Taiyo Mineo / SRNN

Dependents:   WeatherPredictor

Revision:
0:0d42047e140c
Child:
1:da597cb284a2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/SRNN.cpp	Thu Jan 15 08:22:24 2015 +0000
@@ -0,0 +1,356 @@
+#include "SRNN.hpp"
+
+/* コンストラクタ - 最小の初期化パラメタ
+ * 適宜追加する可能性あり
+ */
+SRNN::SRNN(int    dim, 
+           int    num_mid,
+           int    len_seq,
+           float* input_sample,
+           float* input_sample_maxmin)
+{
+  
+  this->dim_signal = dim;
+  this->num_mid_neuron = num_mid; // Advice : number of hidden layter shuld be as large as possible.
+  this->len_seqence = len_seq;
+  
+  // sample/sample_maxmin allocation
+  this->sample = new float[len_seqence * dim_signal];
+  this->sample_maxmin = new float[dim_signal * 2];
+
+  memcpy(this->sample, input_sample, sizeof(float) * len_seqence * dim_signal);
+  memcpy(this->sample_maxmin, input_sample_maxmin, sizeof(float) * dim_signal * 2);
+        
+  this->predict_signal = new float[dim_signal];
+  
+  // coffecience matrix allocation
+  // final +1 for bias 
+  this->Win_mid  = new float[num_mid_neuron * (dim_signal + num_mid_neuron + 1)]; 
+  this->Wmid_out = new float[dim_signal * (num_mid_neuron + 1)];
+  
+
+  // input/hidden layer signal allocation
+  expand_in_signal = new float[dim_signal + num_mid_neuron + 1];
+  expand_mid_signal = new float[num_mid_neuron + 1];
+  
+  // Parameter settings (Tuning by taiyo)
+  this->squareError    = FLT_MAX; // (large value)
+  this->maxIteration   = 5000;
+  this->goalError      = float(0.001);
+  this->epsilon        = float(0.00001);
+  this->learnRate      = float(0.9);   // 敏感に反応できるように, 高めに設定した. 時系列データなので, サンプルの時間間隔によって変えるべき
+  this->alpha          = float(0.8 * learnRate);
+  this->alpha_context  = float(0.8);
+  this->width_initW    = float(1.0/num_mid_neuron);
+
+  // random seed decide by time
+  srand((unsigned int)time(NULL));
+  
+}
+
+SRNN::~SRNN(void)
+{
+    delete [] sample; delete [] sample_maxmin;
+    delete [] predict_signal;
+    delete [] Win_mid; delete [] Wmid_out;
+    delete [] expand_in_signal;
+    delete [] expand_mid_signal;
+}
+
+/* utilにいどうするべき */
+void SRNN::sigmoid_vec(float* net,
+                       float* out,
+                       int    dim)
+{
+  for (int n=0;n<dim;n++)
+    out[n] = sigmoid_func(net[n]);
+}
+
+/* Predict : predicting next sequence of input */
+void SRNN::predict(float* input)
+{
+  float *norm_input = new float[this->dim_signal];
+
+  // normalize signal
+  for (int n=0; n < dim_signal; n++) {
+    norm_input[n] = 
+      normalize_signal(input[n],
+          MATRIX_AT(this->sample_maxmin,2,n,0),
+          MATRIX_AT(this->sample_maxmin,2,n,1));
+  }
+
+  // output signal
+  float* out_signal = new float[dim_signal];
+  // value of network in input->hidden layer 
+  float* in_mid_net = new float[num_mid_neuron];
+  // value of network in hidden->output layer 
+  float* mid_out_net = new float[dim_signal];
+
+  /* Calcurate output signal */
+  // Get input signal 
+  memcpy(expand_in_signal, norm_input, sizeof(float) * dim_signal);
+  // Signal of input layer : 中間層との線形和をシグモイド関数に通す.
+  for (int d = 0; d < num_mid_neuron; d++) {
+    expand_in_signal[dim_signal + d] = sigmoid_func(alpha_context * expand_in_signal[dim_signal + d] + expand_mid_signal[d]);
+  }
+  // Bias fixed at 1.
