2014 sift / Mbed 2 deprecated TVDctrller2017_brdRev1_PandA

Dependencies:   mbed

Fork of TVDctrller2017_brdRev1_ver6 by 2014 sift

Committer:
sift
Date:
Thu Oct 26 02:04:02 2017 +0000
Revision:
39:c05074379713
Parent:
38:11753ee9734f
Child:
40:8e33c60c6590
????????????; ???????????????

Who changed what in which revision?

UserRevisionLine numberNew contents of line
sift 0:276c1dab2d62 1 #include "TVDCTRL.h"
sift 1:4d86ec2fe4b1 2 #include "MCP4922.h"
sift 1:4d86ec2fe4b1 3 #include "Steering.h"
sift 39:c05074379713 4 #include "Global.h"
sift 1:4d86ec2fe4b1 5
sift 1:4d86ec2fe4b1 6 extern AnalogIn apsP;
sift 1:4d86ec2fe4b1 7 extern AnalogIn apsS;
sift 2:9d69f27a3d3b 8 extern AnalogIn brake;
sift 1:4d86ec2fe4b1 9 extern DigitalOut LED[];
sift 27:37a8b4f6d28d 10 extern DigitalOut brakeSignal;
sift 27:37a8b4f6d28d 11 extern DigitalOut indicatorLed;
sift 27:37a8b4f6d28d 12 extern DigitalOut shutDown;
sift 27:37a8b4f6d28d 13 extern DigitalIn sdState;
sift 1:4d86ec2fe4b1 14 extern InterruptIn rightMotorPulse;
sift 1:4d86ec2fe4b1 15 extern InterruptIn leftMotorPulse;
sift 39:c05074379713 16 extern InterruptIn rightWheelPulse1;
sift 39:c05074379713 17 extern InterruptIn rightWheelPulse2;
sift 39:c05074379713 18 extern InterruptIn leftWheelPulse1;
sift 39:c05074379713 19 extern InterruptIn leftWheelPulse2;
sift 1:4d86ec2fe4b1 20 extern MCP4922 mcp;
sift 8:a22aec357a64 21 extern Serial pc;
sift 19:571a4d00b89c 22 extern AnalogOut STR2AN;
sift 27:37a8b4f6d28d 23 extern CAN can;
sift 1:4d86ec2fe4b1 24
sift 26:331e77bb479b 25 #define indicateSystem(x) (indicatorLed.write(x))
sift 26:331e77bb479b 26
sift 39:c05074379713 27 Timer wheelPulseTimer;
sift 2:9d69f27a3d3b 28 Ticker ticker1;
sift 2:9d69f27a3d3b 29 Ticker ticker2;
sift 1:4d86ec2fe4b1 30
sift 2:9d69f27a3d3b 31 #define apsPVol() (apsP.read() * 3.3)
sift 2:9d69f27a3d3b 32 #define apsSVol() (apsS.read() * 3.3)
sift 0:276c1dab2d62 33
sift 0:276c1dab2d62 34 struct {
sift 0:276c1dab2d62 35 unsigned int valA:12;
sift 0:276c1dab2d62 36 unsigned int valB:12;
sift 2:9d69f27a3d3b 37 } McpData;
sift 1:4d86ec2fe4b1 38
sift 2:9d69f27a3d3b 39 //各変数が一定値を超えた時点でエラー検出とする
sift 2:9d69f27a3d3b 40 //2つのAPSの区別はつけないことにする
sift 12:ae291fa7239c 41 struct errCounter_t errCounter= {0,0,0,0,0,0,0};
sift 1:4d86ec2fe4b1 42
sift 12:ae291fa7239c 43 int readyToDriveFlag = 1;
sift 12:ae291fa7239c 44
sift 12:ae291fa7239c 45 int gApsP=0, gApsS=0, gBrake=0; //現在のセンサ値
sift 12:ae291fa7239c 46 int rawApsP=0, rawApsS=0, rawBrake=0; //現在の補正無しのセンサ値
sift 2:9d69f27a3d3b 47
sift 28:47e9531a3a9d 48 int gRightMotorTorque=0, gLeftMotorTorque=0;
sift 28:47e9531a3a9d 49
sift 28:47e9531a3a9d 50 int getMotorTorque(Select rl)
sift 28:47e9531a3a9d 51 {
sift 28:47e9531a3a9d 52 return ((rl==LEFT) ? gLeftMotorTorque : gRightMotorTorque);
sift 28:47e9531a3a9d 53 }
sift 28:47e9531a3a9d 54
sift 18:b7c362c8f0fd 55 //エラーカウンタ外部参照用関数
sift 18:b7c362c8f0fd 56 //errCounter_t型変数のポインタを引数に取る
sift 2:9d69f27a3d3b 57 void getCurrentErrCount(struct errCounter_t *ptr)
sift 1:4d86ec2fe4b1 58 {
sift 12:ae291fa7239c 59 ptr->apsUnderVolt = errCounter.apsUnderVolt;
sift 12:ae291fa7239c 60 ptr->apsExceedVolt = errCounter.apsExceedVolt;
sift 12:ae291fa7239c 61 ptr->apsErrorTolerance = errCounter.apsErrorTolerance;
sift 12:ae291fa7239c 62 ptr->apsStick = errCounter.apsStick;
sift 12:ae291fa7239c 63 ptr->brakeUnderVolt = errCounter.brakeUnderVolt;
sift 12:ae291fa7239c 64 ptr->brakeExceedVolt = errCounter.brakeExceedVolt;
sift 12:ae291fa7239c 65 ptr->brakeFuzzyVolt = errCounter.brakeFuzzyVolt;
sift 12:ae291fa7239c 66 ptr->brakeOverRide = errCounter.brakeOverRide;
sift 12:ae291fa7239c 67 }
sift 12:ae291fa7239c 68
sift 18:b7c362c8f0fd 69 //ブレーキONOFF判定関数
sift 12:ae291fa7239c 70 //Brake-ON:1 Brake-OFF:0
sift 12:ae291fa7239c 71 int isBrakeOn(void)
sift 12:ae291fa7239c 72 {
sift 12:ae291fa7239c 73 int brake = gBrake;
sift 12:ae291fa7239c 74 int brakeOnOff = 0;
sift 12:ae291fa7239c 75
sift 30:c596a0f5d685 76 if(brake < (BRK_ON_VOLTAGE + ERROR_TOLERANCE))
sift 12:ae291fa7239c 77 brakeOnOff = 1;
sift 30:c596a0f5d685 78 if(brake > (BRK_OFF_VOLTAGE - ERROR_TOLERANCE))
sift 12:ae291fa7239c 79 brakeOnOff = 0;
sift 12:ae291fa7239c 80
sift 12:ae291fa7239c 81 return brakeOnOff;
sift 2:9d69f27a3d3b 82 }
sift 1:4d86ec2fe4b1 83
sift 18:b7c362c8f0fd 84 //センサ現在値外部参照関数
