2014 sift / Mbed 2 deprecated TVDctrller2017_brdRev1_PandA

Dependencies:   mbed

Fork of TVDctrller2017_brdRev1_ver6 by 2014 sift

Committer:
sift
Date:
Thu Jun 29 01:58:49 2017 +0000
Revision:
24:1de0291bc5eb
Parent:
23:ee53d2658801
Child:
25:c21d35c7f0de
first commit

Who changed what in which revision?

UserRevisionLine numberNew contents of line
sift 0:276c1dab2d62 1 #include "TVDCTRL.h"
sift 1:4d86ec2fe4b1 2 #include "MCP4922.h"
sift 1:4d86ec2fe4b1 3 #include "Steering.h"
sift 1:4d86ec2fe4b1 4
sift 1:4d86ec2fe4b1 5 extern AnalogIn apsP;
sift 1:4d86ec2fe4b1 6 extern AnalogIn apsS;
sift 2:9d69f27a3d3b 7 extern AnalogIn brake;
sift 1:4d86ec2fe4b1 8 extern DigitalOut LED[];
sift 1:4d86ec2fe4b1 9 extern InterruptIn rightMotorPulse;
sift 1:4d86ec2fe4b1 10 extern InterruptIn leftMotorPulse;
sift 24:1de0291bc5eb 11 extern InterruptIn rightTirePulse1;
sift 24:1de0291bc5eb 12 extern InterruptIn rightTirePulse2;
sift 24:1de0291bc5eb 13 extern InterruptIn leftTirePulse1;
sift 24:1de0291bc5eb 14 extern InterruptIn leftTirePulse2;
sift 1:4d86ec2fe4b1 15 extern MCP4922 mcp;
sift 8:a22aec357a64 16 extern Serial pc;
sift 19:571a4d00b89c 17 extern AnalogOut STR2AN;
sift 1:4d86ec2fe4b1 18
sift 2:9d69f27a3d3b 19 Timer RightPulseTimer;
sift 2:9d69f27a3d3b 20 Timer LeftPulseTimer;
sift 2:9d69f27a3d3b 21 Ticker ticker1;
sift 2:9d69f27a3d3b 22 Ticker ticker2;
sift 1:4d86ec2fe4b1 23
sift 18:b7c362c8f0fd 24 #define myAbs(x) ((x>0)?(x):(-(x)))
sift 18:b7c362c8f0fd 25
sift 2:9d69f27a3d3b 26 #define apsPVol() (apsP.read() * 3.3)
sift 2:9d69f27a3d3b 27 #define apsSVol() (apsS.read() * 3.3)
sift 0:276c1dab2d62 28
sift 0:276c1dab2d62 29 struct {
sift 0:276c1dab2d62 30 unsigned int valA:12;
sift 0:276c1dab2d62 31 unsigned int valB:12;
sift 2:9d69f27a3d3b 32 } McpData;
sift 1:4d86ec2fe4b1 33
sift 2:9d69f27a3d3b 34 //各変数が一定値を超えた時点でエラー検出とする
sift 2:9d69f27a3d3b 35 //2つのAPSの区別はつけないことにする
sift 12:ae291fa7239c 36 struct errCounter_t errCounter= {0,0,0,0,0,0,0};
sift 1:4d86ec2fe4b1 37
sift 12:ae291fa7239c 38 int readyToDriveFlag = 1;
sift 12:ae291fa7239c 39
sift 12:ae291fa7239c 40 int gApsP=0, gApsS=0, gBrake=0; //現在のセンサ値
sift 12:ae291fa7239c 41 int rawApsP=0, rawApsS=0, rawBrake=0; //現在の補正無しのセンサ値
sift 2:9d69f27a3d3b 42
sift 18:b7c362c8f0fd 43 //エラーカウンタ外部参照用関数
sift 18:b7c362c8f0fd 44 //errCounter_t型変数のポインタを引数に取る
sift 2:9d69f27a3d3b 45 void getCurrentErrCount(struct errCounter_t *ptr)
sift 1:4d86ec2fe4b1 46 {
sift 12:ae291fa7239c 47 ptr->apsUnderVolt = errCounter.apsUnderVolt;
sift 12:ae291fa7239c 48 ptr->apsExceedVolt = errCounter.apsExceedVolt;
sift 12:ae291fa7239c 49 ptr->apsErrorTolerance = errCounter.apsErrorTolerance;
sift 12:ae291fa7239c 50 ptr->apsStick = errCounter.apsStick;
sift 12:ae291fa7239c 51 ptr->brakeUnderVolt = errCounter.brakeUnderVolt;
sift 12:ae291fa7239c 52 ptr->brakeExceedVolt = errCounter.brakeExceedVolt;
sift 12:ae291fa7239c 53 ptr->brakeFuzzyVolt = errCounter.brakeFuzzyVolt;
sift 12:ae291fa7239c 54 ptr->brakeOverRide = errCounter.brakeOverRide;
sift 12:ae291fa7239c 55 }
sift 12:ae291fa7239c 56
sift 18:b7c362c8f0fd 57 //ブレーキONOFF判定関数
sift 12:ae291fa7239c 58 //Brake-ON:1 Brake-OFF:0
sift 12:ae291fa7239c 59 int isBrakeOn(void)
sift 12:ae291fa7239c 60 {
sift 12:ae291fa7239c 61 int brake = gBrake;
sift 12:ae291fa7239c 62 int brakeOnOff = 0;
sift 12:ae291fa7239c 63
sift 12:ae291fa7239c 64 if(brake > (BRK_ON_VOLTAGE - ERROR_TOLERANCE))
sift 12:ae291fa7239c 65 brakeOnOff = 1;
sift 12:ae291fa7239c 66 if(brake < (BRK_OFF_VOLTAGE + ERROR_TOLERANCE))
sift 12:ae291fa7239c 67 brakeOnOff = 0;
sift 12:ae291fa7239c 68
