2014 sift / Mbed 2 deprecated TVDctrller2017_brdRev1_PandA

Dependencies:   mbed

Fork of TVDctrller2017_brdRev1_ver6 by 2014 sift

Committer:
sift
Date:
Sat Jul 01 07:24:50 2017 +0000
Revision:
26:331e77bb479b
Parent:
25:c21d35c7f0de
Child:
27:37a8b4f6d28d
APS???????????????????

Who changed what in which revision?

UserRevisionLine numberNew contents of line
sift 0:276c1dab2d62 1 #include "TVDCTRL.h"
sift 1:4d86ec2fe4b1 2 #include "MCP4922.h"
sift 1:4d86ec2fe4b1 3 #include "Steering.h"
sift 1:4d86ec2fe4b1 4
sift 1:4d86ec2fe4b1 5 extern AnalogIn apsP;
sift 1:4d86ec2fe4b1 6 extern AnalogIn apsS;
sift 2:9d69f27a3d3b 7 extern AnalogIn brake;
sift 1:4d86ec2fe4b1 8 extern DigitalOut LED[];
sift 1:4d86ec2fe4b1 9 extern InterruptIn rightMotorPulse;
sift 1:4d86ec2fe4b1 10 extern InterruptIn leftMotorPulse;
sift 24:1de0291bc5eb 11 extern InterruptIn rightTirePulse1;
sift 24:1de0291bc5eb 12 extern InterruptIn rightTirePulse2;
sift 24:1de0291bc5eb 13 extern InterruptIn leftTirePulse1;
sift 24:1de0291bc5eb 14 extern InterruptIn leftTirePulse2;
sift 1:4d86ec2fe4b1 15 extern MCP4922 mcp;
sift 8:a22aec357a64 16 extern Serial pc;
sift 19:571a4d00b89c 17 extern AnalogOut STR2AN;
sift 1:4d86ec2fe4b1 18
sift 26:331e77bb479b 19 extern DigitalOut indicatorLed;
sift 26:331e77bb479b 20
sift 26:331e77bb479b 21 #define indicateSystem(x) (indicatorLed.write(x))
sift 26:331e77bb479b 22
sift 2:9d69f27a3d3b 23 Timer RightPulseTimer;
sift 2:9d69f27a3d3b 24 Timer LeftPulseTimer;
sift 2:9d69f27a3d3b 25 Ticker ticker1;
sift 2:9d69f27a3d3b 26 Ticker ticker2;
sift 1:4d86ec2fe4b1 27
sift 18:b7c362c8f0fd 28 #define myAbs(x) ((x>0)?(x):(-(x)))
sift 18:b7c362c8f0fd 29
sift 2:9d69f27a3d3b 30 #define apsPVol() (apsP.read() * 3.3)
sift 2:9d69f27a3d3b 31 #define apsSVol() (apsS.read() * 3.3)
sift 0:276c1dab2d62 32
sift 0:276c1dab2d62 33 struct {
sift 0:276c1dab2d62 34 unsigned int valA:12;
sift 0:276c1dab2d62 35 unsigned int valB:12;
sift 2:9d69f27a3d3b 36 } McpData;
sift 1:4d86ec2fe4b1 37
sift 2:9d69f27a3d3b 38 //各変数が一定値を超えた時点でエラー検出とする
sift 2:9d69f27a3d3b 39 //2つのAPSの区別はつけないことにする
sift 12:ae291fa7239c 40 struct errCounter_t errCounter= {0,0,0,0,0,0,0};
sift 1:4d86ec2fe4b1 41
sift 12:ae291fa7239c 42 int readyToDriveFlag = 1;
sift 12:ae291fa7239c 43
sift 12:ae291fa7239c 44 int gApsP=0, gApsS=0, gBrake=0; //現在のセンサ値
sift 12:ae291fa7239c 45 int rawApsP=0, rawApsS=0, rawBrake=0; //現在の補正無しのセンサ値
sift 2:9d69f27a3d3b 46
sift 18:b7c362c8f0fd 47 //エラーカウンタ外部参照用関数
sift 18:b7c362c8f0fd 48 //errCounter_t型変数のポインタを引数に取る
sift 2:9d69f27a3d3b 49 void getCurrentErrCount(struct errCounter_t *ptr)
sift 1:4d86ec2fe4b1 50 {
sift 12:ae291fa7239c 51 ptr->apsUnderVolt = errCounter.apsUnderVolt;
sift 12:ae291fa7239c 52 ptr->apsExceedVolt = errCounter.apsExceedVolt;
sift 12:ae291fa7239c 53 ptr->apsErrorTolerance = errCounter.apsErrorTolerance;
sift 12:ae291fa7239c 54 ptr->apsStick = errCounter.apsStick;
sift 12:ae291fa7239c 55 ptr->brakeUnderVolt = errCounter.brakeUnderVolt;
sift 12:ae291fa7239c 56 ptr->brakeExceedVolt = errCounter.brakeExceedVolt;
sift 12:ae291fa7239c 57 ptr->brakeFuzzyVolt = errCounter.brakeFuzzyVolt;
sift 12:ae291fa7239c 58 ptr->brakeOverRide = errCounter.brakeOverRide;
sift 12:ae291fa7239c 59 }
sift 12:ae291fa7239c 60
sift 18:b7c362c8f0fd 61 //ブレーキONOFF判定関数
sift 12:ae291fa7239c 62 //Brake-ON:1 Brake-OFF:0
sift 12:ae291fa7239c 63 int isBrakeOn(void)
sift 12:ae291fa7239c 64 {