sift 7:ad013d88a539 85 int getCurrentSensor(int sensor)
sift 2:9d69f27a3d3b 86 {
sift 2:9d69f27a3d3b 87 switch (sensor) {
sift 2:9d69f27a3d3b 88 case APS_PRIMARY:
sift 2:9d69f27a3d3b 89 return gApsP;
sift 2:9d69f27a3d3b 90 case APS_SECONDARY:
sift 2:9d69f27a3d3b 91 return gApsS;
sift 2:9d69f27a3d3b 92 case BRAKE:
sift 2:9d69f27a3d3b 93 return gBrake;
sift 2:9d69f27a3d3b 94 default:
sift 2:9d69f27a3d3b 95 return -1;
sift 1:4d86ec2fe4b1 96 }
sift 2:9d69f27a3d3b 97 }
sift 2:9d69f27a3d3b 98
sift 18:b7c362c8f0fd 99 //補正前センサ現在値外部参照関数
sift 7:ad013d88a539 100 int getRawSensor(int sensor)
sift 2:9d69f27a3d3b 101 {
sift 2:9d69f27a3d3b 102 switch (sensor) {
sift 2:9d69f27a3d3b 103 case APS_PRIMARY:
sift 2:9d69f27a3d3b 104 return rawApsP;
sift 2:9d69f27a3d3b 105 case APS_SECONDARY:
sift 2:9d69f27a3d3b 106 return rawApsS;
sift 2:9d69f27a3d3b 107 case BRAKE:
sift 2:9d69f27a3d3b 108 return rawBrake;
sift 2:9d69f27a3d3b 109 default:
sift 2:9d69f27a3d3b 110 return -1;
sift 1:4d86ec2fe4b1 111 }
sift 2:9d69f27a3d3b 112 }
sift 2:9d69f27a3d3b 113
sift 2:9d69f27a3d3b 114 bool loadSensorFlag = false;
sift 2:9d69f27a3d3b 115
sift 2:9d69f27a3d3b 116 //タイマー割り込みでコールされる
sift 2:9d69f27a3d3b 117 void loadSensorsISR(void)
sift 2:9d69f27a3d3b 118 {
sift 2:9d69f27a3d3b 119 loadSensorFlag = true;
sift 1:4d86ec2fe4b1 120 }
sift 1:4d86ec2fe4b1 121
sift 25:c21d35c7f0de 122 //センサ読み込み関数
sift 2:9d69f27a3d3b 123 void loadSensors(void)
sift 1:4d86ec2fe4b1 124 {
sift 2:9d69f27a3d3b 125 if(true == loadSensorFlag) {
sift 2:9d69f27a3d3b 126 loadSensorFlag = false;
sift 2:9d69f27a3d3b 127 static int preApsP=0, preApsS=0; //過去のセンサ値
sift 2:9d69f27a3d3b 128 static int preBrake=0;
sift 2:9d69f27a3d3b 129 int tmpApsP=0, tmpApsS=0, tmpBrake=0; //補正後のセンサ値
sift 2:9d69f27a3d3b 130 int tmpApsErrCountU=0, tmpApsErrCountE=0; //APSの一時的なエラーカウンタ
sift 2:9d69f27a3d3b 131
sift 2:9d69f27a3d3b 132 //Low Pass Filter
sift 2:9d69f27a3d3b 133 tmpApsP = (int)(apsP.read_u16()*ratioLPF + preApsP*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 134 tmpApsS = (int)(apsS.read_u16()*ratioLPF + preApsS*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 135 tmpBrake = (int)(brake.read_u16()*ratioLPF + preBrake*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 136
sift 2:9d69f27a3d3b 137 //生のセンサ値取得
sift 2:9d69f27a3d3b 138 rawApsP = tmpApsP;
sift 2:9d69f27a3d3b 139 rawApsS = tmpApsS;
sift 2:9d69f27a3d3b 140 rawBrake = tmpBrake;
sift 2:9d69f27a3d3b 141
sift 2:9d69f27a3d3b 142 //センサーチェック
sift 2:9d69f27a3d3b 143 //APS上限値チェック
sift 2:9d69f27a3d3b 144 if(tmpApsP > APS_MAX_POSITION + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 145 tmpApsP = APS_MAX_POSITION; //異常時,上限値にクリップ
sift 2:9d69f27a3d3b 146 tmpApsErrCountE++;
sift 2:9d69f27a3d3b 147 }
sift 2:9d69f27a3d3b 148 if(tmpApsS > APS_MAX_POSITION + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 149 tmpApsS = APS_MAX_POSITION; //異常時,上限値にクリップ
sift 2:9d69f27a3d3b 150 tmpApsErrCountE++;
sift 2:9d69f27a3d3b 151 }
sift 2:9d69f27a3d3b 152 if(0 == tmpApsErrCountE)
sift 2:9d69f27a3d3b 153 errCounter.apsExceedVolt = 0; //どちらも正常時エラーカウンタクリア
sift 2:9d69f27a3d3b 154 else
sift 2:9d69f27a3d3b 155 errCounter.apsExceedVolt += tmpApsErrCountE;
sift 2:9d69f27a3d3b 156
sift 2:9d69f27a3d3b 157 //APS下限値チェック
sift 2:9d69f27a3d3b 158 if(tmpApsP < APS_MIN_POSITION - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 159 tmpApsP = APS_MIN_POSITION; //下限値にクリップ
sift 2:9d69f27a3d3b 160 tmpApsErrCountU++;
sift 2:9d69f27a3d3b 161 }
sift 2:9d69f27a3d3b 162 if(tmpApsS < APS_MIN_POSITION - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 163 tmpApsS = APS_MIN_POSITION; //下限値にクリップ
sift 2:9d69f27a3d3b 164 tmpApsErrCountU++;
sift 2:9d69f27a3d3b 165 }
sift 2:9d69f27a3d3b 166 if(0 == tmpApsErrCountU)
sift 2:9d69f27a3d3b 167 errCounter.apsUnderVolt = 0; //どちらも正常時エラーカウンタクリア
sift 2:9d69f27a3d3b 168 else
sift 2:9d69f27a3d3b 169 errCounter.apsUnderVolt += tmpApsErrCountU;
sift 2:9d69f27a3d3b 170
sift 2:9d69f27a3d3b 171 //センサー偏差チェック
sift 2:9d69f27a3d3b 172 if(myAbs(tmpApsP - tmpApsS) > APS_DEVIATION_TOLERANCE) { //偏差チェックには補正後の値(tmp)を使用
sift 2:9d69f27a3d3b 173 errCounter.apsErrorTolerance++;
sift 2:9d69f27a3d3b 174 } else {
sift 2:9d69f27a3d3b 175 errCounter.apsErrorTolerance = 0;
sift 2:9d69f27a3d3b 176 }
sift 1:4d86ec2fe4b1 177
sift 2:9d69f27a3d3b 178 //小さい方にクリップ