sift 12:ae291fa7239c 69 return brakeOnOff;
sift 2:9d69f27a3d3b 70 }
sift 1:4d86ec2fe4b1 71
sift 18:b7c362c8f0fd 72 //センサ現在値外部参照関数
sift 7:ad013d88a539 73 int getCurrentSensor(int sensor)
sift 2:9d69f27a3d3b 74 {
sift 2:9d69f27a3d3b 75 switch (sensor) {
sift 2:9d69f27a3d3b 76 case APS_PRIMARY:
sift 2:9d69f27a3d3b 77 return gApsP;
sift 2:9d69f27a3d3b 78 case APS_SECONDARY:
sift 2:9d69f27a3d3b 79 return gApsS;
sift 2:9d69f27a3d3b 80 case BRAKE:
sift 2:9d69f27a3d3b 81 return gBrake;
sift 2:9d69f27a3d3b 82 default:
sift 2:9d69f27a3d3b 83 return -1;
sift 1:4d86ec2fe4b1 84 }
sift 2:9d69f27a3d3b 85 }
sift 2:9d69f27a3d3b 86
sift 18:b7c362c8f0fd 87 //補正前センサ現在値外部参照関数
sift 7:ad013d88a539 88 int getRawSensor(int sensor)
sift 2:9d69f27a3d3b 89 {
sift 2:9d69f27a3d3b 90 switch (sensor) {
sift 2:9d69f27a3d3b 91 case APS_PRIMARY:
sift 2:9d69f27a3d3b 92 return rawApsP;
sift 2:9d69f27a3d3b 93 case APS_SECONDARY:
sift 2:9d69f27a3d3b 94 return rawApsS;
sift 2:9d69f27a3d3b 95 case BRAKE:
sift 2:9d69f27a3d3b 96 return rawBrake;
sift 2:9d69f27a3d3b 97 default:
sift 2:9d69f27a3d3b 98 return -1;
sift 1:4d86ec2fe4b1 99 }
sift 2:9d69f27a3d3b 100 }
sift 2:9d69f27a3d3b 101
sift 2:9d69f27a3d3b 102 bool loadSensorFlag = false;
sift 2:9d69f27a3d3b 103
sift 2:9d69f27a3d3b 104 //タイマー割り込みでコールされる
sift 2:9d69f27a3d3b 105 void loadSensorsISR(void)
sift 2:9d69f27a3d3b 106 {
sift 2:9d69f27a3d3b 107 loadSensorFlag = true;
sift 1:4d86ec2fe4b1 108 }
sift 1:4d86ec2fe4b1 109
sift 2:9d69f27a3d3b 110 //関数内処理時間より短い時間のタイマーのセットは禁止
sift 2:9d69f27a3d3b 111 void loadSensors(void)
sift 1:4d86ec2fe4b1 112 {
sift 2:9d69f27a3d3b 113 if(true == loadSensorFlag) {
sift 2:9d69f27a3d3b 114 loadSensorFlag = false;
sift 2:9d69f27a3d3b 115 static int preApsP=0, preApsS=0; //過去のセンサ値
sift 2:9d69f27a3d3b 116 static int preBrake=0;
sift 2:9d69f27a3d3b 117 int tmpApsP=0, tmpApsS=0, tmpBrake=0; //補正後のセンサ値
sift 2:9d69f27a3d3b 118 int tmpApsErrCountU=0, tmpApsErrCountE=0; //APSの一時的なエラーカウンタ
sift 2:9d69f27a3d3b 119
sift 2:9d69f27a3d3b 120 //Low Pass Filter
sift 2:9d69f27a3d3b 121 tmpApsP = (int)(apsP.read_u16()*ratioLPF + preApsP*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 122 tmpApsS = (int)(apsS.read_u16()*ratioLPF + preApsS*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 123 tmpBrake = (int)(brake.read_u16()*ratioLPF + preBrake*(1.0f-ratioLPF));
sift 2:9d69f27a3d3b 124
sift 2:9d69f27a3d3b 125 //生のセンサ値取得
sift 2:9d69f27a3d3b 126 rawApsP = tmpApsP;
sift 2:9d69f27a3d3b 127 rawApsS = tmpApsS;
sift 2:9d69f27a3d3b 128 rawBrake = tmpBrake;
sift 2:9d69f27a3d3b 129
sift 2:9d69f27a3d3b 130 //センサーチェック
sift 2:9d69f27a3d3b 131 //APS上限値チェック
sift 2:9d69f27a3d3b 132 if(tmpApsP > APS_MAX_POSITION + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 133 tmpApsP = APS_MAX_POSITION; //異常時,上限値にクリップ
sift 2:9d69f27a3d3b 134 tmpApsErrCountE++;
sift 2:9d69f27a3d3b 135 }
sift 2:9d69f27a3d3b 136 if(tmpApsS > APS_MAX_POSITION + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 137 tmpApsS = APS_MAX_POSITION; //異常時,上限値にクリップ
sift 2:9d69f27a3d3b 138 tmpApsErrCountE++;
sift 2:9d69f27a3d3b 139 }
sift 2:9d69f27a3d3b 140 if(0 == tmpApsErrCountE)
sift 2:9d69f27a3d3b 141 errCounter.apsExceedVolt = 0; //どちらも正常時エラーカウンタクリア
sift 2:9d69f27a3d3b 142 else
sift 2:9d69f27a3d3b 143 errCounter.apsExceedVolt += tmpApsErrCountE;
sift 2:9d69f27a3d3b 144
sift 2:9d69f27a3d3b 145 //APS下限値チェック
sift 2:9d69f27a3d3b 146 if(tmpApsP < APS_MIN_POSITION - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 147 tmpApsP = APS_MIN_POSITION; //下限値にクリップ
sift 2:9d69f27a3d3b 148 tmpApsErrCountU++;
sift 2:9d69f27a3d3b 149 }