+  expand_in_signal[dim_signal + num_mid_neuron] = 1;
+
+  // 入力->中間層の出力信号和計算
+  multiply_mat_vec(Win_mid, expand_in_signal, in_mid_net, num_mid_neuron, dim_signal + num_mid_neuron + 1);
+  // 中間層の出力信号計算
+  sigmoid_vec(in_mid_net, expand_mid_signal, num_mid_neuron);
+  expand_mid_signal[num_mid_neuron] = 1;
+
+  // 中間->出力層の出力信号和計算
+  multiply_mat_vec(Wmid_out, expand_mid_signal, mid_out_net, dim_signal, num_mid_neuron + 1);
+  // 出力層の出力信号計算
+  sigmoid_vec(mid_out_net, out_signal, dim_signal);
+
+  // expand output signal to origin width.
+  for (int n=0;n < dim_signal;n++) {
+    predict_signal[n] = expand_signal(out_signal[n],sample_maxmin[n * 2],sample_maxmin[n * 2 + 1]);
+  }
+  
+  delete [] norm_input; delete [] out_signal;
+  delete [] in_mid_net; delete [] mid_out_net;
+
+}
+
+/* 逆誤差伝搬法による学習 局所解?なんのこったよ(すっとぼけ)*/
+float SRNN::learning(void)
+{
+  int iteration = 0; // 学習繰り返し回数
+  int seq = 0;       // 現在学習中の系列番号[0,...,len_seqence-1]
+  int end_flag = 0;  // 学習終了フラグ.このフラグが成立したら今回のsequenceを最後まで回して終了する.
+  // 係数行列のサイズ
+  int row_in_mid = num_mid_neuron;
+  int col_in_mid = dim_signal + num_mid_neuron + 1;
+  int row_mid_out = dim_signal;
+  int col_mid_out = num_mid_neuron + 1;
+
+  // 行列のアロケート
+  // 係数行列の更新量
+  float* dWin_mid  = new float[row_in_mid * col_in_mid];
+  float* dWmid_out = new float[row_mid_out * col_mid_out];
+  // 前回の更新量:慣性項に用いる.
+  float* prevdWin_mid  = new float[row_in_mid * col_in_mid];
+  float* prevdWmid_out = new float[row_mid_out * col_mid_out];
+  float* norm_sample   = new float[len_seqence * dim_signal]; // 正規化したサンプル信号; 実際の学習は正規化した信号を用います.
+
+  // 係数行列の初期化
+  for (int i=0; i < row_in_mid; i++)
+    for (int j=0; j < col_in_mid; j++)
+      MATRIX_AT(Win_mid,col_in_mid,i,j) = uniform_rand(width_initW);
+
+  for (int i=0; i < row_mid_out; i++)
+    for (int j=0; j < col_mid_out; j++)
+      MATRIX_AT(Wmid_out,col_mid_out,i,j) = uniform_rand(width_initW);
+
+  // 信号の正規化:経験上,非常に大切な処理
+  for (int seq=0; seq < len_seqence; seq++) {
+    for (int n=0; n < dim_signal; n++) {
+      MATRIX_AT(norm_sample,dim_signal,seq,n) = 
+            normalize_signal(MATRIX_AT(this->sample,dim_signal,seq,n),
+                             MATRIX_AT(this->sample_maxmin,2,n,0),
+                             MATRIX_AT(this->sample_maxmin,2,n,1));
+      // printf("%f ", MATRIX_AT(norm_sample,dim_signal,seq,n));
+    }
+    // printf("\r\n");
+  }
+
+  // 出力層の信号
+  float* out_signal = new float[dim_signal];
+
+  // 入力層->中間層の信号和
+  float* in_mid_net = new float[num_mid_neuron];
+  // 中間層->出力層の信号和.
+  float* mid_out_net = new float[dim_signal];
+
+  // 誤差信号
+  float* sigma = new float[dim_signal];
+
+  // 前回の二乗誤差値:収束判定に用いる.
+  float prevError;
+
+  /* 学習ループ */
+  while (1) {
+
+    // 終了条件を満たすか確認
+    if (!end_flag) {
+      end_flag = !(iteration < this->maxIteration 
+                   && (iteration <= this->len_seqence 
+                       || this->squareError > this->goalError)
+                  );
+    }
+
+    // printf("ite:%d err:%f \r\n", iteration, squareError);
+
+    // 系列の末尾に到達していたら,最初からリセットする.
