Taiyo Mineo / SRNN

Dependents:   WeatherPredictor

Revision:
1:da597cb284a2
Parent:
0:0d42047e140c
Child:
2:d623e7ef4dca
--- a/SRNN.cpp	Thu Jan 15 08:22:24 2015 +0000
+++ b/SRNN.cpp	Sun Feb 15 04:05:35 2015 +0000
@@ -3,354 +3,366 @@
 /* コンストラクタ - 最小の初期化パラメタ
  * 適宜追加する可能性あり
  */
-SRNN::SRNN(int    dim, 
+SRNN::SRNN(int    dim,
            int    num_mid,
            int    len_seq,
+           int    len_predict,
            float* input_sample,
            float* input_sample_maxmin)
 {
-  
-  this->dim_signal = dim;
-  this->num_mid_neuron = num_mid; // Advice : number of hidden layter shuld be as large as possible.
-  this->len_seqence = len_seq;
-  
-  // sample/sample_maxmin allocation
-  this->sample = new float[len_seqence * dim_signal];
-  this->sample_maxmin = new float[dim_signal * 2];
+
+    this->dim_signal = dim;
+    this->num_mid_neuron = num_mid; // Advice : number of hidden layter shuld be as large as possible.
+    this->len_seqence = len_seq;
+    this->len_predict = len_predict;
+
+    // sample/sample_maxmin allocation
+    this->sample = new float[len_seqence * dim_signal];
+    this->sample_maxmin = new float[dim_signal * 2];
+
+    memcpy(this->sample, input_sample, sizeof(float) * len_seqence * dim_signal);
+    memcpy(this->sample_maxmin, input_sample_maxmin, sizeof(float) * dim_signal * 2);
+
+    this->predict_signal = new float[dim_signal * len_predict];
 
-  memcpy(this->sample, input_sample, sizeof(float) * len_seqence * dim_signal);
-  memcpy(this->sample_maxmin, input_sample_maxmin, sizeof(float) * dim_signal * 2);
-        
-  this->predict_signal = new float[dim_signal];
-  
-  // coffecience matrix allocation
-  // final +1 for bias 
-  this->Win_mid  = new float[num_mid_neuron * (dim_signal + num_mid_neuron + 1)]; 
-  this->Wmid_out = new float[dim_signal * (num_mid_neuron + 1)];
-  
+    // coffecience matrix allocation
+    // final +1 for bias
+    this->Win_mid  = new float[num_mid_neuron * (dim_signal + num_mid_neuron + 1)];
+    this->Wmid_out = new float[dim_signal * (num_mid_neuron + 1)];
+
+    // input/hidden layer signal allocation
+    expand_in_signal = new float[dim_signal + num_mid_neuron + 1];
+    expand_mid_signal = new float[num_mid_neuron + 1];
 
-  // input/hidden layer signal allocation
-  expand_in_signal = new float[dim_signal + num_mid_neuron + 1];
-  expand_mid_signal = new float[num_mid_neuron + 1];
-  
-  // Parameter settings (Tuning by taiyo)
-  this->squareError    = FLT_MAX; // (large value)
-  this->maxIteration   = 5000;
-  this->goalError      = float(0.001);
-  this->epsilon        = float(0.00001);
-  this->learnRate      = float(0.9);   // 敏感に反応できるように, 高めに設定した. 時系列データなので, サンプルの時間間隔によって変えるべき
-  this->alpha          = float(0.8 * learnRate);
-  this->alpha_context  = float(0.8);
-  this->width_initW    = float(1.0/num_mid_neuron);
+    // Parameter settings (Tuning by taiyo)
+    this->squareError    = FLT_MAX; // (large value)
+    this->maxIteration   = 5000;
+    this->goalError      = float(0.001);
+    this->epsilon        = float(0.00001);
+    this->learnRate      = float(0.9);   // 敏感に反応できるように, 高めに設定した. 時系列データなので, サンプルの時間間隔によって変えるべき
+    this->alpha          = float(0.8 * learnRate);
+    this->alpha_context  = float(0.8);
+    this->width_initW    = float(1.0/num_mid_neuron);
 