sift 2:9d69f27a3d3b 150 if(tmpApsS < APS_MIN_POSITION - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 151 tmpApsS = APS_MIN_POSITION; //下限値にクリップ
sift 2:9d69f27a3d3b 152 tmpApsErrCountU++;
sift 2:9d69f27a3d3b 153 }
sift 2:9d69f27a3d3b 154 if(0 == tmpApsErrCountU)
sift 2:9d69f27a3d3b 155 errCounter.apsUnderVolt = 0; //どちらも正常時エラーカウンタクリア
sift 2:9d69f27a3d3b 156 else
sift 2:9d69f27a3d3b 157 errCounter.apsUnderVolt += tmpApsErrCountU;
sift 2:9d69f27a3d3b 158
sift 2:9d69f27a3d3b 159 //センサー偏差チェック
sift 2:9d69f27a3d3b 160 if(myAbs(tmpApsP - tmpApsS) > APS_DEVIATION_TOLERANCE) { //偏差チェックには補正後の値(tmp)を使用
sift 2:9d69f27a3d3b 161 errCounter.apsErrorTolerance++;
sift 2:9d69f27a3d3b 162 } else {
sift 2:9d69f27a3d3b 163 errCounter.apsErrorTolerance = 0;
sift 2:9d69f27a3d3b 164 }
sift 1:4d86ec2fe4b1 165
sift 2:9d69f27a3d3b 166 //小さい方にクリップ
sift 2:9d69f27a3d3b 167 //APS値は好きな方を使いな
sift 2:9d69f27a3d3b 168 if(tmpApsP > tmpApsS) {
sift 2:9d69f27a3d3b 169 tmpApsP = tmpApsS;
sift 2:9d69f27a3d3b 170 } else {
sift 2:9d69f27a3d3b 171 tmpApsS = tmpApsP;
sift 2:9d69f27a3d3b 172 }
sift 2:9d69f27a3d3b 173
sift 2:9d69f27a3d3b 174 //Brake上限値チェック
sift 12:ae291fa7239c 175 if(tmpBrake > BRK_ON_VOLTAGE + ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 176 errCounter.brakeExceedVolt++;
sift 12:ae291fa7239c 177 tmpBrake = BRK_ON_VOLTAGE;
sift 2:9d69f27a3d3b 178 } else {
sift 2:9d69f27a3d3b 179 errCounter.brakeExceedVolt = 0;
sift 2:9d69f27a3d3b 180 }
sift 2:9d69f27a3d3b 181
sift 2:9d69f27a3d3b 182 //Brake下限値チェック
sift 12:ae291fa7239c 183 if(tmpBrake < BRK_OFF_VOLTAGE - ERROR_TOLERANCE) {
sift 2:9d69f27a3d3b 184 errCounter.brakeUnderVolt++;
sift 12:ae291fa7239c 185 tmpBrake = BRK_OFF_VOLTAGE;
sift 2:9d69f27a3d3b 186 } else {
sift 2:9d69f27a3d3b 187 errCounter.brakeUnderVolt = 0;
sift 2:9d69f27a3d3b 188 }
sift 1:4d86ec2fe4b1 189
sift 2:9d69f27a3d3b 190 //brake範囲外電圧チェック
sift 12:ae291fa7239c 191 if((tmpBrake < BRK_ON_VOLTAGE - ERROR_TOLERANCE) && (tmpBrake > BRK_OFF_VOLTAGE + ERROR_TOLERANCE)) {
sift 2:9d69f27a3d3b 192 errCounter.brakeFuzzyVolt++;
sift 2:9d69f27a3d3b 193 tmpBrake = BRK_OFF_VOLTAGE;
sift 2:9d69f27a3d3b 194 } else {
sift 2:9d69f27a3d3b 195 errCounter.brakeFuzzyVolt=0;
sift 2:9d69f27a3d3b 196 }
sift 2:9d69f27a3d3b 197
sift 2:9d69f27a3d3b 198 //APS固着チェック
sift 2:9d69f27a3d3b 199 if((preApsP == tmpApsP) && (tmpApsP == APS_MAX_POSITION))
sift 2:9d69f27a3d3b 200 errCounter.apsStick++;
sift 2:9d69f27a3d3b 201 else
sift 2:9d69f27a3d3b 202 errCounter.apsStick=0;
sift 2:9d69f27a3d3b 203
sift 2:9d69f27a3d3b 204 //ブレーキオーバーライドチェック
sift 12:ae291fa7239c 205 if((isBrakeOn() == 1) && (tmpApsP >= APS_OVERRIDE25)) //Brake-ON and APS > 25%
sift 2:9d69f27a3d3b 206 errCounter.brakeOverRide++;
sift 12:ae291fa7239c 207 if(tmpApsP < APS_OVERRIDE05) //Brake-ON and APS < 5%
sift 2:9d69f27a3d3b 208 errCounter.brakeOverRide=0;
sift 2:9d69f27a3d3b 209
sift 2:9d69f27a3d3b 210 //センサ値取得
sift 2:9d69f27a3d3b 211 gApsP = tmpApsP;
sift 2:9d69f27a3d3b 212 gApsS = tmpApsS;
sift 2:9d69f27a3d3b 213 gBrake = tmpBrake;
sift 2:9d69f27a3d3b 214
sift 2:9d69f27a3d3b 215 //未来の自分に期待
sift 2:9d69f27a3d3b 216 preApsP = rawApsP;
sift 2:9d69f27a3d3b 217 preApsS = rawApsS;
sift 2:9d69f27a3d3b 218 preBrake = rawBrake;
sift 2:9d69f27a3d3b 219 }
sift 1:4d86ec2fe4b1 220 }
sift 1:4d86ec2fe4b1 221
sift 5:a5462959b3ab 222 volatile int gRightPulseTime=100000, gLeftPulseTime=100000;
sift 7:ad013d88a539 223 volatile bool pulseTimeISRFlag = false;
sift 1:4d86ec2fe4b1 224
sift 2:9d69f27a3d3b 225 void countRightPulseISR(void)
sift 1:4d86ec2fe4b1 226 {
sift 1:4d86ec2fe4b1 227 //Do not use "printf" in interrupt!!!