sift 2:9d69f27a3d3b 179 //APS値は好きな方を使いな
sift 2:9d69f27a3d3b 180 if(tmpApsP > tmpApsS) {
sift 2:9d69f27a3d3b 181 tmpApsP = tmpApsS;
sift 2:9d69f27a3d3b 182 } else {
sift 2:9d69f27a3d3b 183 tmpApsS = tmpApsP;
sift 2:9d69f27a3d3b 184 }
sift 2:9d69f27a3d3b 185
sift 2:9d69f27a3d3b 186 //Brake上限値チェック
sift 30:c596a0f5d685 187 if(tmpBrake > BRK_OFF_VOLTAGE + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 188 errCounter.brakeExceedVolt++;
sift 30:c596a0f5d685 189 tmpBrake = BRK_OFF_VOLTAGE;
sift 2:9d69f27a3d3b 190 } else {
sift 2:9d69f27a3d3b 191 errCounter.brakeExceedVolt = 0;
sift 2:9d69f27a3d3b 192 }
sift 2:9d69f27a3d3b 193
sift 2:9d69f27a3d3b 194 //Brake下限値チェック
sift 30:c596a0f5d685 195 if(tmpBrake < BRK_ON_VOLTAGE - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 196 errCounter.brakeUnderVolt++;
sift 30:c596a0f5d685 197 tmpBrake = BRK_ON_VOLTAGE;
sift 2:9d69f27a3d3b 198 } else {
sift 2:9d69f27a3d3b 199 errCounter.brakeUnderVolt = 0;
sift 2:9d69f27a3d3b 200 }
sift 1:4d86ec2fe4b1 201
sift 2:9d69f27a3d3b 202 //brake範囲外電圧チェック
sift 30:c596a0f5d685 203 if((tmpBrake < BRK_OFF_VOLTAGE - ERROR_TOLERANCE) && (tmpBrake > BRK_ON_VOLTAGE + ERROR_TOLERANCE)) {
sift 2:9d69f27a3d3b 204 errCounter.brakeFuzzyVolt++;
sift 2:9d69f27a3d3b 205 tmpBrake = BRK_OFF_VOLTAGE;
sift 2:9d69f27a3d3b 206 } else {
sift 2:9d69f27a3d3b 207 errCounter.brakeFuzzyVolt=0;
sift 2:9d69f27a3d3b 208 }
sift 2:9d69f27a3d3b 209
sift 2:9d69f27a3d3b 210 //APS固着チェック
sift 2:9d69f27a3d3b 211 if((preApsP == tmpApsP) && (tmpApsP == APS_MAX_POSITION))
sift 2:9d69f27a3d3b 212 errCounter.apsStick++;
sift 2:9d69f27a3d3b 213 else
sift 2:9d69f27a3d3b 214 errCounter.apsStick=0;
sift 2:9d69f27a3d3b 215
sift 2:9d69f27a3d3b 216 //ブレーキオーバーライドチェック
sift 12:ae291fa7239c 217 if((isBrakeOn() == 1) && (tmpApsP >= APS_OVERRIDE25)) //Brake-ON and APS > 25%
sift 2:9d69f27a3d3b 218 errCounter.brakeOverRide++;
sift 12:ae291fa7239c 219 if(tmpApsP < APS_OVERRIDE05) //Brake-ON and APS < 5%
sift 2:9d69f27a3d3b 220 errCounter.brakeOverRide=0;
sift 2:9d69f27a3d3b 221
sift 2:9d69f27a3d3b 222 //センサ値取得
sift 2:9d69f27a3d3b 223 gApsP = tmpApsP;
sift 2:9d69f27a3d3b 224 gApsS = tmpApsS;
sift 2:9d69f27a3d3b 225 gBrake = tmpBrake;
sift 2:9d69f27a3d3b 226
sift 2:9d69f27a3d3b 227 //未来の自分に期待
sift 2:9d69f27a3d3b 228 preApsP = rawApsP;
sift 2:9d69f27a3d3b 229 preApsS = rawApsS;
sift 2:9d69f27a3d3b 230 preBrake = rawBrake;
sift 2:9d69f27a3d3b 231 }
sift 1:4d86ec2fe4b1 232 }
sift 1:4d86ec2fe4b1 233
sift 39:c05074379713 234 //車輪速計測は”【空転再粘着制御】山下道寛”を参照のこと(一部改修)
sift 39:c05074379713 235 //パルス数カウンタ
sift 25:c21d35c7f0de 236 volatile int gRightMotorPulseCounter = 0, gLeftMotorPulseCounter = 0;
sift 39:c05074379713 237 volatile int gRightWheelPulseCounter = 0, gLeftWheelPulseCounter = 0;
sift 39:c05074379713 238 //パルス入力までの時間
sift 39:c05074379713 239 volatile int gRightWheelPulse_dT2 = 0, gLeftWheelPulse_dT2 = 0;
sift 39:c05074379713 240
sift 39:c05074379713 241 volatile float gRightWheelRPS = 0, gLeftWheelRPS = 0;
sift 39:c05074379713 242
sift 7:ad013d88a539 243 volatile bool pulseTimeISRFlag = false;
sift 1:4d86ec2fe4b1 244
sift 39:c05074379713 245 /***********************************/
sift 39:c05074379713 246 //モータパルスカウント
sift 25:c21d35c7f0de 247 void countRightMotorPulseISR(void)
sift 1:4d86ec2fe4b1 248 {
sift 25:c21d35c7f0de 249 gRightMotorPulseCounter++;
sift 1:4d86ec2fe4b1 250 }
sift 1:4d86ec2fe4b1 251
sift 25:c21d35c7f0de 252 void countLeftMotorPulseISR(void)
sift 1:4d86ec2fe4b1 253 {
sift 25:c21d35c7f0de 254 gLeftMotorPulseCounter++;
sift 2:9d69f27a3d3b 255 }
sift 39:c05074379713 256 /***********************************/
sift 39:c05074379713 257
sift 39:c05074379713 258 /***********************************/
sift 39:c05074379713 259 //ホイールパルスカウント
sift 39:c05074379713 260 void countRightWheelPulseISR(void)
sift 39:c05074379713 261 {
sift 39:c05074379713 262 gRightWheelPulseCounter++; //パルス数カウント
sift 39:c05074379713 263 gRightWheelPulse_dT2 = wheelPulseTimer.read_us(); //現在の時間いただきます
sift 39:c05074379713 264 }
sift 39:c05074379713 265
sift 39:c05074379713 266 void countLeftWheelPulseISR(void)
sift 39:c05074379713 267 {
sift 39:c05074379713 268 }
sift 39:c05074379713 269 /***********************************/
sift 39:c05074379713 270
sift 39:c05074379713 271 void measRpsISR(void)
sift 39:c05074379713 272 {