+    if (seq == len_seqence && !end_flag) {
+      seq = 0;
+    }
+
+    // 前回の更新量/二乗誤差を保存
+    if (iteration >= 1) {
+      memcpy(prevdWin_mid, dWin_mid, sizeof(float) * row_in_mid * col_in_mid);
+      memcpy(prevdWmid_out, dWmid_out, sizeof(float) * row_mid_out * col_mid_out);
+      prevError = squareError;
+    } else {
+      // 初回は0埋め
+      memset(prevdWin_mid, float(0), sizeof(float) * row_in_mid * col_in_mid);
+      memset(prevdWmid_out, float(0), sizeof(float) * row_mid_out * col_mid_out);
+    }
+    
+    /* 学習ステップその1:ニューラルネットの出力信号を求める */
+
+    // 入力値を取得
+    memcpy(expand_in_signal, &(norm_sample[seq * dim_signal]), sizeof(float) * dim_signal);
+    // SRNN特有:入力層に中間層のコピーが追加され,中間層に入力される.
+    if (iteration == 0) {
+      // 初回は0埋めする
+      memset(&(expand_in_signal[dim_signal]), float(0), sizeof(float) * num_mid_neuron);
+    } else {
+      // コンテキスト層 = 前回のコンテキスト層の出力
+      // 前回の中間層信号との線形和をシグモイド関数に通す.
+      for (int d = 0; d < num_mid_neuron; d++) {
+        expand_in_signal[dim_signal + d] = sigmoid_func(alpha_context * expand_in_signal[dim_signal + d] + expand_mid_signal[d]);
+      }
+    }
+    // バイアス項は常に1に固定.
+    expand_in_signal[dim_signal + num_mid_neuron] = 1;
+
+    // 入力->中間層の出力信号和計算
+    multiply_mat_vec(Win_mid,
+                     expand_in_signal,
+                     in_mid_net,
+                     num_mid_neuron,
+                     dim_signal + num_mid_neuron + 1);
+    // 中間層の出力信号計算
+    sigmoid_vec(in_mid_net,
+                expand_mid_signal,
+                num_mid_neuron);
+    expand_mid_signal[num_mid_neuron] = 1;
+    // 中間->出力層の出力信号和計算
+    multiply_mat_vec(Wmid_out,
+                     expand_mid_signal,
+                     mid_out_net,
+                     dim_signal,
+                     num_mid_neuron + 1);
+    // 出力層の出力信号計算
+    sigmoid_vec(mid_out_net,
+                out_signal,
+                dim_signal);
+
+    
+    for (int i = 0; i < dim_signal; i++) {
+      predict_signal[i] = expand_signal(out_signal[i],
+                                        MATRIX_AT(sample_maxmin,2,i,0),
+                                        MATRIX_AT(sample_maxmin,2,i,1));
+    }
+    printf("predict : %f %f %f \r\n", predict_signal[0], predict_signal[1], predict_signal[2]);
+    
+    // print_mat(Wmid_out, row_mid_out, col_mid_out);
+    
+    // この時点での二乗誤差計算
+    squareError = 0;
+    // 次の系列との誤差を見ている!! ここが注目ポイント
+    // ==> つまり,次系列を予測させようとしている.
+    for (int n = 0;n < dim_signal;n++) {
+      if (seq < len_seqence - 1) {
+        squareError += powf((out_signal[n] - MATRIX_AT(norm_sample,dim_signal,(seq + 1),n)),2);
+      } else {
+        squareError += powf((out_signal[n] - MATRIX_AT(norm_sample,dim_signal,0,n)),2);
+      }
+    } 
+    squareError /= dim_signal;
+
+    /* 学習の終了 */
+    // 終了フラグが立ち,かつ系列の最後に達していたら学習終了
+    if (end_flag && (seq == (len_seqence-1))) {
+      // 予測結果をセット.