sift 1:4d86ec2fe4b1 228 static int preTime=0;
sift 2:9d69f27a3d3b 229 int currentTime = RightPulseTimer.read_us();
sift 4:d7778cde0aff 230
sift 2:9d69f27a3d3b 231 gRightPulseTime = currentTime - preTime;
sift 2:9d69f27a3d3b 232
sift 18:b7c362c8f0fd 233 if(gRightPulseTime < MIN_PULSE_TIME) //12000rpm上限より早い場合
sift 18:b7c362c8f0fd 234 gRightPulseTime = MIN_PULSE_TIME;
sift 2:9d69f27a3d3b 235
sift 2:9d69f27a3d3b 236 if(currentTime < 1800000000) {
sift 2:9d69f27a3d3b 237 preTime = currentTime;
sift 2:9d69f27a3d3b 238 } else { //30分経過後
sift 2:9d69f27a3d3b 239 RightPulseTimer.reset();
sift 2:9d69f27a3d3b 240 preTime = 0;
sift 2:9d69f27a3d3b 241 }
sift 1:4d86ec2fe4b1 242 }
sift 1:4d86ec2fe4b1 243
sift 2:9d69f27a3d3b 244 void countLeftPulseISR(void)
sift 1:4d86ec2fe4b1 245 {
sift 1:4d86ec2fe4b1 246 //Do not use "printf" in interrupt!!!
sift 1:4d86ec2fe4b1 247 static int preTime=0;
sift 2:9d69f27a3d3b 248 int currentTime = LeftPulseTimer.read_us();
sift 2:9d69f27a3d3b 249
sift 2:9d69f27a3d3b 250 gLeftPulseTime = currentTime - preTime;
sift 2:9d69f27a3d3b 251
sift 18:b7c362c8f0fd 252 if(gLeftPulseTime < MIN_PULSE_TIME) //12000rpm上限より早い場合
sift 18:b7c362c8f0fd 253 gLeftPulseTime = MIN_PULSE_TIME;
sift 2:9d69f27a3d3b 254
sift 2:9d69f27a3d3b 255 if(currentTime < 1800000000) {
sift 2:9d69f27a3d3b 256 preTime = currentTime;
sift 2:9d69f27a3d3b 257 } else { //30分経過後
sift 2:9d69f27a3d3b 258 LeftPulseTimer.reset();
sift 2:9d69f27a3d3b 259 preTime = 0;
sift 2:9d69f27a3d3b 260 }
sift 2:9d69f27a3d3b 261 }
sift 2:9d69f27a3d3b 262
sift 7:ad013d88a539 263 void getPulseTimeISR(void)
sift 2:9d69f27a3d3b 264 {
sift 7:ad013d88a539 265 pulseTimeISRFlag = true;
sift 2:9d69f27a3d3b 266 }
sift 2:9d69f27a3d3b 267
sift 2:9d69f27a3d3b 268 int getPulseTime(SelectMotor rl)
sift 2:9d69f27a3d3b 269 {
sift 2:9d69f27a3d3b 270 static int preRightPulse, preLeftPulse;
sift 2:9d69f27a3d3b 271
sift 7:ad013d88a539 272 if(pulseTimeISRFlag == true) {
sift 7:ad013d88a539 273 pulseTimeISRFlag = false;
sift 2:9d69f27a3d3b 274
sift 18:b7c362c8f0fd 275 if(gRightPulseTime > MAX_PULSE_TIME) //最大パルス時間にクリップ
sift 18:b7c362c8f0fd 276 gRightPulseTime = MAX_PULSE_TIME;
sift 18:b7c362c8f0fd 277 if(gLeftPulseTime > MAX_PULSE_TIME)
sift 18:b7c362c8f0fd 278 gLeftPulseTime = MAX_PULSE_TIME;
sift 10:87ad65eef0e9 279
sift 3:821e2f07a260 280 preRightPulse = (int)(gRightPulseTime*ratioLPF_V + preRightPulse*(1.0f-ratioLPF_V));
sift 3:821e2f07a260 281 preLeftPulse = (int)(gLeftPulseTime*ratioLPF_V + preLeftPulse*(1.0f-ratioLPF_V));
sift 2:9d69f27a3d3b 282 }
sift 2:9d69f27a3d3b 283
sift 2:9d69f27a3d3b 284 if(rl == RIGHT_MOTOR)
sift 2:9d69f27a3d3b 285 return preRightPulse;
sift 2:9d69f27a3d3b 286 else
sift 2:9d69f27a3d3b 287 return preLeftPulse;
sift 2:9d69f27a3d3b 288 }
sift 2:9d69f27a3d3b 289
sift 2:9d69f27a3d3b 290 float getVelocity(void)
sift 2:9d69f27a3d3b 291 {
sift 2:9d69f27a3d3b 292 int rightPulse=0, leftPulse=0;
sift 2:9d69f27a3d3b 293 int avePulseTime;
sift 2:9d69f27a3d3b 294
sift 2:9d69f27a3d3b 295 rightPulse = getPulseTime(RIGHT_MOTOR);
sift 2:9d69f27a3d3b 296 leftPulse = getPulseTime(LEFT_MOTOR);
sift 2:9d69f27a3d3b 297
sift 5:a5462959b3ab 298 avePulseTime = (int)((rightPulse+leftPulse)/2.0);
sift 2:9d69f27a3d3b 299
sift 18:b7c362c8f0fd 300 if(avePulseTime < MIN_PULSE_TIME) //最低パルス時間にクリップ
sift 18:b7c362c8f0fd 301 avePulseTime = MIN_PULSE_TIME;
sift 2:9d69f27a3d3b 302