sift 39:c05074379713 273 int rwpCounter = gRightWheelPulseCounter;
sift 39:c05074379713 274 static int rwp_dT1 = MAX_WHEEL_PULSE_TIME_US; //初期設定は無限時間前にパルス入力があったと仮定
sift 39:c05074379713 275 int rwp_dT2 = gRightWheelPulse_dT2;
sift 39:c05074379713 276 int currentTime = wheelPulseTimer.read_us();
sift 39:c05074379713 277
sift 39:c05074379713 278 //計測周期内にパルス入力なければ
sift 39:c05074379713 279 if(rwpCounter == 0) {
sift 39:c05074379713 280 //以前のdT1に計測周期の時間を積算
sift 39:c05074379713 281 rwp_dT1 = rwp_dT1 + CONTROL_CYCLE_US;
sift 39:c05074379713 282 if(rwp_dT1 > MAX_WHEEL_PULSE_TIME_US)
sift 39:c05074379713 283 rwp_dT1 = MAX_WHEEL_PULSE_TIME_US; //overflow防止
sift 39:c05074379713 284 //(dT2は0であるはず)
sift 39:c05074379713 285 } else {
sift 39:c05074379713 286 //パルス入力あれば直前のパルス入力からの経過時間取得
sift 39:c05074379713 287 rwp_dT2 = currentTime - rwp_dT2;
sift 39:c05074379713 288 }
sift 39:c05074379713 289
sift 39:c05074379713 290 //RPS計算[rps](1sec当たりパルス数/タイヤパルス数)
sift 39:c05074379713 291 gRightWheelRPS = ((float)rwpCounter / (CONTROL_CYCLE_US + rwp_dT1 - rwp_dT2) / 1000000.0f) / WHEEL_PULSE_NUM;
sift 39:c05074379713 292
sift 39:c05074379713 293 //パルス入力あれば次回のdT1はdT2を採用(パルス入力なければ現在値保持)
sift 39:c05074379713 294 if(rwpCounter != 0)
sift 39:c05074379713 295 rwp_dT1 = gRightWheelPulse_dT2;
sift 39:c05074379713 296
sift 39:c05074379713 297 //dT2の初期値はパルス入力ない状態 => 計測時間=0
sift 39:c05074379713 298 gRightWheelPulse_dT2 = 0;
sift 39:c05074379713 299
sift 39:c05074379713 300 //パルス数クリア
sift 39:c05074379713 301 gRightWheelPulseCounter = 0;
sift 39:c05074379713 302 gLeftWheelPulseCounter = 0;
sift 39:c05074379713 303
sift 39:c05074379713 304 //次回計測周期までのパルス時間計測開始
sift 39:c05074379713 305 wheelPulseTimer.reset();
sift 39:c05074379713 306 }
sift 2:9d69f27a3d3b 307
sift 25:c21d35c7f0de 308 void getPulseCounterISR(void)
sift 2:9d69f27a3d3b 309 {
sift 7:ad013d88a539 310 pulseTimeISRFlag = true;
sift 2:9d69f27a3d3b 311 }
sift 2:9d69f27a3d3b 312
sift 28:47e9531a3a9d 313 //default argument : switchWheel=false
sift 28:47e9531a3a9d 314 int getRPS(Select rl, bool switchWheel)
sift 2:9d69f27a3d3b 315 {
sift 37:ba10cf09c151 316 static int rightMotorPulse[100]= {0}, leftMotorPulse[100]= {0}; //過去1.0秒間のパルス数格納
sift 25:c21d35c7f0de 317 static int sumRightMotorPulse, sumLeftMotorPulse;
sift 28:47e9531a3a9d 318 float rps;
sift 2:9d69f27a3d3b 319
sift 7:ad013d88a539 320 if(pulseTimeISRFlag == true) {
sift 37:ba10cf09c151 321 for(int i=99; i>0; i--) {
sift 25:c21d35c7f0de 322 rightMotorPulse[i] = rightMotorPulse[i-1];
sift 25:c21d35c7f0de 323 leftMotorPulse[i] = leftMotorPulse[i-1];
sift 25:c21d35c7f0de 324 }
sift 25:c21d35c7f0de 325
sift 25:c21d35c7f0de 326 rightMotorPulse[0] = gRightMotorPulseCounter;
sift 25:c21d35c7f0de 327 leftMotorPulse[0] = gLeftMotorPulseCounter;
sift 2:9d69f27a3d3b 328
sift 25:c21d35c7f0de 329 gRightMotorPulseCounter = 0;
sift 25:c21d35c7f0de 330 gLeftMotorPulseCounter = 0;
sift 10:87ad65eef0e9 331
sift 25:c21d35c7f0de 332 sumRightMotorPulse = 0;
sift 25:c21d35c7f0de 333 sumLeftMotorPulse = 0;
sift 25:c21d35c7f0de 334
sift 37:ba10cf09c151 335 for(int i=0; i<100; i++) {
sift 25:c21d35c7f0de 336 sumRightMotorPulse += rightMotorPulse[i];
sift 25:c21d35c7f0de 337 sumLeftMotorPulse += leftMotorPulse[i];
sift 25:c21d35c7f0de 338 }
sift 28:47e9531a3a9d 339 pulseTimeISRFlag = false;
sift 2:9d69f27a3d3b 340 }
sift 2:9d69f27a3d3b 341
sift 31:042c08a7434f 342 if(switchWheel == false) {
sift 28:47e9531a3a9d 343 if(rl == RIGHT)
sift 37:ba10cf09c151 344 rps = (float)1.0f*sumRightMotorPulse / MOTOR_PULSE_NUM / GEAR_RATIO; //過去0.5秒間のモータパルス数を使ってRPS算出
sift 28:47e9531a3a9d 345 else
sift 37:ba10cf09c151 346 rps = (float)1.0f*sumLeftMotorPulse / MOTOR_PULSE_NUM / GEAR_RATIO; //過去0.5秒間のモータパルス数を使ってRPS算出
sift 28:47e9531a3a9d 347 } else {
sift 28:47e9531a3a9d 348 //こっちはタイヤ回転数
sift 28:47e9531a3a9d 349 //そのうち対応
sift 28:47e9531a3a9d 350 if(rl == RIGHT)
sift 39:c05074379713 351 rps = gRightWheelRPS; //過去1秒間のモータパルス数を使ってRPS算出
sift 28:47e9531a3a9d 352 else
sift 39:c05074379713 353 rps = gLeftWheelRPS; //過去1秒間のモータパルス数を使ってRPS算出
sift 28:47e9531a3a9d 354 }
sift 28:47e9531a3a9d 355 return (int)(rps / LSB_MOTORSPEED); //LSB変換
sift 2:9d69f27a3d3b 356 }
sift 2:9d69f27a3d3b 357
sift 2:9d69f27a3d3b 358 float getVelocity(void)
sift 2:9d69f27a3d3b 359 {