-  // random seed decide by time
-  srand((unsigned int)time(NULL));
-  
+    // random seed decide by time
+    srand((unsigned int)time(NULL));
+
 }
 
 SRNN::~SRNN(void)
 {
-    delete [] sample; delete [] sample_maxmin;
+    delete [] sample;
+    delete [] sample_maxmin;
     delete [] predict_signal;
-    delete [] Win_mid; delete [] Wmid_out;
+    delete [] Win_mid;
+    delete [] Wmid_out;
     delete [] expand_in_signal;
     delete [] expand_mid_signal;
 }
 
-/* utilにいどうするべき */
+/* utilに移動するべき */
 void SRNN::sigmoid_vec(float* net,
                        float* out,
                        int    dim)
 {
-  for (int n=0;n<dim;n++)
-    out[n] = sigmoid_func(net[n]);
+    for (int n=0; n<dim; n++)
+        out[n] = sigmoid_func(net[n]);
 }
 
 /* Predict : predicting next sequence of input */
 void SRNN::predict(float* input)
 {
-  float *norm_input = new float[this->dim_signal];
+    float *norm_input = new float[this->dim_signal];
+
+
+    // output signal
+    float* out_signal = new float[dim_signal];
+    // value of network in input->hidden layer
+    float* in_mid_net = new float[num_mid_neuron];
+    // value of network in hidden->output layer
+    float* mid_out_net = new float[dim_signal];
 
-  // normalize signal
-  for (int n=0; n < dim_signal; n++) {
-    norm_input[n] = 
-      normalize_signal(input[n],
-          MATRIX_AT(this->sample_maxmin,2,n,0),
-          MATRIX_AT(this->sample_maxmin,2,n,1));
-  }
+    /* Calcurate output signal */
+    for (int i_predict = 0; i_predict < len_predict; i_predict++) {
 
-  // output signal
-  float* out_signal = new float[dim_signal];
-  // value of network in input->hidden layer 
-  float* in_mid_net = new float[num_mid_neuron];
-  // value of network in hidden->output layer 
-  float* mid_out_net = new float[dim_signal];
+        // normalize signal
+        for (int n=0; n < dim_signal; n++) {
+            if (i_predict == 0) {
+                // First : given input
+                norm_input[n] = normalize_signal(input[n], MATRIX_AT(this->sample_maxmin,2,n,0), MATRIX_AT(this->sample_maxmin,2,n,1));
+            } else {
+                // Second~ : previous output
+                norm_input[n] = out_signal[n];
+            }
+        }
 
-  /* Calcurate output signal */
-  // Get input signal 
-  memcpy(expand_in_signal, norm_input, sizeof(float) * dim_signal);
-  // Signal of input layer : 中間層との線形和をシグモイド関数に通す.
-  for (int d = 0; d < num_mid_neuron; d++) {
-    expand_in_signal[dim_signal + d] = sigmoid_func(alpha_context * expand_in_signal[dim_signal + d] + expand_mid_signal[d]);
-  }
-  // Bias fixed at 1.
-  expand_in_signal[dim_signal + num_mid_neuron] = 1;
+        // Get input signal
+        memcpy(expand_in_signal, norm_input, sizeof(float) * dim_signal);
+        // Signal of input layer : 中間層との線形和をシグモイド関数に通す.
+        for (int d = 0; d < num_mid_neuron; d++) {
+            expand_in_signal[dim_signal + d] = sigmoid_func(alpha_context * expand_in_signal[dim_signal + d] + expand_mid_signal[d]);
+        }
+        // Bias fixed at 1.
+        expand_in_signal[dim_signal + num_mid_neuron] = 1;
+
+        // 入力->中間層の出力信号和計算
+        multiply_mat_vec(Win_mid, expand_in_signal, in_mid_net, num_mid_neuron, dim_signal + num_mid_neuron + 1);
+        // 中間層の出力信号計算
+        sigmoid_vec(in_mid_net, expand_mid_signal, num_mid_neuron);
+        expand_mid_signal[num_mid_neuron] = 1;
 
