2014 sift / Mbed 2 deprecated TVDctrller2017_brdRev1_PandA

Dependencies:   mbed

Fork of TVDctrller2017_brdRev1_ver6 by 2014 sift

Committer:
sift
Date:
Wed Jul 27 03:30:35 2016 +0000
Revision:
7:ad013d88a539
Parent:
6:26fa8c78500e
Child:
8:a22aec357a64
???->????????????; 16bit12bit???double???

Who changed what in which revision?

UserRevisionLine numberNew contents of line
sift 0:276c1dab2d62 1 #include "TVDCTRL.h"
sift 1:4d86ec2fe4b1 2 #include "MCP4922.h"
sift 1:4d86ec2fe4b1 3 #include "Steering.h"
sift 1:4d86ec2fe4b1 4
sift 1:4d86ec2fe4b1 5 extern AnalogIn apsP;
sift 1:4d86ec2fe4b1 6 extern AnalogIn apsS;
sift 2:9d69f27a3d3b 7 extern AnalogIn brake;
sift 1:4d86ec2fe4b1 8 extern DigitalOut LED[];
sift 1:4d86ec2fe4b1 9 extern InterruptIn rightMotorPulse;
sift 1:4d86ec2fe4b1 10 extern InterruptIn leftMotorPulse;
sift 1:4d86ec2fe4b1 11 extern DigitalOut MotorPulse[];
sift 1:4d86ec2fe4b1 12 extern MCP4922 mcp;
sift 1:4d86ec2fe4b1 13
sift 2:9d69f27a3d3b 14 Timer RightPulseTimer;
sift 2:9d69f27a3d3b 15 Timer LeftPulseTimer;
sift 2:9d69f27a3d3b 16 Ticker ticker1;
sift 2:9d69f27a3d3b 17 Ticker ticker2;
sift 2:9d69f27a3d3b 18 Ticker ticker3;
sift 1:4d86ec2fe4b1 19
sift 2:9d69f27a3d3b 20 #define apsPVol() (apsP.read() * 3.3)
sift 2:9d69f27a3d3b 21 #define apsSVol() (apsS.read() * 3.3)
sift 0:276c1dab2d62 22
sift 0:276c1dab2d62 23 struct {
sift 0:276c1dab2d62 24 unsigned int valA:12;
sift 0:276c1dab2d62 25 unsigned int valB:12;
sift 2:9d69f27a3d3b 26 } McpData;
sift 1:4d86ec2fe4b1 27
sift 2:9d69f27a3d3b 28 //各変数が一定値を超えた時点でエラー検出とする
sift 2:9d69f27a3d3b 29 //2つのAPSの区別はつけないことにする
sift 2:9d69f27a3d3b 30 volatile struct errCounter_t errCounter= {0,0,0,0,0,0,0};
sift 1:4d86ec2fe4b1 31
sift 2:9d69f27a3d3b 32 volatile int gApsP=0, gApsS=0, gBrake=0; //現在のセンサ値
sift 2:9d69f27a3d3b 33 volatile int rawApsP=0, rawApsS=0, rawBrake=0; //現在の補正無しのセンサ値
sift 2:9d69f27a3d3b 34
sift 2:9d69f27a3d3b 35 void getCurrentErrCount(struct errCounter_t *ptr)
sift 1:4d86ec2fe4b1 36 {
sift 2:9d69f27a3d3b 37 ptr->apsUnderVolt = errCounter.apsUnderVolt;
sift 2:9d69f27a3d3b 38 ptr->apsExceedVolt = errCounter.apsExceedVolt;
sift 2:9d69f27a3d3b 39 ptr->apsErrorTolerance = errCounter.apsErrorTolerance;
sift 2:9d69f27a3d3b 40 ptr->apsStick = errCounter.apsStick;
sift 2:9d69f27a3d3b 41 ptr->brakeUnderVolt = errCounter.brakeUnderVolt;
sift 2:9d69f27a3d3b 42 ptr->brakeExceedVolt = errCounter.brakeExceedVolt;
sift 2:9d69f27a3d3b 43 ptr->brakeFuzzyVolt = errCounter.brakeFuzzyVolt;
sift 2:9d69f27a3d3b 44 ptr->brakeOverRide = errCounter.brakeOverRide;
sift 2:9d69f27a3d3b 45 }
sift 1:4d86ec2fe4b1 46
sift 7:ad013d88a539 47 int getCurrentSensor(int sensor)