sift 38:11753ee9734f 360 // static float debugVelocity = 0.0f;
sift 38:11753ee9734f 361 // debugVelocity += 0.002;
sift 38:11753ee9734f 362 //
sift 38:11753ee9734f 363 // printf("%1.2f\r\n", debugVelocity);
sift 38:11753ee9734f 364 //
sift 38:11753ee9734f 365 // return debugVelocity;
sift 32:9688c30ac38b 366 return (0.5f*TIRE_DIAMETER*2*M_PI*(getRPS(RIGHT) + getRPS(LEFT))*0.5f)*LSB_MOTORSPEED;
sift 38:11753ee9734f 367 // return 15.0f;
sift 1:4d86ec2fe4b1 368 }
sift 1:4d86ec2fe4b1 369
sift 34:594ddb4008b2 370 int distributeTorque_omega(float steeringWheelAngle)
sift 21:bbf2ad7e6602 371 {
sift 21:bbf2ad7e6602 372 static float lastSteering=0.0f;
sift 22:95c1f753ecad 373 float omega=0;
sift 22:95c1f753ecad 374 int disTrq=0;
sift 30:c596a0f5d685 375
sift 34:594ddb4008b2 376 steeringWheelAngle = ratioLPF * steeringWheelAngle + (1.0f - ratioLPF) * lastSteering;
sift 21:bbf2ad7e6602 377
sift 34:594ddb4008b2 378 omega = steeringWheelAngle - lastSteering; //舵角の差分算出
sift 21:bbf2ad7e6602 379 omega /= 0.01f; //制御周期で角速度演算
sift 36:dc33a3a194c9 380
sift 22:95c1f753ecad 381 if(myAbs(omega) < 0.349f) { //20deg/s
sift 21:bbf2ad7e6602 382 disTrq = 0;
sift 22:95c1f753ecad 383 } else if(myAbs(omega) <= 8.727f) { //500deg/s
sift 34:594ddb4008b2 384 disTrq = (int)(MAX_DISTRIBUTION_TORQUE_OMEGA / (8.727f-0.349f) * (myAbs(omega) - 0.349f));
sift 21:bbf2ad7e6602 385 } else
sift 34:594ddb4008b2 386 disTrq = (int)MAX_DISTRIBUTION_TORQUE_OMEGA;
sift 22:95c1f753ecad 387
sift 34:594ddb4008b2 388 lastSteering = steeringWheelAngle;
sift 21:bbf2ad7e6602 389
sift 34:594ddb4008b2 390 if(omega < 0)
sift 22:95c1f753ecad 391 disTrq = -disTrq;
sift 22:95c1f753ecad 392
sift 21:bbf2ad7e6602 393 return disTrq;
sift 21:bbf2ad7e6602 394 }
sift 21:bbf2ad7e6602 395
sift 31:042c08a7434f 396 int distributeTorque(float steeringWheelAngle, float velocity)
sift 2:9d69f27a3d3b 397 {
sift 31:042c08a7434f 398 double V2 = velocity * velocity;
sift 31:042c08a7434f 399 double R = 0.0; //旋回半径
sift 31:042c08a7434f 400 double Gy = 0.0; //横G
sift 31:042c08a7434f 401 double deadband = 0.0;
sift 32:9688c30ac38b 402 double steeringAngle = (double)steeringWheelAngle * STEER_RATIO;
sift 31:042c08a7434f 403 double steeringSign = 1.0;
sift 9:220e4e77e056 404 int disTrq = 0;
sift 25:c21d35c7f0de 405
sift 31:042c08a7434f 406 if(steeringAngle > 0)
sift 34:594ddb4008b2 407 steeringSign = 1.0;
sift 25:c21d35c7f0de 408 else
sift 34:594ddb4008b2 409 steeringSign = -1.0;
sift 25:c21d35c7f0de 410
sift 31:042c08a7434f 411 steeringAngle = myAbs(steeringAngle);
sift 32:9688c30ac38b 412
sift 38:11753ee9734f 413 if(steeringAngle <= 0.0001)
sift 31:042c08a7434f 414 steeringAngle = 0.0001;
sift 2:9d69f27a3d3b 415
sift 31:042c08a7434f 416 R = (1.0 + A*V2)*WHEEL_BASE / steeringAngle; //理論旋回半径 計算
sift 32:9688c30ac38b 417 Gy = V2 / R / 9.81; //理論横G
sift 31:042c08a7434f 418
sift 34:594ddb4008b2 419 if(Gy <= deadband)
sift 9:220e4e77e056 420 disTrq = 0;
sift 34:594ddb4008b2 421 else if(Gy <= 1.5) {
sift 31:042c08a7434f 422 Gy -= deadband;
sift 34:594ddb4008b2 423 disTrq = (int)(MAX_DISTRIBUTION_TORQUE / (1.5 - deadband) * Gy);
sift 25:c21d35c7f0de 424 } else {
sift 19:571a4d00b89c 425 disTrq = MAX_DISTRIBUTION_TORQUE;
sift 25:c21d35c7f0de 426 }
sift 2:9d69f27a3d3b 427
sift 36:dc33a3a194c9 428 return (int)(disTrq * steeringSign);
sift 2:9d69f27a3d3b 429 }
sift 2:9d69f27a3d3b 430
sift 25:c21d35c7f0de 431 //rpm +++++ モータ回転数
sift 25:c21d35c7f0de 432 //regSwitch +++++ 回生=1 力行=0
sift 25:c21d35c7f0de 433 inline int calcMaxTorque(int rpm, bool regSwitch)
sift 2:9d69f27a3d3b 434 {
sift 25:c21d35c7f0de 435 int maxTrq=0;
sift 25:c21d35c7f0de 436
sift 25:c21d35c7f0de 437 //後で削除
sift 25:c21d35c7f0de 438 rpm = 2000;
sift 26:331e77bb479b 439 //++++++++++++++++++++
sift 25:c21d35c7f0de 440
sift 25:c21d35c7f0de 441 if(regSwitch == 0) {
sift 25:c21d35c7f0de 442 if(rpm <3000)
sift 25:c21d35c7f0de 443 maxTrq = MAX_MOTOR_TORQUE_POWER;
sift 25:c21d35c7f0de 444 else if(rpm <= 11000)
sift 25:c21d35c7f0de 445 maxTrq = maxTorqueMap[(int)(rpm / 10.0)];
sift 25:c21d35c7f0de 446 else
sift 25:c21d35c7f0de 447 maxTrq = MAX_REVOLUTION_TORQUE_POWER;
sift 25:c21d35c7f0de 448 } else {
sift 28:47e9531a3a9d 449 if(rpm < 600) {
sift 25:c21d35c7f0de 450 maxTrq = 0;
sift 28:47e9531a3a9d 451 } else if(rpm < 1250) {
sift 28:47e9531a3a9d 452 //+++++++++++++++++++++++++++++++++++++