-  // 入力->中間層の出力信号和計算
-  multiply_mat_vec(Win_mid, expand_in_signal, in_mid_net, num_mid_neuron, dim_signal + num_mid_neuron + 1);
-  // 中間層の出力信号計算
-  sigmoid_vec(in_mid_net, expand_mid_signal, num_mid_neuron);
-  expand_mid_signal[num_mid_neuron] = 1;
+        // 中間->出力層の出力信号和計算
+        multiply_mat_vec(Wmid_out, expand_mid_signal, mid_out_net, dim_signal, num_mid_neuron + 1);
+        // 出力層の出力信号計算
+        sigmoid_vec(mid_out_net, out_signal, dim_signal);
 
-  // 中間->出力層の出力信号和計算
-  multiply_mat_vec(Wmid_out, expand_mid_signal, mid_out_net, dim_signal, num_mid_neuron + 1);
-  // 出力層の出力信号計算
-  sigmoid_vec(mid_out_net, out_signal, dim_signal);
-
-  // expand output signal to origin width.
-  for (int n=0;n < dim_signal;n++) {
-    predict_signal[n] = expand_signal(out_signal[n],sample_maxmin[n * 2],sample_maxmin[n * 2 + 1]);
-  }
-  
-  delete [] norm_input; delete [] out_signal;
-  delete [] in_mid_net; delete [] mid_out_net;
+        // expand output signal to origin width.
+        for (int n=0; n < dim_signal; n++) {
+            predict_signal[i_predict * dim_signal + n] = expand_signal(out_signal[n],sample_maxmin[n * 2],sample_maxmin[n * 2 + 1]);
+        }
+        
+    }
+    
+    // 領域解放
+    delete [] norm_input; delete [] out_signal;
+    delete [] in_mid_net; delete [] mid_out_net;
 
 }
 
 /* 逆誤差伝搬法による学習 局所解?なんのこったよ(すっとぼけ)*/
 float SRNN::learning(void)
 {
-  int iteration = 0; // 学習繰り返し回数
-  int seq = 0;       // 現在学習中の系列番号[0,...,len_seqence-1]
-  int end_flag = 0;  // 学習終了フラグ.このフラグが成立したら今回のsequenceを最後まで回して終了する.
-  // 係数行列のサイズ
-  int row_in_mid = num_mid_neuron;
-  int col_in_mid = dim_signal + num_mid_neuron + 1;
-  int row_mid_out = dim_signal;
-  int col_mid_out = num_mid_neuron + 1;
+    int iteration = 0; // 学習繰り返し回数
+    int seq = 0;       // 現在学習中の系列番号[0,...,len_seqence-1]
+    int end_flag = 0;  // 学習終了フラグ.このフラグが成立したら今回のsequenceを最後まで回して終了する.
+    // 係数行列のサイズ
+    int row_in_mid = num_mid_neuron;
+    int col_in_mid = dim_signal + num_mid_neuron + 1;
+    int row_mid_out = dim_signal;
+    int col_mid_out = num_mid_neuron + 1;
 
-  // 行列のアロケート
-  // 係数行列の更新量
-  float* dWin_mid  = new float[row_in_mid * col_in_mid];
-  float* dWmid_out = new float[row_mid_out * col_mid_out];
-  // 前回の更新量:慣性項に用いる.
-  float* prevdWin_mid  = new float[row_in_mid * col_in_mid];
-  float* prevdWmid_out = new float[row_mid_out * col_mid_out];
-  float* norm_sample   = new float[len_seqence * dim_signal]; // 正規化したサンプル信号; 実際の学習は正規化した信号を用います.
-
-  // 係数行列の初期化
-  for (int i=0; i < row_in_mid; i++)
-    for (int j=0; j < col_in_mid; j++)
-      MATRIX_AT(Win_mid,col_in_mid,i,j) = uniform_rand(width_initW);
-
-  for (int i=0; i < row_mid_out; i++)
-    for (int j=0; j < col_mid_out; j++)
-      MATRIX_AT(Wmid_out,col_mid_out,i,j) = uniform_rand(width_initW);
+    // 行列のアロケート
+    // 係数行列の更新量
+    float* dWin_mid  = new float[row_in_mid * col_in_mid];
+    float* dWmid_out = new float[row_mid_out * col_mid_out];
+    // 前回の更新量:慣性項に用いる.
+    float* prevdWin_mid  = new float[row_in_mid * col_in_mid];
+    float* prevdWmid_out = new float[row_mid_out * col_mid_out];
+    float* norm_sample   = new float[len_seqence * dim_signal]; // 正規化したサンプル信号; 実際の学習は正規化した信号を用います.
 