sift 12:ae291fa7239c 65 int brake = gBrake;
sift 12:ae291fa7239c 66 int brakeOnOff = 0;
sift 12:ae291fa7239c 67
sift 12:ae291fa7239c 68 if(brake > (BRK_ON_VOLTAGE - ERROR_TOLERANCE))
sift 12:ae291fa7239c 69 brakeOnOff = 1;
sift 12:ae291fa7239c 70 if(brake < (BRK_OFF_VOLTAGE + ERROR_TOLERANCE))
sift 12:ae291fa7239c 71 brakeOnOff = 0;
sift 12:ae291fa7239c 72
sift 12:ae291fa7239c 73 return brakeOnOff;
sift 2:9d69f27a3d3b 74 }
sift 1:4d86ec2fe4b1 75
sift 18:b7c362c8f0fd 76 //センサ現在値外部参照関数
sift 7:ad013d88a539 77 int getCurrentSensor(int sensor)
sift 2:9d69f27a3d3b 78 {
sift 2:9d69f27a3d3b 79 switch (sensor) {
sift 2:9d69f27a3d3b 80 case APS_PRIMARY:
sift 2:9d69f27a3d3b 81 return gApsP;
sift 2:9d69f27a3d3b 82 case APS_SECONDARY:
sift 2:9d69f27a3d3b 83 return gApsS;
sift 2:9d69f27a3d3b 84 case BRAKE:
sift 2:9d69f27a3d3b 85 return gBrake;
sift 2:9d69f27a3d3b 86 default:
sift 2:9d69f27a3d3b 87 return -1;
sift 1:4d86ec2fe4b1 88 }
sift 2:9d69f27a3d3b 89 }
sift 2:9d69f27a3d3b 90
sift 18:b7c362c8f0fd 91 //補正前センサ現在値外部参照関数
sift 7:ad013d88a539 92 int getRawSensor(int sensor)
sift 2:9d69f27a3d3b 93 {
sift 2:9d69f27a3d3b 94 switch (sensor) {
sift 2:9d69f27a3d3b 95 case APS_PRIMARY:
sift 2:9d69f27a3d3b 96 return rawApsP;
sift 2:9d69f27a3d3b 97 case APS_SECONDARY:
sift 2:9d69f27a3d3b 98 return rawApsS;
sift 2:9d69f27a3d3b 99 case BRAKE:
sift 2:9d69f27a3d3b 100 return rawBrake;
sift 2:9d69f27a3d3b 101 default:
sift 2:9d69f27a3d3b 102 return -1;
sift 1:4d86ec2fe4b1 103 }
sift 2:9d69f27a3d3b 104 }
sift 2:9d69f27a3d3b 105
sift 2:9d69f27a3d3b 106 bool loadSensorFlag = false;
sift 2:9d69f27a3d3b 107
sift 2:9d69f27a3d3b 108 //タイマー割り込みでコールされる
sift 2:9d69f27a3d3b 109 void loadSensorsISR(void)
sift 2:9d69f27a3d3b 110 {
sift 2:9d69f27a3d3b 111 loadSensorFlag = true;
sift 1:4d86ec2fe4b1 112 }
sift 1:4d86ec2fe4b1 113
sift 25:c21d35c7f0de 114 //センサ読み込み関数
sift 2:9d69f27a3d3b 115 void loadSensors(void)
sift 1:4d86ec2fe4b1 116 {
sift 2:9d69f27a3d3b 117 if(true == loadSensorFlag) {
sift 2:9d69f27a3d3b 118 loadSensorFlag = false;
sift 2:9d69f27a3d3b 119 static int preApsP=0, preApsS=0; //過去のセンサ値
sift 2:9d69f27a3d3b 120 static int preBrake=0;
sift 2:9d69f27a3d3b 121 int tmpApsP=0, tmpApsS=0, tmpBrake=0; //補正後のセンサ値
sift 2:9d69f27a3d3b 122 int tmpApsErrCountU=0, tmpApsErrCountE=0; //APSの一時的なエラーカウンタ
sift 2:9d69f27a3d3b 123
sift 2:9d69f27a3d3b 124 //Low Pass Filter
sift 2:9d69f27a3d3b 125 tmpApsP = (int)(apsP.read_u16()*ratioLPF + preApsP*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 126 tmpApsS = (int)(apsS.read_u16()*ratioLPF + preApsS*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 127 tmpBrake = (int)(brake.read_u16()*ratioLPF + preBrake*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 128
sift 2:9d69f27a3d3b 129 //生のセンサ値取得
sift 2:9d69f27a3d3b 130 rawApsP = tmpApsP;
sift 2:9d69f27a3d3b 131 rawApsS = tmpApsS;
sift 2:9d69f27a3d3b 132 rawBrake = tmpBrake;
sift 2:9d69f27a3d3b 133
sift 2:9d69f27a3d3b 134 //センサーチェック
sift 2:9d69f27a3d3b 135 //APS上限値チェック
sift 2:9d69f27a3d3b 136 if(tmpApsP > APS_MAX_POSITION + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 137 tmpApsP = APS_MAX_POSITION; //異常時,上限値にクリップ
sift 2:9d69f27a3d3b 138 tmpApsErrCountE++;
sift 2:9d69f27a3d3b 139 }
sift 2:9d69f27a3d3b 140 if(tmpApsS > APS_MAX_POSITION + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 141 tmpApsS = APS_MAX_POSITION; //異常時,上限値にクリップ