sift 2:9d69f27a3d3b 48 {
sift 2:9d69f27a3d3b 49 switch (sensor) {
sift 2:9d69f27a3d3b 50 case APS_PRIMARY:
sift 2:9d69f27a3d3b 51 return gApsP;
sift 2:9d69f27a3d3b 52 case APS_SECONDARY:
sift 2:9d69f27a3d3b 53 return gApsS;
sift 2:9d69f27a3d3b 54 case BRAKE:
sift 2:9d69f27a3d3b 55 return gBrake;
sift 2:9d69f27a3d3b 56 default:
sift 2:9d69f27a3d3b 57 return -1;
sift 1:4d86ec2fe4b1 58 }
sift 2:9d69f27a3d3b 59 }
sift 2:9d69f27a3d3b 60
sift 7:ad013d88a539 61 int getRawSensor(int sensor)
sift 2:9d69f27a3d3b 62 {
sift 2:9d69f27a3d3b 63 switch (sensor) {
sift 2:9d69f27a3d3b 64 case APS_PRIMARY:
sift 2:9d69f27a3d3b 65 return rawApsP;
sift 2:9d69f27a3d3b 66 case APS_SECONDARY:
sift 2:9d69f27a3d3b 67 return rawApsS;
sift 2:9d69f27a3d3b 68 case BRAKE:
sift 2:9d69f27a3d3b 69 return rawBrake;
sift 2:9d69f27a3d3b 70 default:
sift 2:9d69f27a3d3b 71 return -1;
sift 1:4d86ec2fe4b1 72 }
sift 2:9d69f27a3d3b 73 }
sift 2:9d69f27a3d3b 74
sift 2:9d69f27a3d3b 75 int myAbs(int x)
sift 2:9d69f27a3d3b 76 {
sift 2:9d69f27a3d3b 77 return (x<0)?-x:x;
sift 2:9d69f27a3d3b 78 }
sift 1:4d86ec2fe4b1 79
sift 2:9d69f27a3d3b 80 bool loadSensorFlag = false;
sift 2:9d69f27a3d3b 81
sift 2:9d69f27a3d3b 82 //タイマー割り込みでコールされる
sift 2:9d69f27a3d3b 83 void loadSensorsISR(void)
sift 2:9d69f27a3d3b 84 {
sift 2:9d69f27a3d3b 85 loadSensorFlag = true;
sift 1:4d86ec2fe4b1 86 }
sift 1:4d86ec2fe4b1 87
sift 2:9d69f27a3d3b 88 //関数内処理時間より短い時間のタイマーのセットは禁止
sift 2:9d69f27a3d3b 89 void loadSensors(void)
sift 1:4d86ec2fe4b1 90 {
sift 2:9d69f27a3d3b 91 if(true == loadSensorFlag) {
sift 2:9d69f27a3d3b 92 loadSensorFlag = false;
sift 2:9d69f27a3d3b 93 static int preApsP=0, preApsS=0; //過去のセンサ値
sift 2:9d69f27a3d3b 94 static int preBrake=0;
sift 2:9d69f27a3d3b 95 int tmpApsP=0, tmpApsS=0, tmpBrake=0; //補正後のセンサ値
sift 2:9d69f27a3d3b 96 int tmpApsErrCountU=0, tmpApsErrCountE=0; //APSの一時的なエラーカウンタ
sift 2:9d69f27a3d3b 97
sift 2:9d69f27a3d3b 98 //Low Pass Filter
sift 2:9d69f27a3d3b 99 tmpApsP = (int)(apsP.read_u16()*ratioLPF + preApsP*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 100 tmpApsS = (int)(apsS.read_u16()*ratioLPF + preApsS*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 101 tmpBrake = (int)(brake.read_u16()*ratioLPF + preBrake*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 102
sift 2:9d69f27a3d3b 103 //生のセンサ値取得
sift 2:9d69f27a3d3b 104 rawApsP = tmpApsP;
sift 2:9d69f27a3d3b 105 rawApsS = tmpApsS;
sift 2:9d69f27a3d3b 106 rawBrake = tmpBrake;
sift 2:9d69f27a3d3b 107
sift 2:9d69f27a3d3b 108 //センサーチェック
sift 2:9d69f27a3d3b 109 //APS上限値チェック
sift 2:9d69f27a3d3b 110 if(tmpApsP > APS_MAX_POSITION + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 111 tmpApsP = APS_MAX_POSITION; //異常時,上限値にクリップ