+      for (int i = 0; i < dim_signal; i++) {
+        predict_signal[i] = expand_signal(out_signal[i],
+                                          MATRIX_AT(sample_maxmin,2,i,0),
+                                          MATRIX_AT(sample_maxmin,2,i,1));
+        //printf("%f ", predict_signal[i]);
+      }
+      break;
+    }
+
+    // 収束したと判定したら終了フラグを立てる.
+    if (fabsf(squareError - prevError) < epsilon) {
+      end_flag = 1;
+    }
+
+    /* 学習ステップその2:逆誤差伝搬 */
+    // 誤差信号の計算
+    for (int n = 0; n < dim_signal; n++) {
+      if (seq < len_seqence - 1) {
+        sigma[n] = (out_signal[n] - MATRIX_AT(norm_sample,dim_signal,seq+1,n)) * out_signal[n] * (1 - out_signal[n]);
+      } else {
+        /* 末尾と先頭の誤差を取る (大抵,大きくなる) */
+        sigma[n] = (out_signal[n] - MATRIX_AT(norm_sample, dim_signal,0,n)) * out_signal[n] * (1 - out_signal[n]);
+      }
+    }
+    // printf("Sigma : %f %f %f \r\n", sigma[0], sigma[1], sigma[2]);
+
+    // 出力->中間層の係数の変更量計算
+    for (int n = 0; n < dim_signal; n++) {
+      for (int j = 0; j < num_mid_neuron + 1; j++) {
+        MATRIX_AT(dWmid_out,num_mid_neuron,n,j) = sigma[n] * expand_mid_signal[j];
+      }
+    }
+
+    // 中間->入力層の係数の変更量計算
+    register float sum_sigma;
+    for (int i = 0; i < num_mid_neuron; i++) {
+      // 誤差信号を逆向きに伝播させる.
+      sum_sigma = 0;
+      for (int k = 0; k < dim_signal; k++) {
+        sum_sigma += sigma[k] * MATRIX_AT(Wmid_out,num_mid_neuron + 1,k,i);
+      }
+      // 中間->入力層の係数の変更量計算
+      for (int j = 0; j < col_in_mid; j++) {
+        MATRIX_AT(dWin_mid,num_mid_neuron,j,i)
+                          = sum_sigma * expand_mid_signal[i] *
+                            (1 - expand_mid_signal[i]) *
+                            expand_in_signal[j];
+      }
+    }
+
+    // 係数更新
+    for (int i = 0; i < row_in_mid; i++) {
+      for (int j = 0; j < col_in_mid; j++) {
+        //printf("[%f -> ", MATRIX_AT(Win_mid,col_in_mid,i,j));
+        MATRIX_AT(Win_mid,col_in_mid,i,j) = 
+              MATRIX_AT(Win_mid,col_in_mid,i,j) - 
+              this->learnRate * MATRIX_AT(dWin_mid,col_in_mid,i,j) -
+              this->alpha * MATRIX_AT(prevdWin_mid,col_in_mid,i,j);
+        // printf("%f] ", MATRIX_AT(Win_mid,col_in_mid,i,j));
+        // printf("dW : %f , prevdW : %f ", MATRIX_AT(dWin_mid,col_in_mid,i,j), MATRIX_AT(prevdWin_mid,col_in_mid,i,j));
+      }
+      //printf("\r\n");
+    }
+    for (int i = 0; i < row_mid_out; i++) {
+      for (int j = 0; j < col_mid_out; j++) {
+        MATRIX_AT(Wmid_out,col_mid_out,i,j)= 
+              MATRIX_AT(Wmid_out,col_mid_out,i,j) - 
+              this->learnRate * MATRIX_AT(dWmid_out,col_mid_out,i,j) - 
+              this->alpha * MATRIX_AT(prevdWmid_out,col_mid_out,i,j);
+      }
+    }
+
+    // ループ回数/系列のインクリメント
+    iteration += 1;
+    seq += 1;
+
+  }
+  
+  delete [] dWin_mid; delete [] dWmid_out;
+  delete [] prevdWin_mid; delete [] prevdWmid_out;
+  delete [] norm_sample; delete [] out_signal;
+  delete [] in_mid_net; delete [] mid_out_net;
+
+  return squareError;
+}