-  // 信号の正規化:経験上,非常に大切な処理
-  for (int seq=0; seq < len_seqence; seq++) {
-    for (int n=0; n < dim_signal; n++) {
-      MATRIX_AT(norm_sample,dim_signal,seq,n) = 
-            normalize_signal(MATRIX_AT(this->sample,dim_signal,seq,n),
-                             MATRIX_AT(this->sample_maxmin,2,n,0),
-                             MATRIX_AT(this->sample_maxmin,2,n,1));
-      // printf("%f ", MATRIX_AT(norm_sample,dim_signal,seq,n));
-    }
-    // printf("\r\n");
-  }
+    // 係数行列の初期化
+    for (int i=0; i < row_in_mid; i++)
+        for (int j=0; j < col_in_mid; j++)
+            MATRIX_AT(Win_mid,col_in_mid,i,j) = uniform_rand(width_initW);
 
-  // 出力層の信号
-  float* out_signal = new float[dim_signal];
-
-  // 入力層->中間層の信号和
-  float* in_mid_net = new float[num_mid_neuron];
-  // 中間層->出力層の信号和.
-  float* mid_out_net = new float[dim_signal];
+    for (int i=0; i < row_mid_out; i++)
+        for (int j=0; j < col_mid_out; j++)
+            MATRIX_AT(Wmid_out,col_mid_out,i,j) = uniform_rand(width_initW);
 
-  // 誤差信号
-  float* sigma = new float[dim_signal];
-
-  // 前回の二乗誤差値:収束判定に用いる.
-  float prevError;
-
-  /* 学習ループ */
-  while (1) {
-
-    // 終了条件を満たすか確認
-    if (!end_flag) {
-      end_flag = !(iteration < this->maxIteration 
-                   && (iteration <= this->len_seqence 
-                       || this->squareError > this->goalError)
-                  );
-    }
-
-    // printf("ite:%d err:%f \r\n", iteration, squareError);
-
-    // 系列の末尾に到達していたら,最初からリセットする.
-    if (seq == len_seqence && !end_flag) {
-      seq = 0;
+    // 信号の正規化:経験上,非常に大切な処理
+    for (int seq=0; seq < len_seqence; seq++) {
+        for (int n=0; n < dim_signal; n++) {
+            MATRIX_AT(norm_sample,dim_signal,seq,n) =
+                normalize_signal(MATRIX_AT(this->sample,dim_signal,seq,n),
+                                 MATRIX_AT(this->sample_maxmin,2,n,0),
+                                 MATRIX_AT(this->sample_maxmin,2,n,1));
+            // printf("%f ", MATRIX_AT(norm_sample,dim_signal,seq,n));
+        }
+        // printf("\r\n");
     }
 
