));
+ //printf("%f ", predict_signal[i]);
+ }
+ break;
+ }
+
+ // 収束したと判定したら終了フラグを立てる.
+ if (fabsf(squareError - prevError) < epsilon) {
+ end_flag = 1;
+ }
+
+ /* 学習ステップその2:逆誤差伝搬 */
+ // 誤差信号の計算
+ for (int n = 0; n < dim_signal; n++) {
+ if (seq < len_seqence - 1) {
+ sigma[n] = (out_signal[n] - MATRIX_AT(norm_sample,dim_signal,seq+1,n)) * out_signal[n] * (1 - out_signal[n]);
+ } else {
+ /* 末尾と先頭の誤差を取る (大抵,大きくなる) */
+ sigma[n] = (out_signal[n] - MATRIX_AT(norm_sample, dim_signal,0,n)) * out_signal[n] * (1 - out_signal[n]);
+ }
+ }
+ // printf("Sigma : %f %f %f \r\n", sigma[0], sigma[1], sigma[2]);
+
+ // 出力->中間層の係数の変更量計算
+ for (int n = 0; n < dim_signal; n++) {
+ for (int j = 0; j < num_mid_neuron + 1; j++) {
+ MATRIX_AT(dWmid_out,num_mid_neuron,n,j) = sigma[n] * expand_mid_signal[j];
+ }
+ }
+
+ // 中間->入力層の係数の変更量計算
+ register float sum_sigma;
+ for (int i = 0; i < num_mid_neuron; i++) {
+ // 誤差信号を逆向きに伝播させる.
+ sum_sigma = 0;
+ for (int k = 0; k < dim_signal; k++) {
+ sum_sigma += sigma[k] * MATRIX_AT(Wmid_out,num_mid_neuron + 1,k,i);
+ }
+ // 中間->入力層の係数の変更量計算
+ for (int j = 0; j < col_in_mid; j++) {
+ MATRIX_AT(dWin_mid,num_mid_neuron,j,i)
+ = sum_sigma * expand_mid_signal[i] *
+ (1 - expand_mid_signal[i]) *
+ expand_in_signal[j];
+ }
+ }
+
+ // 係数更新
+ for (int i = 0; i < row_in_mid; i++) {
+ for (int j = 0; j < col_in_mid; j++) {
+ //printf("[%f -> ", MATRIX_AT(Win_mid,col_in_mid,i,j));
+ MATRIX_AT(Win_mid,col_in_mid,i,j) =
+ MATRIX_AT(Win_mid,col_in_mid,i,j) -
+ this->learnRate * MATRIX_AT(dWin_mid,col_in_mid,i,j) -
+ this->alpha * MATRIX_AT(prevdWin_mid,col_in_mid,i,j);
+ // printf("%f] ", MATRIX_AT(Win_mid,col_in_mid,i,j));
+ // printf("dW : %f , prevdW : %f ", MATRIX_AT(dWin_mid,col_in_mid,i,j), MATRIX_AT(prevdWin_mid,col_in_mid,i,j));
+ }
+ //printf("\r\n");
+ }
+ for (int i = 0; i < row_mid_out; i++) {
+ for (int j = 0; j < col_mid_out; j++) {
+ MATRIX_AT(Wmid_out,col_mid_out,i,j)=
+ MATRIX_AT(Wmid_out,col_mid_out,i,j) -
+ this->learnRate * MATRIX_AT(dWmid_out,col_mid_out,i,j) -
+ this->alpha * MATRIX_AT(prevdWmid_out,col_mid_out,i,j);
+ }
+ }
+
+ // ループ回数/系列のインクリメント
+ iteration += 1;
+ seq += 1;
+
+ }
+
+ delete [] dWin_mid; delete [] dWmid_out;
+ delete [] prevdWin_mid; delete [] prevdWmid_out;
+ delete [] norm_sample; delete [] out_signal;
+ delete [] in_mid_net; delete [] mid_out_net;
+
+ return squareError;
+}