sift 18:b7c362c8f0fd 303 return (float)(M_PI*TIRE_DIAMETER / ((avePulseTime/1000000.0)*TVD_GEAR_RATIO));
sift 1:4d86ec2fe4b1 304 }
sift 1:4d86ec2fe4b1 305
sift 21:bbf2ad7e6602 306 int distributeTorque_omega(float steering)
sift 21:bbf2ad7e6602 307 {
sift 21:bbf2ad7e6602 308 static float lastSteering=0.0f;
sift 22:95c1f753ecad 309 float omega=0;
sift 22:95c1f753ecad 310 int disTrq=0;
sift 21:bbf2ad7e6602 311
sift 21:bbf2ad7e6602 312 omega = lastSteering - steering; //舵角の差分算出
sift 22:95c1f753ecad 313
sift 21:bbf2ad7e6602 314 omega /= 0.01f; //制御周期で角速度演算
sift 21:bbf2ad7e6602 315
sift 22:95c1f753ecad 316 if(myAbs(omega) < 0.349f) { //20deg/s
sift 21:bbf2ad7e6602 317 disTrq = 0;
sift 22:95c1f753ecad 318 } else if(myAbs(omega) <= 8.727f) { //500deg/s
sift 23:ee53d2658801 319 disTrq = (int)((0xFFFF/45.0f * 10.0f) / (8.727f-0.349f) * (myAbs(omega) - 0.349f));
sift 21:bbf2ad7e6602 320 } else
sift 23:ee53d2658801 321 disTrq = (int)(0xFFFF/45.0f * 10.0f);
sift 22:95c1f753ecad 322
sift 21:bbf2ad7e6602 323 lastSteering = steering;
sift 21:bbf2ad7e6602 324
sift 22:95c1f753ecad 325 if(omega >= 0)
sift 22:95c1f753ecad 326 disTrq = -disTrq;
sift 22:95c1f753ecad 327
sift 21:bbf2ad7e6602 328 return disTrq;
sift 21:bbf2ad7e6602 329 }
sift 21:bbf2ad7e6602 330
sift 12:ae291fa7239c 331 int distributeTorque(float steering)
sift 2:9d69f27a3d3b 332 {
sift 9:220e4e77e056 333 int disTrq = 0;
sift 13:6dc51981f391 334 const float deadband = (M_PI/180.0f)*5.0f;
sift 2:9d69f27a3d3b 335
sift 12:ae291fa7239c 336 if(steering < deadband)
sift 9:220e4e77e056 337 disTrq = 0;
sift 20:3c5061281a7a 338 else if(steering < M_PI*0.5) {
sift 19:571a4d00b89c 339 steering -= deadband;
sift 19:571a4d00b89c 340 disTrq = (int)(MAX_DISTRIBUTION_TORQUE / (M_PI*0.5 - deadband) * steering);
sift 20:3c5061281a7a 341 } else
sift 19:571a4d00b89c 342 disTrq = MAX_DISTRIBUTION_TORQUE;
sift 20:3c5061281a7a 343 /*else {
sift 20:3c5061281a7a 344 steering -= deadband;
sift 20:3c5061281a7a 345 disTrq = (int)(MAX_DISTRIBUTION_TORQUE / (M_PI - deadband) * steering);
sift 20:3c5061281a7a 346 }
sift 20:3c5061281a7a 347 */
sift 20:3c5061281a7a 348 //pc.printf("%1.2f\r\n", 45.0/0xffff*disTrq);
sift 2:9d69f27a3d3b 349
sift 9:220e4e77e056 350 return disTrq;
sift 2:9d69f27a3d3b 351 }
sift 2:9d69f27a3d3b 352
sift 2:9d69f27a3d3b 353 //トルク値線形補間関数
sift 7:ad013d88a539 354 inline int interpolateLinear(int torque, int currentMaxTorque)
sift 2:9d69f27a3d3b 355 {
sift 8:a22aec357a64 356 return (int)(((double)(DACOUTPUT_MAX-LINEAR_REGION_VOLTAGE)/(currentMaxTorque-LINEAR_REGION_TORQUE)) * (torque-LINEAR_REGION_TORQUE)) + LINEAR_REGION_VOLTAGE-DACOUTPUT_MIN;
sift 2:9d69f27a3d3b 357 }
sift 2:9d69f27a3d3b 358
sift 2:9d69f27a3d3b 359 unsigned int calcTorqueToVoltage(int torque, SelectMotor rl)
sift 2:9d69f27a3d3b 360 {
sift 2:9d69f27a3d3b 361 int outputVoltage=0;
sift 2:9d69f27a3d3b 362 int rpm=0;
sift 6:26fa8c78500e 363 int currentMaxTorque=0;
sift 12:ae291fa7239c 364
sift 2:9d69f27a3d3b 365 if(torque <= LINEAR_REGION_TORQUE) { //要求トルク<=2.5Nmの時
sift 7:ad013d88a539 366 outputVoltage = (int)((double)(LINEAR_REGION_VOLTAGE-DACOUTPUT_MIN)/LINEAR_REGION_TORQUE * torque);
sift 2:9d69f27a3d3b 367 } else {
sift 15:3255cbe4ff34 368 //rpm = (int)(1.0/getPulseTime(rl)*1000000.0 * 60.0); //pulseTime:[us]
sift 16:7afd623ef48a 369
sift 15:3255cbe4ff34 370 rpm = 0;
sift 6:26fa8c78500e 371
sift 6:26fa8c78500e 372 if(rpm < 3000) { //3000rpm未満は回転数による出力制限がないフラットな領域
sift 2:9d69f27a3d3b 373 outputVoltage = interpolateLinear(torque, MAX_MOTOR_TORQUE);