sift 2:9d69f27a3d3b 142 tmpApsErrCountE++;
sift 2:9d69f27a3d3b 143 }
sift 2:9d69f27a3d3b 144 if(0 == tmpApsErrCountE)
sift 2:9d69f27a3d3b 145 errCounter.apsExceedVolt = 0; //どちらも正常時エラーカウンタクリア
sift 2:9d69f27a3d3b 146 else
sift 2:9d69f27a3d3b 147 errCounter.apsExceedVolt += tmpApsErrCountE;
sift 2:9d69f27a3d3b 148
sift 2:9d69f27a3d3b 149 //APS下限値チェック
sift 2:9d69f27a3d3b 150 if(tmpApsP < APS_MIN_POSITION - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 151 tmpApsP = APS_MIN_POSITION; //下限値にクリップ
sift 2:9d69f27a3d3b 152 tmpApsErrCountU++;
sift 2:9d69f27a3d3b 153 }
sift 2:9d69f27a3d3b 154 if(tmpApsS < APS_MIN_POSITION - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 155 tmpApsS = APS_MIN_POSITION; //下限値にクリップ
sift 2:9d69f27a3d3b 156 tmpApsErrCountU++;
sift 2:9d69f27a3d3b 157 }
sift 2:9d69f27a3d3b 158 if(0 == tmpApsErrCountU)
sift 2:9d69f27a3d3b 159 errCounter.apsUnderVolt = 0; //どちらも正常時エラーカウンタクリア
sift 2:9d69f27a3d3b 160 else
sift 2:9d69f27a3d3b 161 errCounter.apsUnderVolt += tmpApsErrCountU;
sift 2:9d69f27a3d3b 162
sift 2:9d69f27a3d3b 163 //センサー偏差チェック
sift 2:9d69f27a3d3b 164 if(myAbs(tmpApsP - tmpApsS) > APS_DEVIATION_TOLERANCE) { //偏差チェックには補正後の値(tmp)を使用
sift 2:9d69f27a3d3b 165 errCounter.apsErrorTolerance++;
sift 2:9d69f27a3d3b 166 } else {
sift 2:9d69f27a3d3b 167 errCounter.apsErrorTolerance = 0;
sift 2:9d69f27a3d3b 168 }
sift 1:4d86ec2fe4b1 169
sift 2:9d69f27a3d3b 170 //小さい方にクリップ
sift 2:9d69f27a3d3b 171 //APS値は好きな方を使いな
sift 2:9d69f27a3d3b 172 if(tmpApsP > tmpApsS) {
sift 2:9d69f27a3d3b 173 tmpApsP = tmpApsS;
sift 2:9d69f27a3d3b 174 } else {
sift 2:9d69f27a3d3b 175 tmpApsS = tmpApsP;
sift 2:9d69f27a3d3b 176 }
sift 2:9d69f27a3d3b 177
sift 2:9d69f27a3d3b 178 //Brake上限値チェック
sift 12:ae291fa7239c 179 if(tmpBrake > BRK_ON_VOLTAGE + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 180 errCounter.brakeExceedVolt++;
sift 12:ae291fa7239c 181 tmpBrake = BRK_ON_VOLTAGE;
sift 2:9d69f27a3d3b 182 } else {
sift 2:9d69f27a3d3b 183 errCounter.brakeExceedVolt = 0;
sift 2:9d69f27a3d3b 184 }
sift 2:9d69f27a3d3b 185
sift 2:9d69f27a3d3b 186 //Brake下限値チェック
sift 12:ae291fa7239c 187 if(tmpBrake < BRK_OFF_VOLTAGE - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 188 errCounter.brakeUnderVolt++;
sift 12:ae291fa7239c 189 tmpBrake = BRK_OFF_VOLTAGE;
sift 2:9d69f27a3d3b 190 } else {
sift 2:9d69f27a3d3b 191 errCounter.brakeUnderVolt = 0;
sift 2:9d69f27a3d3b 192 }
sift 1:4d86ec2fe4b1 193
sift 2:9d69f27a3d3b 194 //brake範囲外電圧チェック
sift 12:ae291fa7239c 195 if((tmpBrake < BRK_ON_VOLTAGE - ERROR_TOLERANCE) && (tmpBrake > BRK_OFF_VOLTAGE + ERROR_TOLERANCE)) {
sift 2:9d69f27a3d3b 196 errCounter.brakeFuzzyVolt++;
sift 2:9d69f27a3d3b 197 tmpBrake = BRK_OFF_VOLTAGE;
sift 2:9d69f27a3d3b 198 } else {
sift 2:9d69f27a3d3b 199 errCounter.brakeFuzzyVolt=0;
sift 2:9d69f27a3d3b 200 }
sift 2:9d69f27a3d3b 201
sift 2:9d69f27a3d3b 202 //APS固着チェック
sift 2:9d69f27a3d3b 203 if((preApsP == tmpApsP) && (tmpApsP == APS_MAX_POSITION))
sift 2:9d69f27a3d3b 204 errCounter.apsStick++;
sift 2:9d69f27a3d3b 205 else
sift 2:9d69f27a3d3b 206 errCounter.apsStick=0;
sift 2:9d69f27a3d3b 207
sift 2:9d69f27a3d3b 208 //ブレーキオーバーライドチェック
sift 12:ae291fa7239c 209 if((isBrakeOn() == 1) && (tmpApsP >= APS_OVERRIDE25)) //Brake-ON and APS > 25%
sift 2:9d69f27a3d3b 210 errCounter.brakeOverRide++;
sift 12:ae291fa7239c 211 if(tmpApsP < APS_OVERRIDE05) //Brake-ON and APS < 5%