-    // 前回の更新量/二乗誤差を保存
-    if (iteration >= 1) {
-      memcpy(prevdWin_mid, dWin_mid, sizeof(float) * row_in_mid * col_in_mid);
-      memcpy(prevdWmid_out, dWmid_out, sizeof(float) * row_mid_out * col_mid_out);
-      prevError = squareError;
-    } else {
-      // 初回は0埋め
-      memset(prevdWin_mid, float(0), sizeof(float) * row_in_mid * col_in_mid);
-      memset(prevdWmid_out, float(0), sizeof(float) * row_mid_out * col_mid_out);
-    }
-    
-    /* 学習ステップその1:ニューラルネットの出力信号を求める */
+    // 出力層の信号
+    float* out_signal = new float[dim_signal];
+
+    // 入力層->中間層の信号和
+    float* in_mid_net = new float[num_mid_neuron];
+    // 中間層->出力層の信号和.
+    float* mid_out_net = new float[dim_signal];
+
+    // 誤差信号
+    float* sigma = new float[dim_signal];
+
+    // 前回の二乗誤差値:収束判定に用いる.
+    float prevError;
+
+    /* 学習ループ */
+    while (1) {
+
+        // 終了条件を満たすか確認
+        if (!end_flag) {
+            end_flag = !(iteration < this->maxIteration
+                         && (iteration <= this->len_seqence
+                             || this->squareError > this->goalError)
+                        );
+        }
+
+        // printf("ite:%d err:%f \r\n", iteration, squareError);
+
+        // 系列の末尾に到達していたら,最初からリセットする.
+        if (seq == len_seqence && !end_flag) {
+            seq = 0;
+        }
+
+        // 前回の更新量/二乗誤差を保存
+        if (iteration >= 1) {
+            memcpy(prevdWin_mid, dWin_mid, sizeof(float) * row_in_mid * col_in_mid);
+            memcpy(prevdWmid_out, dWmid_out, sizeof(float) * row_mid_out * col_mid_out);
+            prevError = squareError;
+        } else {
+            // 初回は0埋め
+            memset(prevdWin_mid, float(0), sizeof(float) * row_in_mid * col_in_mid);
+            memset(prevdWmid_out, float(0), sizeof(float) * row_mid_out * col_mid_out);
+        }
+
+        /* 学習ステップその1:ニューラルネットの出力信号を求める */
 
-    // 入力値を取得
-    memcpy(expand_in_signal, &(norm_sample[seq * dim_signal]), sizeof(float) * dim_signal);
-    // SRNN特有:入力層に中間層のコピーが追加され,中間層に入力される.
-    if (iteration == 0) {
-      // 初回は0埋めする
-      memset(&(expand_in_signal[dim_signal]), float(0), sizeof(float) * num_mid_neuron);
-    } else {
-      // コンテキスト層 = 前回のコンテキスト層の出力
-      // 前回の中間層信号との線形和をシグモイド関数に通す.
-      for (int d = 0; d < num_mid_neuron; d++) {
-        expand_in_signal[dim_signal + d] = sigmoid_func(alpha_context * expand_in_signal[dim_signal + d] + expand_mid_signal[d]);
-      }
-    }
-    // バイアス項は常に1に固定.
-    expand_in_signal[dim_signal + num_mid_neuron] = 1;
+        // 入力値を取得
+        memcpy(expand_in_signal, &(norm_sample[seq * dim_signal]), sizeof(float) * dim_signal);
+        // SRNN特有:入力層に中間層のコピーが追加され,中間層に入力される.
+        if (iteration == 0) {
+            // 初回は0埋めする
+            memset(&(expand_in_signal[dim_signal]), float(0), sizeof(float) * num_mid_neuron);
+        } else {
+            // コンテキスト層 = 前回のコンテキスト層の出力
+            // 前回の中間層信号との線形和をシグモイド関数に通す.
+            for (int d = 0; d < num_mid_neuron; d++) {
+                expand_in_signal[dim_signal + d] = sigmoid_func(alpha_context * expand_in_signal[dim_signal + d] + expand_mid_signal[d]);
+            }
+        }
+        // バイアス項は常に1に固定.
+        expand_in_signal[dim_signal + num_mid_neuron] = 1;
+
+        // 入力->中間層の出力信号和計算
+        multiply_mat_vec(Win_mid,
+                         expand_in_signal,
+                         in_mid_net,
+                         num_mid_neuron,
+                         dim_signal + num_mid_neuron + 1);
+        // 中間層の出力信号計算
+        sigmoid_vec(in_mid_net,
+                    expand_mid_signal,
+                    num_mid_neuron);
+        expand_mid_signal[num_mid_neuron] = 1;
+        // 中間->出力層の出力信号和計算
+        multiply_mat_vec(Wmid_out,
+                         expand_mid_signal,
+                         mid_out_net,
+                         dim_signal,
+                         num_mid_neuron + 1);
+        // 出力層の出力信号計算
+        sigmoid_vec(mid_out_net,
+                    out_signal,
+                    dim_signal);
+
+
+        for (int i = 0; i < dim_signal; i++) {
+            predict_signal[i] = expand_signal(out_signal[i],
+                                              MATRIX_AT(sample_maxmin,2,i,0),
+                                              MATRIX_AT(sample_maxmin,2,i,1));
+        }
+        printf("predict : %f %f %f \r\n", predict_signal[0], predict_signal[1], predict_signal[2]);
+
+        // print_mat(Wmid_out, row_mid_out, col_mid_out);
 