sift 28:47e9531a3a9d 453 //暫定処理 今後回生トルクマップも要作成
sift 28:47e9531a3a9d 454 maxTrq = 0;
sift 28:47e9531a3a9d 455 //+++++++++++++++++++++++++++++++++++++
sift 25:c21d35c7f0de 456 } else if(rpm <= 6000) {
sift 26:331e77bb479b 457 maxTrq = MAX_MOTOR_TORQUE_REGENERATIVE;
sift 26:331e77bb479b 458 } else if(rpm <= 11000) {
sift 25:c21d35c7f0de 459 //+++++++++++++++++++++++++++++++++++++
sift 25:c21d35c7f0de 460 //暫定処理 今後回生トルクマップも要作成
sift 26:331e77bb479b 461 maxTrq = MAX_REVOLUTION_TORQUE_REGENERATIVE;
sift 25:c21d35c7f0de 462 //+++++++++++++++++++++++++++++++++++++
sift 25:c21d35c7f0de 463 } else {
sift 25:c21d35c7f0de 464 maxTrq = MAX_REVOLUTION_TORQUE_REGENERATIVE;
sift 25:c21d35c7f0de 465 }
sift 25:c21d35c7f0de 466 }
sift 25:c21d35c7f0de 467 return maxTrq;
sift 2:9d69f27a3d3b 468 }
sift 2:9d69f27a3d3b 469
sift 25:c21d35c7f0de 470 //演算方法
sift 25:c21d35c7f0de 471 //y = a(x - b) + c
sift 25:c21d35c7f0de 472 //x = 1/a * (y + ab - c)
sift 25:c21d35c7f0de 473 unsigned int calcTorqueToVoltage(int reqTorque, int rpm)
sift 2:9d69f27a3d3b 474 {
sift 25:c21d35c7f0de 475 float slope = 0; //a
sift 25:c21d35c7f0de 476 int startPoint = 0; //b
sift 25:c21d35c7f0de 477 int intercept = 0; //c
sift 12:ae291fa7239c 478
sift 25:c21d35c7f0de 479 int outputVoltage=0;
sift 16:7afd623ef48a 480
sift 25:c21d35c7f0de 481 if(reqTorque > LINEAR_REGION_TORQUE_POWER) { //力行トルクがrpmに対して非線形となる領域
sift 25:c21d35c7f0de 482 slope = (float)(calcMaxTorque(rpm, 0) - LINEAR_REGION_TORQUE_POWER)/(DACOUTPUT_MAX - LINEAR_REGION_VOLTAGE_POWER);
sift 25:c21d35c7f0de 483 startPoint = LINEAR_REGION_VOLTAGE_POWER;
sift 25:c21d35c7f0de 484 intercept = LINEAR_REGION_TORQUE_POWER;
sift 25:c21d35c7f0de 485
sift 25:c21d35c7f0de 486 outputVoltage = (int)((reqTorque + slope*startPoint - intercept) / slope);
sift 6:26fa8c78500e 487
sift 25:c21d35c7f0de 488 } else if(reqTorque > 0) { //力行トルクがrpmに対して線形となる領域
sift 25:c21d35c7f0de 489 slope = (float)LINEAR_REGION_TORQUE_POWER/(LINEAR_REGION_VOLTAGE_POWER - ZERO_TORQUE_VOLTAGE_P);
sift 25:c21d35c7f0de 490 startPoint = ZERO_TORQUE_VOLTAGE_P;
sift 25:c21d35c7f0de 491 intercept = 0;
sift 25:c21d35c7f0de 492
sift 25:c21d35c7f0de 493 outputVoltage = (int)(reqTorque/slope + startPoint);
sift 25:c21d35c7f0de 494
sift 25:c21d35c7f0de 495 } else if(0 == reqTorque) {
sift 25:c21d35c7f0de 496
sift 25:c21d35c7f0de 497 outputVoltage = ZERO_TORQUE_VOLTAGE_NEUTRAL; //ニュートラル信号
sift 6:26fa8c78500e 498
sift 25:c21d35c7f0de 499 } else if(reqTorque > LINEAR_REGION_TORQUE_REGENERATIVE) { //回生トルクがrpmに対して線形となる領域
sift 25:c21d35c7f0de 500 slope = (float)(0 - LINEAR_REGION_TORQUE_REGENERATIVE)/(ZERO_TORQUE_VOLTAGE_REG - LINEAR_REGION_VOLTAGE_REGENERATIVE);
sift 25:c21d35c7f0de 501 startPoint = LINEAR_REGION_VOLTAGE_REGENERATIVE;
sift 25:c21d35c7f0de 502 intercept = LINEAR_REGION_TORQUE_REGENERATIVE;
sift 25:c21d35c7f0de 503
sift 25:c21d35c7f0de 504 outputVoltage = (int)(reqTorque/slope + startPoint);
sift 25:c21d35c7f0de 505
sift 25:c21d35c7f0de 506 } else { //回生トルクがrpmに対して非線形となる領域
sift 25:c21d35c7f0de 507 slope = (float)(LINEAR_REGION_TORQUE_REGENERATIVE - calcMaxTorque(rpm, 1))/(LINEAR_REGION_VOLTAGE_REGENERATIVE - DACOUTPUT_MIN);
sift 25:c21d35c7f0de 508 startPoint = DACOUTPUT_MIN;
sift 25:c21d35c7f0de 509 intercept = calcMaxTorque(rpm, 1);
sift 25:c21d35c7f0de 510
sift 25:c21d35c7f0de 511 outputVoltage = (int)((reqTorque + slope*startPoint - intercept) / slope);
sift 2:9d69f27a3d3b 512 }
sift 2:9d69f27a3d3b 513
sift 25:c21d35c7f0de 514 if(outputVoltage > DACOUTPUT_MAX)
sift 25:c21d35c7f0de 515 outputVoltage = DACOUTPUT_MAX;
sift 25:c21d35c7f0de 516 if(outputVoltage < DACOUTPUT_MIN)
sift 25:c21d35c7f0de 517 outputVoltage = DACOUTPUT_MIN;
sift 16:7afd623ef48a 518
sift 20:3c5061281a7a 519 return (unsigned int)(0xFFF*((double)outputVoltage/0xFFFF)); //DACの分解能に適応(16bit->12bit)
sift 2:9d69f27a3d3b 520 }
sift 2:9d69f27a3d3b 521
sift 2:9d69f27a3d3b 522 int calcRequestTorque(void)
sift 2:9d69f27a3d3b 523 {
sift 2:9d69f27a3d3b 524 int currentAPS;
sift 2:9d69f27a3d3b 525 int requestTorque;
sift 2:9d69f27a3d3b 526
sift 2:9d69f27a3d3b 527 currentAPS = ((gApsP>gApsS) ? gApsS : gApsP); //センサ値は小さい方を採用
sift 12:ae291fa7239c 528
sift 2:9d69f27a3d3b 529 if(currentAPS < APS_MIN_POSITION)
sift 2:9d69f27a3d3b 530 currentAPS = 0;
sift 2:9d69f27a3d3b 531 else
