USB BARCODE READER
Fork of USBHOST by
USBHost/USBHALHost_NUC472.cpp
- Committer:
- shivanandgowdakr
- Date:
- 2018-07-02
- Revision:
- 7:ccd0ac9ae1c9
- Parent:
- 1:ab240722d7ef
File content as of revision 7:ccd0ac9ae1c9:
/* mbed Microcontroller Library * Copyright (c) 2015-2016 Nuvoton * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined(TARGET_NUC472) #include "mbed.h" #include "USBHALHost.h" #include "dbg.h" #include "pinmap.h" #define HCCA_SIZE sizeof(HCCA) #define ED_SIZE sizeof(HCED) #define TD_SIZE sizeof(HCTD) #define TOTAL_SIZE (HCCA_SIZE + (MAX_ENDPOINT*ED_SIZE) + (MAX_TD*TD_SIZE)) static volatile MBED_ALIGN(256) uint8_t usb_buf[TOTAL_SIZE]; // 256 bytes aligned! USBHALHost * USBHALHost::instHost; USBHALHost::USBHALHost() { instHost = this; memInit(); memset((void*)usb_hcca, 0, HCCA_SIZE); for (int i = 0; i < MAX_ENDPOINT; i++) { edBufAlloc[i] = false; } for (int i = 0; i < MAX_TD; i++) { tdBufAlloc[i] = false; } } void USBHALHost::init() { // Unlock protected registers SYS_UnlockReg(); // NOTE: Configure as OTG device first; otherwise, program will trap in wait loop CLK_STATUS_PLL2STB_Msk below. SYS->USBPHY = SYS_USBPHY_LDO33EN_Msk | SYS_USBPHY_USBROLE_ON_THE_GO; // NOTE: Enable OTG here; otherwise, program will trap in wait loop CLK_STATUS_PLL2STB_Msk below. CLK_EnableModuleClock(OTG_MODULE); OTG->PHYCTL = (OTG->PHYCTL | OTG_PHYCTL_OTGPHYEN_Msk) & ~OTG_PHYCTL_IDDETEN_Msk; //OTG->CTL |= OTG_CTL_OTGEN_Msk | OTG_CTL_BUSREQ_Msk; // PB.0: USB0 external VBUS regulator status // USB_OC // PB.1: USB0 external VBUS regulator enable // NCT3520U low active (USB_PWR_EN) pin_function(PB_0, SYS_GPB_MFPL_PB0MFP_USB0_OTG5V_ST); pin_function(PB_1, SYS_GPB_MFPL_PB1MFP_USB0_OTG5V_EN); // PB.2: USB1 differential signal D- // PB.3: USB1 differential signal D+ //pin_function(PB_2, SYS_GPB_MFPL_PB2MFP_USB1_D_N); //pin_function(PB_3, SYS_GPB_MFPL_PB3MFP_USB1_D_P); // Set PB.4 output high to enable USB power //gpio_t gpio; //gpio_init_out_ex(&gpio, PB_4, 1); // NOTE: // 1. Set USBH clock source to PLL2; otherwise, program will trap in wait loop CLK_STATUS_PLL2STB_Msk below. // 2. Don't set CLK_PLL2CTL_PLL2CKEN_Msk. USBH will work abnormally with it enabled. CLK->CLKSEL0 &= ~CLK_CLKSEL0_USBHSEL_Msk; // Enable PLL2, 480 MHz / 2 / (1+4) => 48 MHz output CLK->PLL2CTL = /*CLK_PLL2CTL_PLL2CKEN_Msk | */ (4 << CLK_PLL2CTL_PLL2DIV_Pos); // Wait PLL2 stable ... while (!(CLK->STATUS & CLK_STATUS_PLL2STB_Msk)); // Select USB Host clock source from PLL2, clock divied by 1 CLK_SetModuleClock(USBH_MODULE, CLK_CLKSEL0_USBHSEL_PLL2, CLK_CLKDIV0_USB(1)); // Enable USB Host clock CLK_EnableModuleClock(USBH_MODULE); // Lock protected registers SYS_LockReg(); // Overcurrent flag is high active USBH->HcMiscControl &= ~USBH_HcMiscControl_OCAL_Msk; // Disable HC interrupts USBH->HcInterruptDisable = OR_INTR_ENABLE_MIE; // Needed by some controllers USBH->HcControl = 0; // Software reset USBH->HcCommandStatus = OR_CMD_STATUS_HCR; while (USBH->HcCommandStatus & OR_CMD_STATUS_HCR); // Put HC in reset state USBH->HcControl = (USBH->HcControl & ~OR_CONTROL_HCFS) | OR_CONTROL_HC_RSET; // HCD must wait 10ms for HC reset complete wait_ms(100); USBH->HcControlHeadED = 0; // Initialize Control ED list head to 0 USBH->HcBulkHeadED = 0; // Initialize Bulk ED list head to 0 USBH->HcHCCA = (uint32_t) usb_hcca; USBH->HcFmInterval = DEFAULT_FMINTERVAL; // Frame interval = 12000 - 1 // MPS = 10,104 USBH->HcPeriodicStart = FI * 90 / 100; // 90% of frame interval USBH->HcLSThreshold = 0x628; // Low speed threshold // Put HC in operational state USBH->HcControl = (USBH->HcControl & (~OR_CONTROL_HCFS)) | OR_CONTROL_HC_OPER; // FIXME: Ports are power switched. All ports are powered at the same time. Doesn't match BSP sample. USBH->HcRhDescriptorA = USBH->HcRhDescriptorA & ~USBH_HcRhDescriptorA_NPS_Msk & ~USBH_HcRhDescriptorA_PSM_Msk; // Issue SetGlobalPower command USBH->HcRhStatus = USBH_HcRhStatus_LPSC_Msk; // Power On To Power Good Time, in 2 ms units wait_ms(((USBH->HcRhDescriptorA & USBH_HcRhDescriptorA_POTPGT_Msk) >> USBH_HcRhDescriptorA_POTPGT_Pos) * 2); // Clear Interrrupt Status USBH->HcInterruptStatus |= USBH->HcInterruptStatus; // Enable interrupts we care about USBH->HcInterruptEnable = OR_INTR_ENABLE_MIE | OR_INTR_ENABLE_WDH | OR_INTR_ENABLE_RHSC; // Unlock protected registers SYS_UnlockReg(); // NOTE: Configure as USB host after USBH init above; otherwise system will crash. SYS->USBPHY = (SYS->USBPHY & ~SYS_USBPHY_USBROLE_Msk) | SYS_USBPHY_USBROLE_STD_USBH; // Lock protected registers SYS_LockReg(); NVIC_SetVector(USBH_IRQn, (uint32_t)(_usbisr)); NVIC_EnableIRQ(USBH_IRQn); // Check for any connected devices if (USBH->HcRhPortStatus[0] & OR_RH_PORT_CCS) { // Device connected wait_ms(150); deviceConnected(0, 1, USBH->HcRhPortStatus[0] & OR_RH_PORT_LSDA); } } uint32_t USBHALHost::controlHeadED() { return USBH->HcControlHeadED; } uint32_t USBHALHost::bulkHeadED() { return USBH->HcBulkHeadED; } uint32_t USBHALHost::interruptHeadED() { // FIXME: Only support one INT ED? return usb_hcca->IntTable[0]; } void USBHALHost::updateBulkHeadED(uint32_t addr) { USBH->HcBulkHeadED = addr; } void USBHALHost::updateControlHeadED(uint32_t addr) { USBH->HcControlHeadED = addr; } void USBHALHost::updateInterruptHeadED(uint32_t addr) { // FIXME: Only support one INT ED? usb_hcca->IntTable[0] = addr; } void USBHALHost::enableList(ENDPOINT_TYPE type) { switch(type) { case CONTROL_ENDPOINT: USBH->HcCommandStatus = OR_CMD_STATUS_CLF; USBH->HcControl |= OR_CONTROL_CLE; break; case ISOCHRONOUS_ENDPOINT: // FIXME break; case BULK_ENDPOINT: USBH->HcCommandStatus = OR_CMD_STATUS_BLF; USBH->HcControl |= OR_CONTROL_BLE; break; case INTERRUPT_ENDPOINT: USBH->HcControl |= OR_CONTROL_PLE; break; } } bool USBHALHost::disableList(ENDPOINT_TYPE type) { switch(type) { case CONTROL_ENDPOINT: if(USBH->HcControl & OR_CONTROL_CLE) { USBH->HcControl &= ~OR_CONTROL_CLE; return