sift 2:9d69f27a3d3b 112 tmpApsErrCountE++;
sift 2:9d69f27a3d3b 113 }
sift 2:9d69f27a3d3b 114 if(tmpApsS > APS_MAX_POSITION + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 115 tmpApsS = APS_MAX_POSITION; //異常時,上限値にクリップ
sift 2:9d69f27a3d3b 116 tmpApsErrCountE++;
sift 2:9d69f27a3d3b 117 }
sift 2:9d69f27a3d3b 118 if(0 == tmpApsErrCountE)
sift 2:9d69f27a3d3b 119 errCounter.apsExceedVolt = 0; //どちらも正常時エラーカウンタクリア
sift 2:9d69f27a3d3b 120 else
sift 2:9d69f27a3d3b 121 errCounter.apsExceedVolt += tmpApsErrCountE;
sift 2:9d69f27a3d3b 122
sift 2:9d69f27a3d3b 123 //APS下限値チェック
sift 2:9d69f27a3d3b 124 if(tmpApsP < APS_MIN_POSITION - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 125 tmpApsP = APS_MIN_POSITION; //下限値にクリップ
sift 2:9d69f27a3d3b 126 tmpApsErrCountU++;
sift 2:9d69f27a3d3b 127 }
sift 2:9d69f27a3d3b 128 if(tmpApsS < APS_MIN_POSITION - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 129 tmpApsS = APS_MIN_POSITION; //下限値にクリップ
sift 2:9d69f27a3d3b 130 tmpApsErrCountU++;
sift 2:9d69f27a3d3b 131 }
sift 2:9d69f27a3d3b 132 if(0 == tmpApsErrCountU)
sift 2:9d69f27a3d3b 133 errCounter.apsUnderVolt = 0; //どちらも正常時エラーカウンタクリア
sift 2:9d69f27a3d3b 134 else
sift 2:9d69f27a3d3b 135 errCounter.apsUnderVolt += tmpApsErrCountU;
sift 2:9d69f27a3d3b 136
sift 2:9d69f27a3d3b 137 //センサー偏差チェック
sift 2:9d69f27a3d3b 138 if(myAbs(tmpApsP - tmpApsS) > APS_DEVIATION_TOLERANCE) { //偏差チェックには補正後の値(tmp)を使用
sift 2:9d69f27a3d3b 139 errCounter.apsErrorTolerance++;
sift 2:9d69f27a3d3b 140 } else {
sift 2:9d69f27a3d3b 141 errCounter.apsErrorTolerance = 0;
sift 2:9d69f27a3d3b 142 }
sift 1:4d86ec2fe4b1 143
sift 2:9d69f27a3d3b 144 //小さい方にクリップ
sift 2:9d69f27a3d3b 145 //APS値は好きな方を使いな
sift 2:9d69f27a3d3b 146 if(tmpApsP > tmpApsS) {
sift 2:9d69f27a3d3b 147 tmpApsP = tmpApsS;
sift 2:9d69f27a3d3b 148 } else {
sift 2:9d69f27a3d3b 149 tmpApsS = tmpApsP;
sift 2:9d69f27a3d3b 150 }
sift 2:9d69f27a3d3b 151
sift 2:9d69f27a3d3b 152 //Brake上限値チェック
sift 2:9d69f27a3d3b 153 if(tmpBrake > BRK_OFF_VOLTAGE + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 154 errCounter.brakeExceedVolt++;
sift 2:9d69f27a3d3b 155 tmpBrake = BRK_OFF_VOLTAGE;
sift 2:9d69f27a3d3b 156 } else {
sift 2:9d69f27a3d3b 157 errCounter.brakeExceedVolt = 0;
sift 2:9d69f27a3d3b 158 }
sift 2:9d69f27a3d3b 159
sift 2:9d69f27a3d3b 160 //Brake下限値チェック
sift 2:9d69f27a3d3b 161 if(tmpBrake < BRK_ON_VOLTAGE - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 162 errCounter.brakeUnderVolt++;
sift 2:9d69f27a3d3b 163 tmpBrake = BRK_ON_VOLTAGE;
sift 2:9d69f27a3d3b 164 } else {
sift 2:9d69f27a3d3b 165 errCounter.brakeUnderVolt = 0;