-    // 入力->中間層の出力信号和計算
-    multiply_mat_vec(Win_mid,
-                     expand_in_signal,
-                     in_mid_net,
-                     num_mid_neuron,
-                     dim_signal + num_mid_neuron + 1);
-    // 中間層の出力信号計算
-    sigmoid_vec(in_mid_net,
-                expand_mid_signal,
-                num_mid_neuron);
-    expand_mid_signal[num_mid_neuron] = 1;
-    // 中間->出力層の出力信号和計算
-    multiply_mat_vec(Wmid_out,
-                     expand_mid_signal,
-                     mid_out_net,
-                     dim_signal,
-                     num_mid_neuron + 1);
-    // 出力層の出力信号計算
-    sigmoid_vec(mid_out_net,
-                out_signal,
-                dim_signal);
+        // この時点での二乗誤差計算
+        squareError = 0;
+        // 次の系列との誤差を見ている!! ここが注目ポイント
+        // ==> つまり,次系列を予測させようとしている.
+        for (int n = 0; n < dim_signal; n++) {
+            if (seq < len_seqence - 1) {
+                squareError += powf((out_signal[n] - MATRIX_AT(norm_sample,dim_signal,(seq + 1),n)),2);
+            } else {
+                squareError += powf((out_signal[n] - MATRIX_AT(norm_sample,dim_signal,0,n)),2);
+            }
+        }
+        squareError /= dim_signal;
+
+        /* 学習の終了 */
+        // 終了フラグが立ち,かつ系列の最後に達していたら学習終了
+        if (end_flag && (seq == (len_seqence-1))) {
+            // 予測結果をセット.
+            for (int i = 0; i < dim_signal; i++) {
+                predict_signal[i] = expand_signal(out_signal[i],
+                                                  MATRIX_AT(sample_maxmin,2,i,0),
+                                                  MATRIX_AT(sample_maxmin,2,i,1));
+                //printf("%f ", predict_signal[i]);
+            }
+            break;
+        }
+
+        // 収束したと判定したら終了フラグを立てる.
+        if (fabsf(squareError - prevError) < epsilon) {
+            end_flag = 1;
+        }
+
+        /* 学習ステップその2:逆誤差伝搬 */
+        // 誤差信号の計算
+        for (int n = 0; n < dim_signal; n++) {
+            if (seq < len_seqence - 1) {
+                sigma[n] = (out_signal[n] - MATRIX_AT(norm_sample,dim_signal,seq+1,n)) * out_signal[n] * (1 - out_signal[n]);
+            } else {
+                /* 末尾と先頭の誤差を取る (大抵,大きくなる) */
+                sigma[n] = (out_signal[n] - MATRIX_AT(norm_sample, dim_signal,0,n)) * out_signal[n] * (1 - out_signal[n]);
+            }
+        }
+        // printf("Sigma : %f %f %f \r\n", sigma[0], sigma[1], sigma[2]);
 