sift 2:9d69f27a3d3b 532 currentAPS -= APS_MIN_POSITION; //オフセット修正
sift 2:9d69f27a3d3b 533
sift 25:c21d35c7f0de 534 if(currentAPS <= APS_REG_RANGE) //デッドバンド内であれば要求トルク->0
sift 25:c21d35c7f0de 535 requestTorque = (int)((float)(-MAX_OUTPUT_TORQUE_REGENERATIVE) / APS_REG_RANGE * currentAPS + MAX_OUTPUT_TORQUE_REGENERATIVE);
sift 2:9d69f27a3d3b 536 else
sift 25:c21d35c7f0de 537 requestTorque = (int)((float)MAX_OUTPUT_TORQUE_POWER / APS_PWR_RANGE * (currentAPS - APS_REG_RANGE));
sift 2:9d69f27a3d3b 538
sift 25:c21d35c7f0de 539 if(requestTorque > MAX_OUTPUT_TORQUE_POWER)
sift 25:c21d35c7f0de 540 requestTorque = MAX_OUTPUT_TORQUE_POWER;
sift 25:c21d35c7f0de 541 else if(requestTorque < MAX_OUTPUT_TORQUE_REGENERATIVE)
sift 25:c21d35c7f0de 542 requestTorque = MAX_OUTPUT_TORQUE_REGENERATIVE;
sift 2:9d69f27a3d3b 543
sift 12:ae291fa7239c 544 if((errCounter.brakeOverRide > ERRCOUNTER_DECISION) || (readyToDriveFlag == 1))
sift 12:ae291fa7239c 545 requestTorque = 0;
sift 12:ae291fa7239c 546
sift 2:9d69f27a3d3b 547 return requestTorque;
sift 2:9d69f27a3d3b 548 }
sift 2:9d69f27a3d3b 549
sift 17:a2246ce3333f 550 //トルク配分車速制限関数
sift 17:a2246ce3333f 551 //車速が低速域の場合,トルク配分0
sift 17:a2246ce3333f 552 float limitTorqueDistribution(void)
sift 17:a2246ce3333f 553 {
sift 17:a2246ce3333f 554 float limitRate;
sift 17:a2246ce3333f 555 float currentVelocity = getVelocity() * 3.6f; //km/hで車速取得
sift 20:3c5061281a7a 556
sift 37:ba10cf09c151 557 if(currentVelocity < 15.0f)
sift 17:a2246ce3333f 558 limitRate = 0.0f;
sift 36:dc33a3a194c9 559 else if(currentVelocity < 30.0f)
sift 38:11753ee9734f 560 limitRate = (currentVelocity - 15.0f) / (30.0f - 15.0f);
sift 17:a2246ce3333f 561 else
sift 17:a2246ce3333f 562 limitRate = 1.0f;
sift 36:dc33a3a194c9 563
sift 35:b75595b1da36 564 //printf("rate:%1.3f\r\n", limitRate);
sift 36:dc33a3a194c9 565
sift 17:a2246ce3333f 566 return limitRate;
sift 17:a2246ce3333f 567 }
sift 17:a2246ce3333f 568
sift 26:331e77bb479b 569 void driveTVD(int TVDmode, bool isRedyToDrive)
sift 1:4d86ec2fe4b1 570 {
sift 6:26fa8c78500e 571 int requestTorque=0; //ドライバー要求トルク
sift 6:26fa8c78500e 572 int distributionTrq=0; //分配トルク
sift 21:bbf2ad7e6602 573 int disTrq_omega=0;
sift 21:bbf2ad7e6602 574 int torqueRight, torqueLeft; //トルクの右左
sift 20:3c5061281a7a 575 static unsigned int preMcpA=0, preMcpB=0;
sift 20:3c5061281a7a 576
sift 2:9d69f27a3d3b 577 loadSensors(); //APS,BRAKE更新
sift 2:9d69f27a3d3b 578 loadSteerAngle(); //舵角更新
sift 12:ae291fa7239c 579
sift 26:331e77bb479b 580 if(isRedyToDrive && isBrakeOn())
sift 12:ae291fa7239c 581 readyToDriveFlag = 0;
sift 2:9d69f27a3d3b 582
sift 12:ae291fa7239c 583 if((errCounter.apsUnderVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 584 || (errCounter.apsExceedVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 585 || (errCounter.apsErrorTolerance > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 586 // || (errCounter.apsStick > ERRCOUNTER_DECISION)
sift 30:c596a0f5d685 587 || (errCounter.brakeUnderVolt > ERRCOUNTER_DECISION)
sift 30:c596a0f5d685 588 || (errCounter.brakeExceedVolt > ERRCOUNTER_DECISION)
sift 30:c596a0f5d685 589 || (errCounter.brakeFuzzyVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 590 ) {
sift 16:7afd623ef48a 591 readyToDriveFlag = 1;
sift 12:ae291fa7239c 592 }
sift 16:7afd623ef48a 593
sift 12:ae291fa7239c 594 indicateSystem(readyToDriveFlag | (errCounter.brakeOverRide > ERRCOUNTER_DECISION));
sift 20:3c5061281a7a 595 LED[0] = readyToDriveFlag | (errCounter.brakeOverRide > ERRCOUNTER_DECISION);
sift 16:7afd623ef48a 596
sift 6:26fa8c78500e 597 requestTorque=calcRequestTorque(); //ドライバー要求トルク取得
sift 4:d7778cde0aff 598
sift 37:ba10cf09c151 599 distributionTrq = (int)((distributeTorque(M_PI * getSteerAngle() / 127.0f, getVelocity())*limitTorqueDistribution()) / 2.0f); //片モーターのトルク分配量計算
sift 38:11753ee9734f 600 disTrq_omega = (int)((distributeTorque_omega(M_PI * getSteerAngle() / 127.0f)*limitTorqueDistribution()) / 2.0f); //微分制御
sift 12:ae291fa7239c 601
sift 34:594ddb4008b2 602 //printf("%d\r\n", distributionTrq);
sift 34:594ddb4008b2 603
sift 38:11753ee9734f 604 // distributionTrq = 0;
sift 35:b75595b1da36 605 disTrq_omega = 0;
sift 31:042c08a7434f 606
sift 25:c21d35c7f0de 607 torqueRight = requestTorque + distributionTrq;
sift 25:c21d35c7f0de 608 torqueLeft = requestTorque - distributionTrq;