sift 2:9d69f27a3d3b 212 errCounter.brakeOverRide=0;
sift 2:9d69f27a3d3b 213
sift 2:9d69f27a3d3b 214 //センサ値取得
sift 2:9d69f27a3d3b 215 gApsP = tmpApsP;
sift 2:9d69f27a3d3b 216 gApsS = tmpApsS;
sift 2:9d69f27a3d3b 217 gBrake = tmpBrake;
sift 2:9d69f27a3d3b 218
sift 2:9d69f27a3d3b 219 //未来の自分に期待
sift 2:9d69f27a3d3b 220 preApsP = rawApsP;
sift 2:9d69f27a3d3b 221 preApsS = rawApsS;
sift 2:9d69f27a3d3b 222 preBrake = rawBrake;
sift 2:9d69f27a3d3b 223 }
sift 1:4d86ec2fe4b1 224 }
sift 1:4d86ec2fe4b1 225
sift 25:c21d35c7f0de 226 volatile int gRightMotorPulseCounter = 0, gLeftMotorPulseCounter = 0;
sift 7:ad013d88a539 227 volatile bool pulseTimeISRFlag = false;
sift 1:4d86ec2fe4b1 228
sift 25:c21d35c7f0de 229 void countRightMotorPulseISR(void)
sift 1:4d86ec2fe4b1 230 {
sift 25:c21d35c7f0de 231 gRightMotorPulseCounter++;
sift 1:4d86ec2fe4b1 232 }
sift 1:4d86ec2fe4b1 233
sift 25:c21d35c7f0de 234 void countLeftMotorPulseISR(void)
sift 1:4d86ec2fe4b1 235 {
sift 25:c21d35c7f0de 236 gLeftMotorPulseCounter++;
sift 2:9d69f27a3d3b 237 }
sift 2:9d69f27a3d3b 238
sift 25:c21d35c7f0de 239 void getPulseCounterISR(void)
sift 2:9d69f27a3d3b 240 {
sift 7:ad013d88a539 241 pulseTimeISRFlag = true;
sift 2:9d69f27a3d3b 242 }
sift 2:9d69f27a3d3b 243
sift 25:c21d35c7f0de 244 float getRPS(SelectMotor rl)
sift 2:9d69f27a3d3b 245 {
sift 25:c21d35c7f0de 246 static int rightMotorPulse[100]= {0}, leftMotorPulse[100]= {0}; //過去1秒間のパルス数格納
sift 25:c21d35c7f0de 247 static int sumRightMotorPulse, sumLeftMotorPulse;
sift 2:9d69f27a3d3b 248
sift 7:ad013d88a539 249 if(pulseTimeISRFlag == true) {
sift 25:c21d35c7f0de 250 for(int i=99; i>0; i--) {
sift 25:c21d35c7f0de 251 rightMotorPulse[i] = rightMotorPulse[i-1];
sift 25:c21d35c7f0de 252 leftMotorPulse[i] = leftMotorPulse[i-1];
sift 25:c21d35c7f0de 253 }
sift 25:c21d35c7f0de 254
sift 25:c21d35c7f0de 255 rightMotorPulse[0] = gRightMotorPulseCounter;
sift 25:c21d35c7f0de 256 leftMotorPulse[0] = gLeftMotorPulseCounter;
sift 2:9d69f27a3d3b 257
sift 25:c21d35c7f0de 258 gRightMotorPulseCounter = 0;
sift 25:c21d35c7f0de 259 gLeftMotorPulseCounter = 0;
sift 10:87ad65eef0e9 260
sift 25:c21d35c7f0de 261 sumRightMotorPulse = 0;
sift 25:c21d35c7f0de 262 sumLeftMotorPulse = 0;
sift 25:c21d35c7f0de 263
sift 25:c21d35c7f0de 264 for(int i=0; i<100; i++) {
sift 25:c21d35c7f0de 265 sumRightMotorPulse += rightMotorPulse[i];
sift 25:c21d35c7f0de 266 sumLeftMotorPulse += leftMotorPulse[i];
sift 25:c21d35c7f0de 267 }
sift 2:9d69f27a3d3b 268 }
sift 2:9d69f27a3d3b 269
sift 2:9d69f27a3d3b 270 if(rl == RIGHT_MOTOR)
sift 26:331e77bb479b 271 return ((float)sumRightMotorPulse / MOTOR_PULSE_NUM) * 60.0f; //過去1秒間のモータパルス数を使ってRPM算出
sift 2:9d69f27a3d3b 272 else
sift 26:331e77bb479b 273 return ((float)sumLeftMotorPulse / MOTOR_PULSE_NUM) * 60.0f; //過去1秒間のモータパルス数を使ってRPM算出
sift 2:9d69f27a3d3b 274 }
sift 2:9d69f27a3d3b 275
sift 2:9d69f27a3d3b 276 float getVelocity(void)
sift 2:9d69f27a3d3b 277 {
sift 26:331e77bb479b 278 return TIRE_DIAMETER*M_PI*(getRPS(RIGHT_MOTOR) + getRPS(LEFT_MOTOR))/2.0f;
sift 1:4d86ec2fe4b1 279 }
sift 1:4d86ec2fe4b1 280
sift 21:bbf2ad7e6602 281 int distributeTorque_omega(float steering)
sift 21:bbf2ad7e6602 282 {
sift 21:bbf2ad7e6602 283 static float lastSteering=0.0f;
sift 22:95c1f753ecad 284 float omega=0;
sift 22:95c1f753ecad 285 int disTrq=0;
sift 21:bbf2ad7e6602 286
sift 21:bbf2ad7e6602 287 omega = lastSteering - steering; //舵角の差分算出