sift 2:9d69f27a3d3b 166 }
sift 1:4d86ec2fe4b1 167
sift 2:9d69f27a3d3b 168 //brake範囲外電圧チェック
sift 2:9d69f27a3d3b 169 if((tmpBrake < BRK_OFF_VOLTAGE - ERROR_TOLERANCE) && (tmpBrake > BRK_ON_VOLTAGE + ERROR_TOLERANCE)) {
sift 2:9d69f27a3d3b 170 errCounter.brakeFuzzyVolt++;
sift 2:9d69f27a3d3b 171 tmpBrake = BRK_OFF_VOLTAGE;
sift 2:9d69f27a3d3b 172 } else {
sift 2:9d69f27a3d3b 173 errCounter.brakeFuzzyVolt=0;
sift 2:9d69f27a3d3b 174 }
sift 2:9d69f27a3d3b 175
sift 2:9d69f27a3d3b 176 //APS固着チェック
sift 2:9d69f27a3d3b 177 if((preApsP == tmpApsP) && (tmpApsP == APS_MAX_POSITION))
sift 2:9d69f27a3d3b 178 errCounter.apsStick++;
sift 2:9d69f27a3d3b 179 else
sift 2:9d69f27a3d3b 180 errCounter.apsStick=0;
sift 2:9d69f27a3d3b 181
sift 2:9d69f27a3d3b 182 //ブレーキオーバーライドチェック
sift 2:9d69f27a3d3b 183 if((tmpApsP >= APS_OVERRIDE+APS_MIN_POSITION) && (tmpBrake > BRK_ON_VOLTAGE)) {
sift 2:9d69f27a3d3b 184 errCounter.brakeOverRide++;
sift 2:9d69f27a3d3b 185 } else {
sift 2:9d69f27a3d3b 186 errCounter.brakeOverRide=0;
sift 2:9d69f27a3d3b 187 }
sift 2:9d69f27a3d3b 188
sift 2:9d69f27a3d3b 189 //センサ値取得
sift 2:9d69f27a3d3b 190 gApsP = tmpApsP;
sift 2:9d69f27a3d3b 191 gApsS = tmpApsS;
sift 2:9d69f27a3d3b 192 gBrake = tmpBrake;
sift 2:9d69f27a3d3b 193
sift 2:9d69f27a3d3b 194 //未来の自分に期待
sift 2:9d69f27a3d3b 195 preApsP = rawApsP;
sift 2:9d69f27a3d3b 196 preApsS = rawApsS;
sift 2:9d69f27a3d3b 197 preBrake = rawBrake;
sift 2:9d69f27a3d3b 198 }
sift 1:4d86ec2fe4b1 199 }
sift 1:4d86ec2fe4b1 200
sift 5:a5462959b3ab 201 volatile int gRightPulseTime=100000, gLeftPulseTime=100000;
sift 7:ad013d88a539 202 volatile bool pulseTimeISRFlag = false;
sift 1:4d86ec2fe4b1 203
sift 2:9d69f27a3d3b 204 void countRightPulseISR(void)
sift 1:4d86ec2fe4b1 205 {
sift 1:4d86ec2fe4b1 206 //Do not use "printf" in interrupt!!!
sift 1:4d86ec2fe4b1 207 static int preTime=0;
sift 2:9d69f27a3d3b 208 int currentTime = RightPulseTimer.read_us();
sift 4:d7778cde0aff 209
sift 2:9d69f27a3d3b 210 gRightPulseTime = currentTime - preTime;
sift 2:9d69f27a3d3b 211
sift 5:a5462959b3ab 212 if(gRightPulseTime < MAX_PULSE_TIME) //12000rpm上限より早い場合
sift 5:a5462959b3ab 213 gRightPulseTime = MAX_PULSE_TIME;
sift 2:9d69f27a3d3b 214
sift 2:9d69f27a3d3b 215 if(currentTime < 1800000000) {
sift 2:9d69f27a3d3b 216 preTime = currentTime;
sift 2:9d69f27a3d3b 217 } else { //30分経過後
sift 2:9d69f27a3d3b 218 RightPulseTimer.reset();
sift 2:9d69f27a3d3b 219 preTime = 0;
sift 2:9d69f27a3d3b 220 }
sift 1:4d86ec2fe4b1 221 }
sift 1:4d86ec2fe4b1 222
sift 2:9d69f27a3d3b 223 void countLeftPulseISR(void)
sift 1:4d86ec2fe4b1 224 {
sift 1:4d86ec2fe4b1 225 //Do not use "printf" in interrupt!!!