sift 6:26fa8c78500e 374 } else {
sift 6:26fa8c78500e 375 if(rpm <= 11000) {
sift 6:26fa8c78500e 376 int index = (int)((rpm - 3000)/10.0); //マップは10rpm刻みに作成
sift 6:26fa8c78500e 377 currentMaxTorque = calcMaxTorque[index];
sift 6:26fa8c78500e 378 } else {
sift 6:26fa8c78500e 379 currentMaxTorque = MAX_REVOLUTION_TORQUE; //回転数上限時の最大トルク
sift 6:26fa8c78500e 380 }
sift 6:26fa8c78500e 381
sift 6:26fa8c78500e 382 if(currentMaxTorque < torque) { //要求トルクが現在の回転数での最大値を超えている時
sift 6:26fa8c78500e 383 outputVoltage = DACOUTPUT_VALID_RANGE; //現在の回転数での最大トルクにクリップ
sift 6:26fa8c78500e 384 } else {
sift 6:26fa8c78500e 385 outputVoltage = interpolateLinear(torque, currentMaxTorque);
sift 6:26fa8c78500e 386 }
sift 6:26fa8c78500e 387 }
sift 2:9d69f27a3d3b 388 }
sift 2:9d69f27a3d3b 389
sift 2:9d69f27a3d3b 390 outputVoltage += DACOUTPUT_MIN; //最低入力電圧でかさ上げ
sift 12:ae291fa7239c 391
sift 20:3c5061281a7a 392 //printf("%d\r\n", (int)(0xFFF*((double)outputVoltage/0xFFFF)));
sift 16:7afd623ef48a 393
sift 20:3c5061281a7a 394 return (unsigned int)(0xFFF*((double)outputVoltage/0xFFFF)); //DACの分解能に適応(16bit->12bit)
sift 2:9d69f27a3d3b 395 }
sift 2:9d69f27a3d3b 396
sift 2:9d69f27a3d3b 397 int calcRequestTorque(void)
sift 2:9d69f27a3d3b 398 {
sift 2:9d69f27a3d3b 399 int currentAPS;
sift 2:9d69f27a3d3b 400 int requestTorque;
sift 2:9d69f27a3d3b 401
sift 2:9d69f27a3d3b 402 currentAPS = ((gApsP>gApsS) ? gApsS : gApsP); //センサ値は小さい方を採用
sift 12:ae291fa7239c 403
sift 2:9d69f27a3d3b 404 if(currentAPS < APS_MIN_POSITION)
sift 2:9d69f27a3d3b 405 currentAPS = 0;
sift 2:9d69f27a3d3b 406 else
sift 2:9d69f27a3d3b 407 currentAPS -= APS_MIN_POSITION; //オフセット修正
sift 2:9d69f27a3d3b 408
sift 2:9d69f27a3d3b 409 if(currentAPS < APS_DEADBAND) //デッドバンド内であれば要求トルク->0
sift 2:9d69f27a3d3b 410 requestTorque = 0;
sift 2:9d69f27a3d3b 411 else
sift 2:9d69f27a3d3b 412 requestTorque = (int)(((double)MAX_OUTPUT_TORQUE / APS_VALID_RANGE) * (currentAPS - APS_DEADBAND));
sift 2:9d69f27a3d3b 413
sift 6:26fa8c78500e 414 if(requestTorque > MAX_OUTPUT_TORQUE)
sift 6:26fa8c78500e 415 requestTorque = MAX_OUTPUT_TORQUE;
sift 2:9d69f27a3d3b 416 else if(requestTorque < 0)
sift 2:9d69f27a3d3b 417 requestTorque = 0;
sift 2:9d69f27a3d3b 418
sift 12:ae291fa7239c 419 if((errCounter.brakeOverRide > ERRCOUNTER_DECISION) || (readyToDriveFlag == 1))
sift 12:ae291fa7239c 420 requestTorque = 0;
sift 12:ae291fa7239c 421
sift 2:9d69f27a3d3b 422 return requestTorque;
sift 2:9d69f27a3d3b 423 }
sift 2:9d69f27a3d3b 424
sift 17:a2246ce3333f 425 //トルク配分車速制限関数
sift 17:a2246ce3333f 426 //車速が低速域の場合,トルク配分0
sift 17:a2246ce3333f 427 float limitTorqueDistribution(void)
sift 17:a2246ce3333f 428 {
sift 17:a2246ce3333f 429 float limitRate;
sift 17:a2246ce3333f 430 float currentVelocity = getVelocity() * 3.6f; //km/hで車速取得
sift 20:3c5061281a7a 431
sift 17:a2246ce3333f 432 if(currentVelocity < 5.0f)
sift 17:a2246ce3333f 433 limitRate = 0.0f;
sift 18:b7c362c8f0fd 434 else if(currentVelocity < 15.0f)
sift 18:b7c362c8f0fd 435 limitRate = (currentVelocity - 5.0f) / (15.0f - 5.0f);
sift 17:a2246ce3333f 436 else
sift 17:a2246ce3333f 437 limitRate = 1.0f;
sift 20:3c5061281a7a 438
sift 17:a2246ce3333f 439 return limitRate;
sift 17:a2246ce3333f 440 }
sift 17:a2246ce3333f 441
sift 12:ae291fa7239c 442 extern DigitalIn RTDSW;
sift 12:ae291fa7239c 443 #define isPressedRTD(void) (!RTDSW.read())
sift 12:ae291fa7239c 444 extern DigitalOut indicatorLed;