sift 22:95c1f753ecad 288
sift 21:bbf2ad7e6602 289 omega /= 0.01f; //制御周期で角速度演算
sift 21:bbf2ad7e6602 290
sift 22:95c1f753ecad 291 if(myAbs(omega) < 0.349f) { //20deg/s
sift 21:bbf2ad7e6602 292 disTrq = 0;
sift 22:95c1f753ecad 293 } else if(myAbs(omega) <= 8.727f) { //500deg/s
sift 23:ee53d2658801 294 disTrq = (int)((0xFFFF/45.0f * 10.0f) / (8.727f-0.349f) * (myAbs(omega) - 0.349f));
sift 21:bbf2ad7e6602 295 } else
sift 23:ee53d2658801 296 disTrq = (int)(0xFFFF/45.0f * 10.0f);
sift 22:95c1f753ecad 297
sift 21:bbf2ad7e6602 298 lastSteering = steering;
sift 21:bbf2ad7e6602 299
sift 22:95c1f753ecad 300 if(omega >= 0)
sift 22:95c1f753ecad 301 disTrq = -disTrq;
sift 22:95c1f753ecad 302
sift 21:bbf2ad7e6602 303 return disTrq;
sift 21:bbf2ad7e6602 304 }
sift 21:bbf2ad7e6602 305
sift 12:ae291fa7239c 306 int distributeTorque(float steering)
sift 2:9d69f27a3d3b 307 {
sift 9:220e4e77e056 308 int disTrq = 0;
sift 13:6dc51981f391 309 const float deadband = (M_PI/180.0f)*5.0f;
sift 25:c21d35c7f0de 310 int steeringSign;
sift 25:c21d35c7f0de 311
sift 25:c21d35c7f0de 312 if(steering > 0)
sift 25:c21d35c7f0de 313 steeringSign = 1;
sift 25:c21d35c7f0de 314 else
sift 25:c21d35c7f0de 315 steeringSign = -1;
sift 25:c21d35c7f0de 316
sift 25:c21d35c7f0de 317 steering = myAbs(steering);
sift 2:9d69f27a3d3b 318
sift 12:ae291fa7239c 319 if(steering < deadband)
sift 9:220e4e77e056 320 disTrq = 0;
sift 20:3c5061281a7a 321 else if(steering < M_PI*0.5) {
sift 19:571a4d00b89c 322 steering -= deadband;
sift 19:571a4d00b89c 323 disTrq = (int)(MAX_DISTRIBUTION_TORQUE / (M_PI*0.5 - deadband) * steering);
sift 25:c21d35c7f0de 324 } else {
sift 19:571a4d00b89c 325 disTrq = MAX_DISTRIBUTION_TORQUE;
sift 25:c21d35c7f0de 326 }
sift 2:9d69f27a3d3b 327
sift 25:c21d35c7f0de 328 return disTrq * steeringSign;
sift 2:9d69f27a3d3b 329 }
sift 2:9d69f27a3d3b 330
sift 25:c21d35c7f0de 331 //rpm +++++ モータ回転数
sift 25:c21d35c7f0de 332 //regSwitch +++++ 回生=1 力行=0
sift 25:c21d35c7f0de 333 inline int calcMaxTorque(int rpm, bool regSwitch)
sift 2:9d69f27a3d3b 334 {
sift 25:c21d35c7f0de 335 int maxTrq=0;
sift 25:c21d35c7f0de 336
sift 25:c21d35c7f0de 337 //後で削除
sift 25:c21d35c7f0de 338 rpm = 2000;
sift 26:331e77bb479b 339 //++++++++++++++++++++
sift 25:c21d35c7f0de 340
sift 25:c21d35c7f0de 341 if(regSwitch == 0) {
sift 25:c21d35c7f0de 342 if(rpm <3000)
sift 25:c21d35c7f0de 343 maxTrq = MAX_MOTOR_TORQUE_POWER;
sift 25:c21d35c7f0de 344 else if(rpm <= 11000)
sift 25:c21d35c7f0de 345 maxTrq = maxTorqueMap[(int)(rpm / 10.0)];
sift 25:c21d35c7f0de 346 else
sift 25:c21d35c7f0de 347 maxTrq = MAX_REVOLUTION_TORQUE_POWER;
sift 25:c21d35c7f0de 348 } else {
sift 25:c21d35c7f0de 349 if(rpm < 1250) {
sift 25:c21d35c7f0de 350 maxTrq = 0;
sift 25:c21d35c7f0de 351 } else if(rpm <= 6000) {
sift 26:331e77bb479b 352 maxTrq = MAX_MOTOR_TORQUE_REGENERATIVE;
sift 26:331e77bb479b 353 } else if(rpm <= 11000) {
sift 25:c21d35c7f0de 354 //+++++++++++++++++++++++++++++++++++++
sift 25:c21d35c7f0de 355 //暫定処理 今後回生トルクマップも要作成
sift 26:331e77bb479b 356 maxTrq = MAX_REVOLUTION_TORQUE_REGENERATIVE;
sift 25:c21d35c7f0de 357 //+++++++++++++++++++++++++++++++++++++
sift 25:c21d35c7f0de 358 } else {
sift 25:c21d35c7f0de 359 maxTrq = MAX_REVOLUTION_TORQUE_REGENERATIVE;
sift 25:c21d35c7f0de 360 }
sift 25:c21d35c7f0de 361 }
sift 25:c21d35c7f0de 362 return maxTrq;
sift 2:9d69f27a3d3b 363 }
sift 2:9d69f27a3d3b 364