sift 1:4d86ec2fe4b1 226 static int preTime=0;
sift 2:9d69f27a3d3b 227 int currentTime = LeftPulseTimer.read_us();
sift 2:9d69f27a3d3b 228
sift 2:9d69f27a3d3b 229 gLeftPulseTime = currentTime - preTime;
sift 2:9d69f27a3d3b 230
sift 5:a5462959b3ab 231 if(gLeftPulseTime < MAX_PULSE_TIME) //12000rpm上限より早い場合
sift 5:a5462959b3ab 232 gLeftPulseTime = MAX_PULSE_TIME;
sift 2:9d69f27a3d3b 233
sift 2:9d69f27a3d3b 234 if(currentTime < 1800000000) {
sift 2:9d69f27a3d3b 235 preTime = currentTime;
sift 2:9d69f27a3d3b 236 } else { //30分経過後
sift 2:9d69f27a3d3b 237 LeftPulseTimer.reset();
sift 2:9d69f27a3d3b 238 preTime = 0;
sift 2:9d69f27a3d3b 239 }
sift 2:9d69f27a3d3b 240 }
sift 2:9d69f27a3d3b 241
sift 7:ad013d88a539 242 void getPulseTimeISR(void)
sift 2:9d69f27a3d3b 243 {
sift 7:ad013d88a539 244 pulseTimeISRFlag = true;
sift 2:9d69f27a3d3b 245 }
sift 2:9d69f27a3d3b 246
sift 2:9d69f27a3d3b 247 int getPulseTime(SelectMotor rl)
sift 2:9d69f27a3d3b 248 {
sift 2:9d69f27a3d3b 249 static int preRightPulse, preLeftPulse;
sift 2:9d69f27a3d3b 250
sift 7:ad013d88a539 251 if(pulseTimeISRFlag == true) {
sift 7:ad013d88a539 252 pulseTimeISRFlag = false;
sift 2:9d69f27a3d3b 253
sift 3:821e2f07a260 254 preRightPulse = (int)(gRightPulseTime*ratioLPF_V + preRightPulse*(1.0f-ratioLPF_V));
sift 3:821e2f07a260 255 preLeftPulse = (int)(gLeftPulseTime*ratioLPF_V + preLeftPulse*(1.0f-ratioLPF_V));
sift 2:9d69f27a3d3b 256 }
sift 2:9d69f27a3d3b 257
sift 2:9d69f27a3d3b 258 if(rl == RIGHT_MOTOR)
sift 2:9d69f27a3d3b 259 return preRightPulse;
sift 2:9d69f27a3d3b 260 else
sift 2:9d69f27a3d3b 261 return preLeftPulse;
sift 2:9d69f27a3d3b 262 }
sift 2:9d69f27a3d3b 263
sift 2:9d69f27a3d3b 264 float getVelocity(void)
sift 2:9d69f27a3d3b 265 {
sift 2:9d69f27a3d3b 266 int rightPulse=0, leftPulse=0;
sift 2:9d69f27a3d3b 267 int avePulseTime;
sift 2:9d69f27a3d3b 268
sift 2:9d69f27a3d3b 269 rightPulse = getPulseTime(RIGHT_MOTOR);
sift 2:9d69f27a3d3b 270 leftPulse = getPulseTime(LEFT_MOTOR);
sift 2:9d69f27a3d3b 271
sift 5:a5462959b3ab 272 avePulseTime = (int)((rightPulse+leftPulse)/2.0);
sift 2:9d69f27a3d3b 273
sift 5:a5462959b3ab 274 if(avePulseTime < MAX_PULSE_TIME) //最低パルス時間にクリップ
sift 5:a5462959b3ab 275 avePulseTime = MAX_PULSE_TIME;
sift 2:9d69f27a3d3b 276
sift 5:a5462959b3ab 277 return (M_PI*TIRE_DIAMETER / ((avePulseTime/1000000.0)*TVD_GEAR_RATIO));
sift 1:4d86ec2fe4b1 278 }
sift 1:4d86ec2fe4b1 279
sift 1:4d86ec2fe4b1 280 void generatePulse(void)
sift 1:4d86ec2fe4b1 281 {
sift 1:4d86ec2fe4b1 282 static bool flag = false;
sift 1:4d86ec2fe4b1 283 flag = !flag;
sift 1:4d86ec2fe4b1 284 MotorPulse[0] = MotorPulse[1] = LED[0] = flag;
sift 1:4d86ec2fe4b1 285 }
sift 1:4d86ec2fe4b1 286
sift 2:9d69f27a3d3b 287 int distributeTorque(float velocity, float steering)
sift 2:9d69f27a3d3b 288 {
sift 2:9d69f27a3d3b 289 int disTor = 0;
sift 2:9d69f27a3d3b 290 float sqrtVelocity = velocity*velocity;
sift 2:9d69f27a3d3b 291 float Gy=0;
sift 2:9d69f27a3d3b 292