true; } return false; case ISOCHRONOUS_ENDPOINT: // FIXME return false; case BULK_ENDPOINT: if(USBH->HcControl & OR_CONTROL_BLE){ USBH->HcControl &= ~OR_CONTROL_BLE; return true; } return false; case INTERRUPT_ENDPOINT: if(USBH->HcControl & OR_CONTROL_PLE) { USBH->HcControl &= ~OR_CONTROL_PLE; return true; } return false; } return false; } void USBHALHost::memInit() { usb_hcca = (volatile HCCA *)usb_buf; usb_edBuf = usb_buf + HCCA_SIZE; usb_tdBuf = usb_buf + HCCA_SIZE + (MAX_ENDPOINT*ED_SIZE); } volatile uint8_t * USBHALHost::getED() { for (int i = 0; i < MAX_ENDPOINT; i++) { if ( !edBufAlloc[i] ) { edBufAlloc[i] = true; return (volatile uint8_t *)(usb_edBuf + i*ED_SIZE); } } perror("Could not allocate ED\r\n"); return NULL; //Could not alloc ED } volatile uint8_t * USBHALHost::getTD() { int i; for (i = 0; i < MAX_TD; i++) { if ( !tdBufAlloc[i] ) { tdBufAlloc[i] = true; return (volatile uint8_t *)(usb_tdBuf + i*TD_SIZE); } } perror("Could not allocate TD\r\n"); return NULL; //Could not alloc TD } void USBHALHost::freeED(volatile uint8_t * ed) { int i; i = (ed - usb_edBuf) / ED_SIZE; edBufAlloc[i] = false; } void USBHALHost::freeTD(volatile uint8_t * td) { int i; i = (td - usb_tdBuf) / TD_SIZE; tdBufAlloc[i] = false; } void USBHALHost::resetRootHub() { // Reset port1 USBH->HcRhPortStatus[0] = OR_RH_PORT_PRS; while (USBH->HcRhPortStatus[0] & OR_RH_PORT_PRS); USBH->HcRhPortStatus[0] = OR_RH_PORT_PRSC; } void USBHALHost::_usbisr(void) { if (instHost) { instHost->UsbIrqhandler(); } } void USBHALHost::UsbIrqhandler() { uint32_t ints = USBH->HcInterruptStatus; // Root hub status change interrupt if (ints & OR_INTR_STATUS_RHSC) { uint32_t ints_roothub = USBH->HcRhStatus; uint32_t ints_port1 = USBH->HcRhPortStatus[0]; // Port1: ConnectStatusChange if (ints_port1 & OR_RH_PORT_CSC) { if (ints_roothub & OR_RH_STATUS_DRWE) { // When DRWE is on, Connect Status Change means a remote wakeup event. } else { if (ints_port1 & OR_RH_PORT_CCS) { // Root device connected // wait 150ms to avoid bounce wait_ms(150); //Hub 0 (root hub), Port 1 (count starts at 1), Low or High speed deviceConnected(0, 1, ints_port1 & OR_RH_PORT_LSDA); } else { // Root device disconnected if (!(ints & OR_INTR_STATUS_WDH)) { usb_hcca->DoneHead = 0; } // wait 200ms to avoid bounce wait_ms(200); deviceDisconnected(0, 1, NULL, usb_hcca->DoneHead & 0xFFFFFFFE); if (ints & OR_INTR_STATUS_WDH) { usb_hcca->DoneHead = 0; USBH->HcInterruptStatus = OR_INTR_STATUS_WDH; } } } USBH->HcRhPortStatus[0] = OR_RH_PORT_CSC; } // Port1: Reset completed if (ints_port1 & OR_RH_PORT_PRSC) { USBH->HcRhPortStatus[0] = OR_RH_PORT_PRSC; } // Port1: PortEnableStatusChange if (ints_port1 & OR_RH_PORT_PESC) { USBH->HcRhPortStatus[0] = OR_RH_PORT_PESC; } USBH->HcInterruptStatus = OR_INTR_STATUS_RHSC; } // Writeback Done Head interrupt if (ints & OR_INTR_STATUS_WDH) { transferCompleted(usb_hcca->DoneHead & 0xFFFFFFFE); USBH->HcInterruptStatus = OR_INTR_STATUS_WDH; } } #endif