sift 21:bbf2ad7e6602 609
sift 22:95c1f753ecad 610 torqueRight += disTrq_omega;
sift 22:95c1f753ecad 611 torqueLeft -= disTrq_omega;
sift 20:3c5061281a7a 612
sift 38:11753ee9734f 613 if(torqueRight < 0) {
sift 38:11753ee9734f 614 if((getRPS(RIGHT) * LSB_MOTORSPEED * 60.0f) < 600.0f) {
sift 38:11753ee9734f 615 torqueLeft = requestTorque + torqueRight;
sift 38:11753ee9734f 616 torqueRight = 0;
sift 38:11753ee9734f 617 } else if((getRPS(RIGHT) * LSB_MOTORSPEED * 60.0f) <= 1250.0f) {
sift 38:11753ee9734f 618 torqueLeft = requestTorque + torqueRight*((getRPS(RIGHT) * GEAR_RATIO * LSB_MOTORSPEED * 60.0f - 600.0f)/(1250.0f - 600.0f));
sift 38:11753ee9734f 619 torqueRight = torqueRight*((getRPS(RIGHT)-600.0f)/(1250.0f - 600.0f));
sift 38:11753ee9734f 620 }
sift 38:11753ee9734f 621 }
sift 38:11753ee9734f 622 if(torqueLeft < 0) {
sift 38:11753ee9734f 623 if((getRPS(LEFT) * LSB_MOTORSPEED * 60.0f) < 600.0f) {
sift 38:11753ee9734f 624 torqueRight = requestTorque + torqueLeft;
sift 38:11753ee9734f 625 torqueLeft = 0;
sift 38:11753ee9734f 626 } else if((getRPS(LEFT) * LSB_MOTORSPEED * 60.0f) <= 1250.0f) {
sift 38:11753ee9734f 627 torqueRight = requestTorque + torqueLeft*((getRPS(LEFT) * GEAR_RATIO * LSB_MOTORSPEED * 60.0f - 600.0f)/(1250.0f - 600.0f));
sift 38:11753ee9734f 628 torqueLeft = torqueLeft*((getRPS(LEFT)-600.0f)/(1250.0f - 600.0f));
sift 38:11753ee9734f 629 }
sift 38:11753ee9734f 630 }
sift 38:11753ee9734f 631
sift 26:331e77bb479b 632 //アクセルべた踏みでトルクMAX、旋回より駆動を優先(加速番長モード)
sift 26:331e77bb479b 633 if(torqueLeft > MAX_OUTPUT_TORQUE_POWER) { //片モーター上限時最大値にクリップ
sift 26:331e77bb479b 634 torqueLeft = MAX_OUTPUT_TORQUE_POWER;
sift 26:331e77bb479b 635 torqueRight = requestTorque - (MAX_OUTPUT_TORQUE_POWER-requestTorque);
sift 16:7afd623ef48a 636 }
sift 26:331e77bb479b 637 if(torqueRight > MAX_OUTPUT_TORQUE_POWER) { //片モーター上限時最大値にクリップ
sift 26:331e77bb479b 638 torqueRight = MAX_OUTPUT_TORQUE_POWER;
sift 26:331e77bb479b 639 torqueLeft = requestTorque - (MAX_OUTPUT_TORQUE_POWER-requestTorque);
sift 26:331e77bb479b 640 }
sift 34:594ddb4008b2 641
sift 34:594ddb4008b2 642 gRightMotorTorque = torqueRight;
sift 34:594ddb4008b2 643 gLeftMotorTorque = torqueLeft;
sift 34:594ddb4008b2 644
sift 28:47e9531a3a9d 645 McpData.valA = calcTorqueToVoltage(torqueRight, getRPS(RIGHT));
sift 28:47e9531a3a9d 646 McpData.valB = calcTorqueToVoltage(torqueLeft, getRPS(LEFT));
sift 16:7afd623ef48a 647
sift 38:11753ee9734f 648 // preMcpA = (unsigned int)(McpData.valA * 0.456 + preMcpA * 0.544);
sift 38:11753ee9734f 649 // preMcpB = (unsigned int)(McpData.valB * 0.456 + preMcpB * 0.544);
sift 38:11753ee9734f 650 preMcpA = McpData.valA;
sift 38:11753ee9734f 651 preMcpB = McpData.valB;
sift 20:3c5061281a7a 652
sift 20:3c5061281a7a 653 mcp.writeA(preMcpA); //右モーター
sift 20:3c5061281a7a 654 mcp.writeB(preMcpB); //左モーター
sift 1:4d86ec2fe4b1 655 }
sift 1:4d86ec2fe4b1 656
sift 1:4d86ec2fe4b1 657 void initTVD(void)
sift 1:4d86ec2fe4b1 658 {
sift 39:c05074379713 659 wheelPulseTimer.reset();
sift 39:c05074379713 660
sift 39:c05074379713 661 wheelPulseTimer.start();
sift 1:4d86ec2fe4b1 662
sift 25:c21d35c7f0de 663 rightMotorPulse.fall(&countRightMotorPulseISR);
sift 25:c21d35c7f0de 664 leftMotorPulse.fall(&countLeftMotorPulseISR);
sift 39:c05074379713 665 rightWheelPulse1.fall(&countRightWheelPulseISR);
sift 39:c05074379713 666 leftWheelPulse1.fall(&countLeftWheelPulseISR);
sift 25:c21d35c7f0de 667
sift 25:c21d35c7f0de 668 ticker1.attach(&loadSensorsISR, CONTROL_CYCLE_S); //制御周期毎にデータ読み込み(LPF演算のため)
sift 25:c21d35c7f0de 669 ticker2.attach(&getPulseCounterISR, CONTROL_CYCLE_S); //
sift 10:87ad65eef0e9 670
sift 10:87ad65eef0e9 671 mcp.writeA(0); //右モーター
sift 10:87ad65eef0e9 672 mcp.writeB(0); //左モーター
sift 28:47e9531a3a9d 673
sift 30:c596a0f5d685 674 printf("MAX OUTPUT TORQUE:\t\t%1.2f[Nm]\r\n", LSB_MOTOR_TORQUE * MAX_OUTPUT_TORQUE_POWER);
sift 30:c596a0f5d685 675 printf("MAX OUTPUT REG-TORQUE:\t\t%1.2f[Nm]\r\n", LSB_MOTOR_TORQUE * MAX_OUTPUT_TORQUE_REGENERATIVE);
sift 30:c596a0f5d685 676 printf("MAX DISTRIBUTION TORQUE:\t%1.2f[Nm]\r\n", LSB_MOTOR_TORQUE * MAX_DISTRIBUTION_TORQUE);
sift 30:c596a0f5d685 677 printf("MIN INNERWHEEL-MOTOR TORQUE:\t%1.2f[Nm]\r\n", LSB_MOTOR_TORQUE * MIN_INNERWHEEL_MOTOR_TORQUE);
sift 1:4d86ec2fe4b1 678 }