sift 2:9d69f27a3d3b 293 Gy = (sqrtVelocity*steering) / ((1.0f+STABIRITY_FACTOR*sqrtVelocity)*WHEEL_BASE);
sift 2:9d69f27a3d3b 294
sift 2:9d69f27a3d3b 295 if(Gy > 9.8f)
sift 2:9d69f27a3d3b 296 Gy = 9.8f;
sift 2:9d69f27a3d3b 297
sift 5:a5462959b3ab 298 if(Gy < 1.96f) {
sift 2:9d69f27a3d3b 299 disTor = 0;
sift 2:9d69f27a3d3b 300 } else if(Gy < 4.9f) {
sift 2:9d69f27a3d3b 301 disTor = ((float)MAX_DISTRIBUTION_TORQUE / (9.8f-4.9f) * Gy);
sift 2:9d69f27a3d3b 302 } else { //0.5G以上は配分一定
sift 2:9d69f27a3d3b 303 disTor = MAX_DISTRIBUTION_TORQUE;
sift 2:9d69f27a3d3b 304 }
sift 2:9d69f27a3d3b 305
sift 2:9d69f27a3d3b 306 return disTor;
sift 2:9d69f27a3d3b 307 }
sift 2:9d69f27a3d3b 308
sift 2:9d69f27a3d3b 309 //トルク値線形補間関数
sift 7:ad013d88a539 310 inline int interpolateLinear(int torque, int currentMaxTorque)
sift 2:9d69f27a3d3b 311 {
sift 7:ad013d88a539 312 return (int)(((double)(DACOUTPUT_MAX-LINEAR_REGION_VOLTAGE)/(currentMaxTorque-LINEAR_REGION_TORQUE)) * torque) + LINEAR_REGION_VOLTAGE-DACOUTPUT_MIN;
sift 2:9d69f27a3d3b 313 }
sift 2:9d69f27a3d3b 314
sift 2:9d69f27a3d3b 315 unsigned int calcTorqueToVoltage(int torque, SelectMotor rl)
sift 2:9d69f27a3d3b 316 {
sift 2:9d69f27a3d3b 317 int outputVoltage=0;
sift 2:9d69f27a3d3b 318 int rpm=0;
sift 6:26fa8c78500e 319 int currentMaxTorque=0;
sift 2:9d69f27a3d3b 320
sift 2:9d69f27a3d3b 321 if(torque <= LINEAR_REGION_TORQUE) { //要求トルク<=2.5Nmの時
sift 7:ad013d88a539 322 outputVoltage = (int)((double)(LINEAR_REGION_VOLTAGE-DACOUTPUT_MIN)/LINEAR_REGION_TORQUE * torque);
sift 2:9d69f27a3d3b 323 } else {
sift 6:26fa8c78500e 324 rpm = (int)(1.0/getPulseTime(rl)*1000000.0 * 60.0); //pulseTime:[us]
sift 6:26fa8c78500e 325
sift 7:ad013d88a539 326 rpm = 12000;
sift 4:d7778cde0aff 327
sift 6:26fa8c78500e 328 if(rpm < 3000) { //3000rpm未満は回転数による出力制限がないフラットな領域
sift 2:9d69f27a3d3b 329 outputVoltage = interpolateLinear(torque, MAX_MOTOR_TORQUE);
sift 6:26fa8c78500e 330 } else {
sift 6:26fa8c78500e 331 if(rpm <= 11000) {
sift 6:26fa8c78500e 332 int index = (int)((rpm - 3000)/10.0); //マップは10rpm刻みに作成
sift 6:26fa8c78500e 333 currentMaxTorque = calcMaxTorque[index];
sift 6:26fa8c78500e 334 } else {
sift 6:26fa8c78500e 335 currentMaxTorque = MAX_REVOLUTION_TORQUE; //回転数上限時の最大トルク
sift 6:26fa8c78500e 336 }
sift 6:26fa8c78500e 337
sift 6:26fa8c78500e 338 if(currentMaxTorque < torque) { //要求トルクが現在の回転数での最大値を超えている時
sift 6:26fa8c78500e 339 outputVoltage = DACOUTPUT_VALID_RANGE; //現在の回転数での最大トルクにクリップ
sift 6:26fa8c78500e 340 } else {
sift 6:26fa8c78500e 341 outputVoltage = interpolateLinear(torque, currentMaxTorque);
sift 6:26fa8c78500e 342 }
sift 6:26fa8c78500e 343 }
sift 6:26fa8c78500e 344 /*
sift 6:26fa8c78500e 345 if(rpm < 3000) { //3000rpm未満は回転数による出力制限がないフラットな領域
sift 6:26fa8c78500e 346 outputVoltage = interpolateLinear(torque, MAX_MOTOR_TORQUE);
sift 2:9d69f27a3d3b 347 } else if(rpm <=11000) {
sift 2:9d69f27a3d3b 348 index = (int)((rpm - 3000)/10.0); //マップは10rpm刻みに作成
sift 2:9d69f27a3d3b 349