sift 25:c21d35c7f0de 365 //演算方法
sift 25:c21d35c7f0de 366 //y = a(x - b) + c
sift 25:c21d35c7f0de 367 //x = 1/a * (y + ab - c)
sift 25:c21d35c7f0de 368 unsigned int calcTorqueToVoltage(int reqTorque, int rpm)
sift 2:9d69f27a3d3b 369 {
sift 25:c21d35c7f0de 370 float slope = 0; //a
sift 25:c21d35c7f0de 371 int startPoint = 0; //b
sift 25:c21d35c7f0de 372 int intercept = 0; //c
sift 12:ae291fa7239c 373
sift 25:c21d35c7f0de 374 int outputVoltage=0;
sift 16:7afd623ef48a 375
sift 25:c21d35c7f0de 376 if(reqTorque > LINEAR_REGION_TORQUE_POWER) { //力行トルクがrpmに対して非線形となる領域
sift 25:c21d35c7f0de 377 slope = (float)(calcMaxTorque(rpm, 0) - LINEAR_REGION_TORQUE_POWER)/(DACOUTPUT_MAX - LINEAR_REGION_VOLTAGE_POWER);
sift 25:c21d35c7f0de 378 startPoint = LINEAR_REGION_VOLTAGE_POWER;
sift 25:c21d35c7f0de 379 intercept = LINEAR_REGION_TORQUE_POWER;
sift 25:c21d35c7f0de 380
sift 25:c21d35c7f0de 381 outputVoltage = (int)((reqTorque + slope*startPoint - intercept) / slope);
sift 6:26fa8c78500e 382
sift 25:c21d35c7f0de 383 } else if(reqTorque > 0) { //力行トルクがrpmに対して線形となる領域
sift 25:c21d35c7f0de 384 slope = (float)LINEAR_REGION_TORQUE_POWER/(LINEAR_REGION_VOLTAGE_POWER - ZERO_TORQUE_VOLTAGE_P);
sift 25:c21d35c7f0de 385 startPoint = ZERO_TORQUE_VOLTAGE_P;
sift 25:c21d35c7f0de 386 intercept = 0;
sift 25:c21d35c7f0de 387
sift 25:c21d35c7f0de 388 outputVoltage = (int)(reqTorque/slope + startPoint);
sift 25:c21d35c7f0de 389
sift 25:c21d35c7f0de 390 } else if(0 == reqTorque) {
sift 25:c21d35c7f0de 391
sift 25:c21d35c7f0de 392 outputVoltage = ZERO_TORQUE_VOLTAGE_NEUTRAL; //ニュートラル信号
sift 6:26fa8c78500e 393
sift 25:c21d35c7f0de 394 } else if(reqTorque > LINEAR_REGION_TORQUE_REGENERATIVE) { //回生トルクがrpmに対して線形となる領域
sift 25:c21d35c7f0de 395 slope = (float)(0 - LINEAR_REGION_TORQUE_REGENERATIVE)/(ZERO_TORQUE_VOLTAGE_REG - LINEAR_REGION_VOLTAGE_REGENERATIVE);
sift 25:c21d35c7f0de 396 startPoint = LINEAR_REGION_VOLTAGE_REGENERATIVE;
sift 25:c21d35c7f0de 397 intercept = LINEAR_REGION_TORQUE_REGENERATIVE;
sift 25:c21d35c7f0de 398
sift 25:c21d35c7f0de 399 outputVoltage = (int)(reqTorque/slope + startPoint);
sift 25:c21d35c7f0de 400
sift 25:c21d35c7f0de 401 } else { //回生トルクがrpmに対して非線形となる領域
sift 25:c21d35c7f0de 402 slope = (float)(LINEAR_REGION_TORQUE_REGENERATIVE - calcMaxTorque(rpm, 1))/(LINEAR_REGION_VOLTAGE_REGENERATIVE - DACOUTPUT_MIN);
sift 25:c21d35c7f0de 403 startPoint = DACOUTPUT_MIN;
sift 25:c21d35c7f0de 404 intercept = calcMaxTorque(rpm, 1);
sift 25:c21d35c7f0de 405
sift 25:c21d35c7f0de 406 outputVoltage = (int)((reqTorque + slope*startPoint - intercept) / slope);
sift 2:9d69f27a3d3b 407 }
sift 2:9d69f27a3d3b 408
sift 25:c21d35c7f0de 409 if(outputVoltage > DACOUTPUT_MAX)
sift 25:c21d35c7f0de 410 outputVoltage = DACOUTPUT_MAX;
sift 25:c21d35c7f0de 411 if(outputVoltage < DACOUTPUT_MIN)
sift 25:c21d35c7f0de 412 outputVoltage = DACOUTPUT_MIN;
sift 16:7afd623ef48a 413
sift 20:3c5061281a7a 414 return (unsigned int)(0xFFF*((double)outputVoltage/0xFFFF)); //DACの分解能に適応(16bit->12bit)
sift 2:9d69f27a3d3b 415 }
sift 2:9d69f27a3d3b 416
sift 2:9d69f27a3d3b 417 int calcRequestTorque(void)
sift 2:9d69f27a3d3b 418 {
sift 2:9d69f27a3d3b 419 int currentAPS;
sift 2:9d69f27a3d3b 420 int requestTorque;
sift 2:9d69f27a3d3b 421
sift 2:9d69f27a3d3b 422 currentAPS = ((gApsP>gApsS) ? gApsS : gApsP); //センサ値は小さい方を採用
sift 12:ae291fa7239c 423
sift 2:9d69f27a3d3b 424 if(currentAPS < APS_MIN_POSITION)