sift 12:ae291fa7239c 445 #define indicateSystem(x) (indicatorLed.write(x))
sift 12:ae291fa7239c 446
sift 1:4d86ec2fe4b1 447 void driveTVD(void)
sift 1:4d86ec2fe4b1 448 {
sift 6:26fa8c78500e 449 int requestTorque=0; //ドライバー要求トルク
sift 6:26fa8c78500e 450 int distributionTrq=0; //分配トルク
sift 21:bbf2ad7e6602 451 int disTrq_omega=0;
sift 21:bbf2ad7e6602 452 int torqueRight, torqueLeft; //トルクの右左
sift 12:ae291fa7239c 453
sift 20:3c5061281a7a 454 static unsigned int preMcpA=0, preMcpB=0;
sift 20:3c5061281a7a 455
sift 2:9d69f27a3d3b 456 loadSensors(); //APS,BRAKE更新
sift 2:9d69f27a3d3b 457 loadSteerAngle(); //舵角更新
sift 12:ae291fa7239c 458
sift 12:ae291fa7239c 459 if(isPressedRTD() && isBrakeOn())
sift 12:ae291fa7239c 460 readyToDriveFlag = 0;
sift 2:9d69f27a3d3b 461
sift 12:ae291fa7239c 462 if((errCounter.apsUnderVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 463 || (errCounter.apsExceedVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 464 || (errCounter.apsErrorTolerance > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 465 // || (errCounter.apsStick > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 466 || (errCounter.brakeUnderVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 467 || (errCounter.brakeExceedVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 468 || (errCounter.brakeFuzzyVolt > ERRCOUNTER_DECISION)
sift 12:ae291fa7239c 469 ) {
sift 16:7afd623ef48a 470 readyToDriveFlag = 1;
sift 12:ae291fa7239c 471 }
sift 16:7afd623ef48a 472
sift 12:ae291fa7239c 473 indicateSystem(readyToDriveFlag | (errCounter.brakeOverRide > ERRCOUNTER_DECISION));
sift 20:3c5061281a7a 474 LED[0] = readyToDriveFlag | (errCounter.brakeOverRide > ERRCOUNTER_DECISION);
sift 16:7afd623ef48a 475
sift 6:26fa8c78500e 476 requestTorque=calcRequestTorque(); //ドライバー要求トルク取得
sift 21:bbf2ad7e6602 477 //デバッグ中!!!
sift 21:bbf2ad7e6602 478 //requestTorque = (int)(MAX_OUTPUT_TORQUE/2.0f);
sift 4:d7778cde0aff 479
sift 22:95c1f753ecad 480 distributionTrq = (int)(distributeTorque(myAbs(getSteerAngle())) / 2.0); //片モーターのトルク分配量計算
sift 21:bbf2ad7e6602 481 disTrq_omega = (int)(distributeTorque_omega(getSteerAngle()) / 2.0);
sift 21:bbf2ad7e6602 482
sift 22:95c1f753ecad 483 //printf("%d\r\n", disTrq_omega);
sift 22:95c1f753ecad 484
sift 18:b7c362c8f0fd 485 //distributionTrq = (int)(distributionTrq * limitTorqueDistribution()); //トルク配分の最低車速制限
sift 12:ae291fa7239c 486
sift 10:87ad65eef0e9 487 //デバッグ中
sift 13:6dc51981f391 488 //distributionTrq = 0;
sift 20:3c5061281a7a 489
sift 21:bbf2ad7e6602 490 if(getSteerDirection()) { //steer left
sift 21:bbf2ad7e6602 491 torqueRight = requestTorque + distributionTrq;
sift 21:bbf2ad7e6602 492 torqueLeft = requestTorque - distributionTrq;
sift 21:bbf2ad7e6602 493 } else { //steer right
sift 21:bbf2ad7e6602 494 torqueRight = requestTorque - distributionTrq;
sift 21:bbf2ad7e6602 495 torqueLeft = requestTorque + distributionTrq;
sift 22:95c1f753ecad 496 }
sift 21:bbf2ad7e6602 497
sift 22:95c1f753ecad 498 torqueRight += disTrq_omega;
sift 22:95c1f753ecad 499 torqueLeft -= disTrq_omega;
sift 20:3c5061281a7a 500
sift 21:bbf2ad7e6602 501 if(requestTorque < MIN_INNERWHEEL_MOTOR_TORQUE) {
sift 21:bbf2ad7e6602 502 torqueRight = torqueLeft = requestTorque; //内輪側モーター最低トルクより小さい要求トルクなら等配分
sift 21:bbf2ad7e6602 503 } else {
sift 21:bbf2ad7e6602 504 if(torqueLeft > MAX_OUTPUT_TORQUE) { //片モーター上限時最大値にクリップ
sift 21:bbf2ad7e6602 505 torqueLeft = MAX_OUTPUT_TORQUE;