-    
-    for (int i = 0; i < dim_signal; i++) {
-      predict_signal[i] = expand_signal(out_signal[i],
-                                        MATRIX_AT(sample_maxmin,2,i,0),
-                                        MATRIX_AT(sample_maxmin,2,i,1));
-    }
-    printf("predict : %f %f %f \r\n", predict_signal[0], predict_signal[1], predict_signal[2]);
-    
-    // print_mat(Wmid_out, row_mid_out, col_mid_out);
-    
-    // この時点での二乗誤差計算
-    squareError = 0;
-    // 次の系列との誤差を見ている!! ここが注目ポイント
-    // ==> つまり,次系列を予測させようとしている.
-    for (int n = 0;n < dim_signal;n++) {
-      if (seq < len_seqence - 1) {
-        squareError += powf((out_signal[n] - MATRIX_AT(norm_sample,dim_signal,(seq + 1),n)),2);
-      } else {
-        squareError += powf((out_signal[n] - MATRIX_AT(norm_sample,dim_signal,0,n)),2);
-      }
-    } 
-    squareError /= dim_signal;
+        // 出力->中間層の係数の変更量計算
+        for (int n = 0; n < dim_signal; n++) {
+            for (int j = 0; j < num_mid_neuron + 1; j++) {
+                MATRIX_AT(dWmid_out,num_mid_neuron,n,j) = sigma[n] * expand_mid_signal[j];
+            }
+        }
+
+        // 中間->入力層の係数の変更量計算
+        register float sum_sigma;
+        for (int i = 0; i < num_mid_neuron; i++) {
+            // 誤差信号を逆向きに伝播させる.
+            sum_sigma = 0;
+            for (int k = 0; k < dim_signal; k++) {
+                sum_sigma += sigma[k] * MATRIX_AT(Wmid_out,num_mid_neuron + 1,k,i);
+            }
+            // 中間->入力層の係数の変更量計算
+            for (int j = 0; j < col_in_mid; j++) {
+                MATRIX_AT(dWin_mid,num_mid_neuron,j,i)
+                = sum_sigma * expand_mid_signal[i] *
+                  (1 - expand_mid_signal[i]) *
+                  expand_in_signal[j];
+            }
+        }
 
-    /* 学習の終了 */
-    // 終了フラグが立ち,かつ系列の最後に達していたら学習終了
-    if (end_flag && (seq == (len_seqence-1))) {
-      // 予測結果をセット.
-      for (int i = 0; i < dim_signal; i++) {
-        predict_signal[i] = expand_signal(out_signal[i],
-                                          MATRIX_AT(sample_maxmin,2,i,0),
-                                          MATRIX_AT(sample_maxmin,2,i,1));
-        //printf("%f ", predict_signal[i]);
-      }
-      break;
+        // 係数更新
+        for (int i = 0; i < row_in_mid; i++) {
+            for (int j = 0; j < col_in_mid; j++) {
+                //printf("[%f -> ", MATRIX_AT(Win_mid,col_in_mid,i,j));
+                MATRIX_AT(Win_mid,col_in_mid,i,j) =
+                    MATRIX_AT(Win_mid,col_in_mid,i,j) -
+                    this->learnRate * MATRIX_AT(dWin_mid,col_in_mid,i,j) -
+                    this->alpha * MATRIX_AT(prevdWin_mid,col_in_mid,i,j);
+                // printf("%f] ", MATRIX_AT(Win_mid,col_in_mid,i,j));
+                // printf("dW : %f , prevdW : %f ", MATRIX_AT(dWin_mid,col_in_mid,i,j), MATRIX_AT(prevdWin_mid,col_in_mid,i,j));
+            }
+            //printf("\r\n");
+        }
+        for (int i = 0; i < row_mid_out; i++) {
+            for (int j = 0; j < col_mid_out; j++) {
+                MATRIX_AT(Wmid_out,col_mid_out,i,j)=
+                    MATRIX_AT(Wmid_out,col_mid_out,i,j) -
+                    this->learnRate * MATRIX_AT(dWmid_out,col_mid_out,i,j) -
+                    this->alpha * MATRIX_AT(prevdWmid_out,col_mid_out,i,j);
+            }
+        }
+
+        // ループ回数/系列のインクリメント
+        iteration += 1;
+        seq += 1;
+
     }
 