sift 2:9d69f27a3d3b 425 currentAPS = 0;
sift 2:9d69f27a3d3b 426 else
sift 2:9d69f27a3d3b 427 currentAPS -= APS_MIN_POSITION; //オフセット修正
sift 2:9d69f27a3d3b 428
sift 25:c21d35c7f0de 429 if(currentAPS <= APS_REG_RANGE) //デッドバンド内であれば要求トルク->0
sift 25:c21d35c7f0de 430 requestTorque = (int)((float)(-MAX_OUTPUT_TORQUE_REGENERATIVE) / APS_REG_RANGE * currentAPS + MAX_OUTPUT_TORQUE_REGENERATIVE);
sift 2:9d69f27a3d3b 431 else
sift 25:c21d35c7f0de 432 requestTorque = (int)((float)MAX_OUTPUT_TORQUE_POWER / APS_PWR_RANGE * (currentAPS - APS_REG_RANGE));
sift 2:9d69f27a3d3b 433
sift 25:c21d35c7f0de 434 if(requestTorque > MAX_OUTPUT_TORQUE_POWER)
sift 25:c21d35c7f0de 435 requestTorque = MAX_OUTPUT_TORQUE_POWER;
sift 25:c21d35c7f0de 436 else if(requestTorque < MAX_OUTPUT_TORQUE_REGENERATIVE)
sift 25:c21d35c7f0de 437 requestTorque = MAX_OUTPUT_TORQUE_REGENERATIVE;
sift 2:9d69f27a3d3b 438
sift 12:ae291fa7239c 439 if((errCounter.brakeOverRide > ERRCOUNTER_DECISION) || (readyToDriveFlag == 1))
sift 12:ae291fa7239c 440 requestTorque = 0;
sift 12:ae291fa7239c 441
sift 2:9d69f27a3d3b 442 return requestTorque;
sift 2:9d69f27a3d3b 443 }
sift 2:9d69f27a3d3b 444
sift 17:a2246ce3333f 445 //トルク配分車速制限関数
sift 17:a2246ce3333f 446 //車速が低速域の場合,トルク配分0
sift 17:a2246ce3333f 447 float limitTorqueDistribution(void)
sift 17:a2246ce3333f 448 {
sift 17:a2246ce3333f 449 float limitRate;
sift 17:a2246ce3333f 450 float currentVelocity = getVelocity() * 3.6f; //km/hで車速取得
sift 20:3c5061281a7a 451
sift 17:a2246ce3333f 452 if(currentVelocity < 5.0f)
sift 17:a2246ce3333f 453 limitRate = 0.0f;
sift 18:b7c362c8f0fd 454 else if(currentVelocity < 15.0f)
sift 18:b7c362c8f0fd 455 limitRate = (currentVelocity - 5.0f) / (15.0f - 5.0f);
sift 17:a2246ce3333f 456 else
sift 17:a2246ce3333f 457 limitRate = 1.0f;
sift 20:3c5061281a7a 458
sift 17:a2246ce3333f 459 return limitRate;
sift 17:a2246ce3333f 460 }
sift 17:a2246ce3333f 461
sift 26:331e77bb479b 462 void driveTVD(int TVDmode, bool isRedyToDrive)
sift 1:4d86ec2fe4b1 463 {
sift 6:26fa8c78500e 464 int requestTorque=0; //ドライバー要求トルク
sift 6:26fa8c78500e 465 int distributionTrq=0; //分配トルク
sift 21:bbf2ad7e6602 466 int disTrq_omega=0;
sift 21:bbf2ad7e6602 467 int torqueRight, torqueLeft; //トルクの右左
sift 20:3c5061281a7a 468 static unsigned int preMcpA=0, preMcpB=0;
sift 20:3c5061281a7a 469
sift 2:9d69f27a3d3b 470 loadSensors(); //APS,BRAKE更新
sift 2:9d69f27a3d3b 471 loadSteerAngle(); //舵角更新
sift 12:ae291fa7239c 472
sift 26:331e77bb479b 473 if(isRedyToDrive && isBrakeOn())
sift 12:ae291fa7239c 474 readyToDriveFlag = 0;
sift 2:9d69f27a3d3b 475
sift 12:ae291fa7239c 476 if((errCounter.apsUnderVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 477 || (errCounter.apsExceedVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 478 || (errCounter.apsErrorTolerance > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 479 // || (errCounter.apsStick > ERRCOUNTER_DECISION)
sift 25:c21d35c7f0de 480 // || (errCounter.brakeUnderVolt > ERRCOUNTER_DECISION)
sift 25:c21d35c7f0de 481 // || (errCounter.brakeExceedVolt > ERRCOUNTER_DECISION)
sift 25:c21d35c7f0de 482 // || (errCounter.brakeFuzzyVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 483 ) {
sift 16:7afd623ef48a 484 readyToDriveFlag = 1;
sift 12:ae291fa7239c 485 }
sift 16:7afd623ef48a 486
sift 25:c21d35c7f0de 487 //+++++++++++++++++++
sift 25:c21d35c7f0de 488 //後で削除すること!