sift 2:9d69f27a3d3b 350 if(calcMaxTorque[index] < torque) { //要求トルクが現在の回転数での最大値を超えている時
sift 2:9d69f27a3d3b 351 outputVoltage = DACOUTPUT_VALID_RANGE; //現在の回転数での最大トルクにクリップ
sift 2:9d69f27a3d3b 352 } else {
sift 2:9d69f27a3d3b 353 outputVoltage = interpolateLinear(torque, calcMaxTorque[index]);
sift 2:9d69f27a3d3b 354 }
sift 5:a5462959b3ab 355 } else {
sift 2:9d69f27a3d3b 356 if(MAX_REVOLUTION_TORQUE < torque) { //要求トルクが現在の回転数での最大値を超えている時
sift 2:9d69f27a3d3b 357 outputVoltage = DACOUTPUT_VALID_RANGE;
sift 2:9d69f27a3d3b 358 } else {
sift 2:9d69f27a3d3b 359 outputVoltage = interpolateLinear(torque, MAX_REVOLUTION_TORQUE);
sift 2:9d69f27a3d3b 360 }
sift 2:9d69f27a3d3b 361 }
sift 6:26fa8c78500e 362 */
sift 2:9d69f27a3d3b 363 }
sift 2:9d69f27a3d3b 364
sift 2:9d69f27a3d3b 365 outputVoltage += DACOUTPUT_MIN; //最低入力電圧でかさ上げ
sift 2:9d69f27a3d3b 366
sift 2:9d69f27a3d3b 367 return (unsigned int)(FIX_DACOUTFORM * outputVoltage); //DACの分解能に適応(16bit->12bit)
sift 2:9d69f27a3d3b 368 }
sift 2:9d69f27a3d3b 369
sift 2:9d69f27a3d3b 370 int calcRequestTorque(void)
sift 2:9d69f27a3d3b 371 {
sift 2:9d69f27a3d3b 372 int currentAPS;
sift 2:9d69f27a3d3b 373 int requestTorque;
sift 2:9d69f27a3d3b 374
sift 2:9d69f27a3d3b 375 currentAPS = ((gApsP>gApsS) ? gApsS : gApsP); //センサ値は小さい方を採用
sift 2:9d69f27a3d3b 376 if(currentAPS < APS_MIN_POSITION)
sift 2:9d69f27a3d3b 377 currentAPS = 0;
sift 2:9d69f27a3d3b 378 else
sift 2:9d69f27a3d3b 379 currentAPS -= APS_MIN_POSITION; //オフセット修正
sift 2:9d69f27a3d3b 380
sift 2:9d69f27a3d3b 381 if(currentAPS < APS_DEADBAND) //デッドバンド内であれば要求トルク->0
sift 2:9d69f27a3d3b 382 requestTorque = 0;
sift 2:9d69f27a3d3b 383 else
sift 2:9d69f27a3d3b 384 requestTorque = (int)(((double)MAX_OUTPUT_TORQUE / APS_VALID_RANGE) * (currentAPS - APS_DEADBAND));
sift 2:9d69f27a3d3b 385
sift 6:26fa8c78500e 386 if(requestTorque > MAX_OUTPUT_TORQUE)
sift 6:26fa8c78500e 387 requestTorque = MAX_OUTPUT_TORQUE;
sift 2:9d69f27a3d3b 388 else if(requestTorque < 0)
sift 2:9d69f27a3d3b 389 requestTorque = 0;
sift 2:9d69f27a3d3b 390
sift 2:9d69f27a3d3b 391 return requestTorque;
sift 2:9d69f27a3d3b 392 }
sift 2:9d69f27a3d3b 393
sift 1:4d86ec2fe4b1 394 void driveTVD(void)
sift 1:4d86ec2fe4b1 395 {
sift 6:26fa8c78500e 396 int requestTorque=0; //ドライバー要求トルク
sift 6:26fa8c78500e 397 int distributionTrq=0; //分配トルク
sift 7:ad013d88a539 398 int torqueHigh, torqueLow; //トルクの大きい方小さい方
sift 2:9d69f27a3d3b 399
sift 2:9d69f27a3d3b 400 loadSensors(); //APS,BRAKE更新
sift 2:9d69f27a3d3b 401 loadSteerAngle(); //舵角更新
sift 5:a5462959b3ab 402 //getPulseTime(RIGHT_MOTOR); //車速更新(更新時は片方指定コールでOK)
sift 2:9d69f27a3d3b 403
sift 6:26fa8c78500e 404 requestTorque=calcRequestTorque(); //ドライバー要求トルク取得
sift 4:d7778cde0aff 405
sift 7:ad013d88a539 406 //distributionTrq = distributeTorque(getVelocity(), MAX_STEER_ANGLE / M_PI * getSteerAngle()); //トルク分配量計算
sift 6:26fa8c78500e 407 distributionTrq /= 2.0f;
sift 6:26fa8c78500e 408
sift 6:26fa8c78500e 409 //配分の制御はなしとする
sift 3:821e2f07a260 410 //デバッグ終わったらこの行は消すこと!!!!!