-    // 収束したと判定したら終了フラグを立てる.
-    if (fabsf(squareError - prevError) < epsilon) {
-      end_flag = 1;
-    }
-
-    /* 学習ステップその2:逆誤差伝搬 */
-    // 誤差信号の計算
-    for (int n = 0; n < dim_signal; n++) {
-      if (seq < len_seqence - 1) {
-        sigma[n] = (out_signal[n] - MATRIX_AT(norm_sample,dim_signal,seq+1,n)) * out_signal[n] * (1 - out_signal[n]);
-      } else {
-        /* 末尾と先頭の誤差を取る (大抵,大きくなる) */
-        sigma[n] = (out_signal[n] - MATRIX_AT(norm_sample, dim_signal,0,n)) * out_signal[n] * (1 - out_signal[n]);
-      }
-    }
-    // printf("Sigma : %f %f %f \r\n", sigma[0], sigma[1], sigma[2]);
-
-    // 出力->中間層の係数の変更量計算
-    for (int n = 0; n < dim_signal; n++) {
-      for (int j = 0; j < num_mid_neuron + 1; j++) {
-        MATRIX_AT(dWmid_out,num_mid_neuron,n,j) = sigma[n] * expand_mid_signal[j];
-      }
-    }
+    delete [] dWin_mid; delete [] dWmid_out;
+    delete [] prevdWin_mid; delete [] prevdWmid_out;
+    delete [] norm_sample; delete [] out_signal;
+    delete [] in_mid_net; delete [] mid_out_net;
 
-    // 中間->入力層の係数の変更量計算
-    register float sum_sigma;
-    for (int i = 0; i < num_mid_neuron; i++) {
-      // 誤差信号を逆向きに伝播させる.
-      sum_sigma = 0;
-      for (int k = 0; k < dim_signal; k++) {
-        sum_sigma += sigma[k] * MATRIX_AT(Wmid_out,num_mid_neuron + 1,k,i);
-      }
-      // 中間->入力層の係数の変更量計算
-      for (int j = 0; j < col_in_mid; j++) {
-        MATRIX_AT(dWin_mid,num_mid_neuron,j,i)
-                          = sum_sigma * expand_mid_signal[i] *
-                            (1 - expand_mid_signal[i]) *
-                            expand_in_signal[j];
-      }
-    }
-
-    // 係数更新
-    for (int i = 0; i < row_in_mid; i++) {
-      for (int j = 0; j < col_in_mid; j++) {
-        //printf("[%f -> ", MATRIX_AT(Win_mid,col_in_mid,i,j));
-        MATRIX_AT(Win_mid,col_in_mid,i,j) = 
-              MATRIX_AT(Win_mid,col_in_mid,i,j) - 
-              this->learnRate * MATRIX_AT(dWin_mid,col_in_mid,i,j) -
-              this->alpha * MATRIX_AT(prevdWin_mid,col_in_mid,i,j);
-        // printf("%f] ", MATRIX_AT(Win_mid,col_in_mid,i,j));
-        // printf("dW : %f , prevdW : %f ", MATRIX_AT(dWin_mid,col_in_mid,i,j), MATRIX_AT(prevdWin_mid,col_in_mid,i,j));
-      }
-      //printf("\r\n");
-    }
-    for (int i = 0; i < row_mid_out; i++) {
-      for (int j = 0; j < col_mid_out; j++) {
-        MATRIX_AT(Wmid_out,col_mid_out,i,j)= 
-              MATRIX_AT(Wmid_out,col_mid_out,i,j) - 
-              this->learnRate * MATRIX_AT(dWmid_out,col_mid_out,i,j) - 
-              this->alpha * MATRIX_AT(prevdWmid_out,col_mid_out,i,j);
-      }
-    }
-
-    // ループ回数/系列のインクリメント
-    iteration += 1;
-    seq += 1;
-
-  }
-  
-  delete [] dWin_mid; delete [] dWmid_out;
-  delete [] prevdWin_mid; delete [] prevdWmid_out;
-  delete [] norm_sample; delete [] out_signal;
-  delete [] in_mid_net; delete [] mid_out_net;
-
-  return squareError;
+    return squareError;
 }