sift 25:c21d35c7f0de 489 readyToDriveFlag = 0;
sift 25:c21d35c7f0de 490 //+++++++++++++++++++
sift 25:c21d35c7f0de 491
sift 12:ae291fa7239c 492 indicateSystem(readyToDriveFlag | (errCounter.brakeOverRide > ERRCOUNTER_DECISION));
sift 20:3c5061281a7a 493 LED[0] = readyToDriveFlag | (errCounter.brakeOverRide > ERRCOUNTER_DECISION);
sift 16:7afd623ef48a 494
sift 6:26fa8c78500e 495 requestTorque=calcRequestTorque(); //ドライバー要求トルク取得
sift 4:d7778cde0aff 496
sift 25:c21d35c7f0de 497 distributionTrq = (int)(distributeTorque(getSteerAngle()) / 2.0); //片モーターのトルク分配量計算
sift 26:331e77bb479b 498 disTrq_omega = (int)(distributeTorque_omega(getSteerAngle()) / 2.0); //微分制御
sift 25:c21d35c7f0de 499 //distributionTrq = (int)(distributionTrq * limitTorqueDistribution()); //トルク配分の最低車速制限
sift 12:ae291fa7239c 500
sift 25:c21d35c7f0de 501 torqueRight = requestTorque + distributionTrq;
sift 25:c21d35c7f0de 502 torqueLeft = requestTorque - distributionTrq;
sift 21:bbf2ad7e6602 503
sift 22:95c1f753ecad 504 torqueRight += disTrq_omega;
sift 22:95c1f753ecad 505 torqueLeft -= disTrq_omega;
sift 20:3c5061281a7a 506
sift 26:331e77bb479b 507 //アクセルべた踏みでトルクMAX、旋回より駆動を優先(加速番長モード)
sift 26:331e77bb479b 508 if(torqueLeft > MAX_OUTPUT_TORQUE_POWER) { //片モーター上限時最大値にクリップ
sift 26:331e77bb479b 509 torqueLeft = MAX_OUTPUT_TORQUE_POWER;
sift 26:331e77bb479b 510 torqueRight = requestTorque - (MAX_OUTPUT_TORQUE_POWER-requestTorque);
sift 16:7afd623ef48a 511 }
sift 26:331e77bb479b 512 if(torqueRight > MAX_OUTPUT_TORQUE_POWER) { //片モーター上限時最大値にクリップ
sift 26:331e77bb479b 513 torqueRight = MAX_OUTPUT_TORQUE_POWER;
sift 26:331e77bb479b 514 torqueLeft = requestTorque - (MAX_OUTPUT_TORQUE_POWER-requestTorque);
sift 26:331e77bb479b 515 }
sift 20:3c5061281a7a 516
sift 21:bbf2ad7e6602 517 McpData.valA = calcTorqueToVoltage(torqueRight, RIGHT_MOTOR);
sift 21:bbf2ad7e6602 518 McpData.valB = calcTorqueToVoltage(torqueLeft, LEFT_MOTOR);
sift 16:7afd623ef48a 519
sift 20:3c5061281a7a 520 preMcpA = (unsigned int)(McpData.valA * 0.456 + preMcpA * 0.544);
sift 20:3c5061281a7a 521 preMcpB = (unsigned int)(McpData.valB * 0.456 + preMcpB * 0.544);
sift 20:3c5061281a7a 522
sift 20:3c5061281a7a 523 mcp.writeA(preMcpA); //右モーター
sift 20:3c5061281a7a 524 mcp.writeB(preMcpB); //左モーター
sift 1:4d86ec2fe4b1 525 }
sift 1:4d86ec2fe4b1 526
sift 1:4d86ec2fe4b1 527 void initTVD(void)
sift 1:4d86ec2fe4b1 528 {
sift 2:9d69f27a3d3b 529 RightPulseTimer.reset();
sift 2:9d69f27a3d3b 530 LeftPulseTimer.reset();
sift 2:9d69f27a3d3b 531 RightPulseTimer.start();
sift 2:9d69f27a3d3b 532 LeftPulseTimer.start();
sift 1:4d86ec2fe4b1 533
sift 25:c21d35c7f0de 534 rightMotorPulse.fall(&countRightMotorPulseISR);
sift 25:c21d35c7f0de 535 leftMotorPulse.fall(&countLeftMotorPulseISR);
sift 25:c21d35c7f0de 536
sift 25:c21d35c7f0de 537 ticker1.attach(&loadSensorsISR, CONTROL_CYCLE_S); //制御周期毎にデータ読み込み(LPF演算のため)
sift 25:c21d35c7f0de 538 ticker2.attach(&getPulseCounterISR, CONTROL_CYCLE_S); //
sift 10:87ad65eef0e9 539
sift 10:87ad65eef0e9 540 mcp.writeA(0); //右モーター
sift 10:87ad65eef0e9 541 mcp.writeB(0); //左モーター
sift 20:3c5061281a7a 542
sift 25:c21d35c7f0de 543 printf("MAX OUTPUT TORQUE:\t\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MAX_OUTPUT_TORQUE_POWER);
sift 25:c21d35c7f0de 544 printf("MAX OUTPUT TORQUE:\t\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MAX_OUTPUT_TORQUE_REGENERATIVE);
sift 18:b7c362c8f0fd 545 printf("MAX DISTRIBUTION TORQUE:\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MAX_DISTRIBUTION_TORQUE);
sift 19:571a4d00b89c 546 printf("MIN INNERWHEEL-MOTOR TORQUE:\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MIN_INNERWHEEL_MOTOR_TORQUE);
sift 1:4d86ec2fe4b1 547 }