sift 6:26fa8c78500e 411 distributionTrq=0;
sift 7:ad013d88a539 412 torqueHigh = torqueLow = requestTorque;
sift 4:d7778cde0aff 413
sift 7:ad013d88a539 414 /*
sift 6:26fa8c78500e 415 if(requestTorque + distributionTrq > MAX_OUTPUT_TORQUE) //片モーター上限時最大値にクリップ
sift 2:9d69f27a3d3b 416 torqueHigh = MAX_OUTPUT_TORQUE;
sift 2:9d69f27a3d3b 417 else
sift 6:26fa8c78500e 418 torqueHigh = requestTorque + distributionTrq;
sift 1:4d86ec2fe4b1 419
sift 6:26fa8c78500e 420 if(requestTorque - distributionTrq < 0) {
sift 2:9d69f27a3d3b 421 torqueLow = 0;
sift 2:9d69f27a3d3b 422 torqueHigh = (int)(requestTorque*2.0); //片モーター下限値時,反対のモーターも出力クリップ
sift 2:9d69f27a3d3b 423 } else
sift 6:26fa8c78500e 424 torqueLow = requestTorque - distributionTrq;
sift 7:ad013d88a539 425 */
sift 2:9d69f27a3d3b 426
sift 2:9d69f27a3d3b 427 if(getSteerDirection()) {
sift 2:9d69f27a3d3b 428 //steer left
sift 2:9d69f27a3d3b 429 McpData.valA = calcTorqueToVoltage(torqueHigh, RIGHT_MOTOR);
sift 2:9d69f27a3d3b 430 McpData.valB = calcTorqueToVoltage(torqueLow, LEFT_MOTOR);
sift 2:9d69f27a3d3b 431 } else {
sift 2:9d69f27a3d3b 432 //steer right
sift 2:9d69f27a3d3b 433 McpData.valA = calcTorqueToVoltage(torqueLow, RIGHT_MOTOR);
sift 2:9d69f27a3d3b 434 McpData.valB = calcTorqueToVoltage(torqueHigh, LEFT_MOTOR);
sift 2:9d69f27a3d3b 435 }
sift 2:9d69f27a3d3b 436
sift 2:9d69f27a3d3b 437 mcp.writeA(McpData.valA); //右モーター
sift 2:9d69f27a3d3b 438 mcp.writeB(McpData.valB); //左モーター
sift 1:4d86ec2fe4b1 439 }
sift 1:4d86ec2fe4b1 440
sift 1:4d86ec2fe4b1 441 void initTVD(void)
sift 1:4d86ec2fe4b1 442 {
sift 1:4d86ec2fe4b1 443 rightMotorPulse.mode(PullUp);
sift 1:4d86ec2fe4b1 444 leftMotorPulse.mode(PullUp);
sift 2:9d69f27a3d3b 445 rightMotorPulse.fall(&countRightPulseISR);
sift 2:9d69f27a3d3b 446 leftMotorPulse.fall(&countLeftPulseISR);
sift 1:4d86ec2fe4b1 447
sift 2:9d69f27a3d3b 448 RightPulseTimer.reset();
sift 2:9d69f27a3d3b 449 LeftPulseTimer.reset();
sift 2:9d69f27a3d3b 450 RightPulseTimer.start();
sift 2:9d69f27a3d3b 451 LeftPulseTimer.start();
sift 1:4d86ec2fe4b1 452
sift 2:9d69f27a3d3b 453 ticker1.attach(&loadSensorsISR, 0.01f); //サンプリング周期10msec
sift 2:9d69f27a3d3b 454 //ticker2.attach(&generatePulse, 0.03f);
sift 7:ad013d88a539 455 ticker3.attach(&getPulseTimeISR, 0.01f);
sift 1:4d86ec2fe4b1 456 }