sift 21:bbf2ad7e6602 506
sift 21:bbf2ad7e6602 507 if(((torqueRight + torqueLeft)/2.0) > requestTorque) {
sift 21:bbf2ad7e6602 508 torqueRight = requestTorque - (MAX_OUTPUT_TORQUE-requestTorque);
sift 21:bbf2ad7e6602 509 }
sift 21:bbf2ad7e6602 510 }
sift 21:bbf2ad7e6602 511 if(torqueRight > MAX_OUTPUT_TORQUE) { //片モーター上限時最大値にクリップ
sift 21:bbf2ad7e6602 512 torqueRight = MAX_OUTPUT_TORQUE;
sift 21:bbf2ad7e6602 513 if(((torqueRight + torqueLeft)/2.0) > requestTorque) {
sift 21:bbf2ad7e6602 514 torqueLeft = requestTorque - (MAX_OUTPUT_TORQUE-requestTorque);
sift 21:bbf2ad7e6602 515 }
sift 21:bbf2ad7e6602 516 }
sift 21:bbf2ad7e6602 517 if(torqueLeft < MIN_INNERWHEEL_MOTOR_TORQUE) { //内輪最低トルク時
sift 21:bbf2ad7e6602 518 torqueLeft = MIN_INNERWHEEL_MOTOR_TORQUE; //内輪最低トルクにクリップ
sift 21:bbf2ad7e6602 519 torqueRight = (int)((requestTorque-MIN_INNERWHEEL_MOTOR_TORQUE)*2.0) + MIN_INNERWHEEL_MOTOR_TORQUE; //片モーター下限値時,トルク高側のモーターも出力クリップ
sift 21:bbf2ad7e6602 520 }
sift 21:bbf2ad7e6602 521 if(torqueRight < MIN_INNERWHEEL_MOTOR_TORQUE) { //内輪最低トルク時
sift 21:bbf2ad7e6602 522 torqueRight = MIN_INNERWHEEL_MOTOR_TORQUE; //内輪最低トルクにクリップ
sift 21:bbf2ad7e6602 523 torqueLeft = (int)((requestTorque-MIN_INNERWHEEL_MOTOR_TORQUE)*2.0) + MIN_INNERWHEEL_MOTOR_TORQUE; //片モーター下限値時,トルク高側のモーターも出力クリップ
sift 21:bbf2ad7e6602 524 }
sift 16:7afd623ef48a 525 }
sift 1:4d86ec2fe4b1 526
sift 23:ee53d2658801 527 //printf("%d %d %f\r\n", torqueRight, torqueLeft, getSteerAngle());
sift 20:3c5061281a7a 528
sift 21:bbf2ad7e6602 529 McpData.valA = calcTorqueToVoltage(torqueRight, RIGHT_MOTOR);
sift 21:bbf2ad7e6602 530 McpData.valB = calcTorqueToVoltage(torqueLeft, LEFT_MOTOR);
sift 16:7afd623ef48a 531
sift 21:bbf2ad7e6602 532 //pc.printf("%u %u\r\n", McpData.valA, McpData.valB);
sift 2:9d69f27a3d3b 533
sift 20:3c5061281a7a 534 preMcpA = (unsigned int)(McpData.valA * 0.456 + preMcpA * 0.544);
sift 20:3c5061281a7a 535 preMcpB = (unsigned int)(McpData.valB * 0.456 + preMcpB * 0.544);
sift 20:3c5061281a7a 536
sift 20:3c5061281a7a 537 mcp.writeA(preMcpA); //右モーター
sift 20:3c5061281a7a 538 mcp.writeB(preMcpB); //左モーター
sift 1:4d86ec2fe4b1 539 }
sift 1:4d86ec2fe4b1 540
sift 1:4d86ec2fe4b1 541 void initTVD(void)
sift 1:4d86ec2fe4b1 542 {
sift 1:4d86ec2fe4b1 543 rightMotorPulse.mode(PullUp);
sift 1:4d86ec2fe4b1 544 leftMotorPulse.mode(PullUp);
sift 2:9d69f27a3d3b 545 rightMotorPulse.fall(&countRightPulseISR);
sift 2:9d69f27a3d3b 546 leftMotorPulse.fall(&countLeftPulseISR);
sift 1:4d86ec2fe4b1 547
sift 2:9d69f27a3d3b 548 RightPulseTimer.reset();
sift 2:9d69f27a3d3b 549 LeftPulseTimer.reset();
sift 2:9d69f27a3d3b 550 RightPulseTimer.start();
sift 2:9d69f27a3d3b 551 LeftPulseTimer.start();
sift 1:4d86ec2fe4b1 552
sift 2:9d69f27a3d3b 553 ticker1.attach(&loadSensorsISR, 0.01f); //サンプリング周期10msec
sift 19:571a4d00b89c 554 ticker2.attach(&getPulseTimeISR, 0.01f);
sift 10:87ad65eef0e9 555
sift 10:87ad65eef0e9 556 mcp.writeA(0); //右モーター
sift 10:87ad65eef0e9 557 mcp.writeB(0); //左モーター
sift 20:3c5061281a7a 558
sift 19:571a4d00b89c 559 printf("MAX OUTPUT TORQUE:\t\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MAX_OUTPUT_TORQUE);
sift 18:b7c362c8f0fd 560 printf("MAX DISTRIBUTION TORQUE:\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MAX_DISTRIBUTION_TORQUE);
sift 19:571a4d00b89c 561 printf("MIN INNERWHEEL-MOTOR TORQUE:\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MIN_INNERWHEEL_MOTOR_TORQUE);
sift 1:4d86ec2fe4b1 562 }