Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed Watchdog SDFileSystem DigoleSerialDisp
Diff: Estimation/kalman.cpp
- Revision:
- 0:a6a169de725f
- Child:
- 2:fbc6e3cf3ed8
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Estimation/kalman.cpp Mon May 27 13:26:03 2013 +0000
@@ -0,0 +1,228 @@
+#include "mbed.h"
+#include "Matrix.h"
+
+#define DEBUG 1
+
+#define clamp360(x) ((((x) < 0) ? 360: 0) + fmod((x), 360))
+
+/*
+ * Kalman Filter Setup
+ */
+static float x[2]={ 0, 0 }; // System State: hdg, hdg rate
+float z[2]={ 0, 0 }; // measurements, hdg, hdg rate
+static float A[4]={ 1, 0, 0, 1}; // State transition matrix; A[1] should be dt
+static float H[4]={ 1, 0, 0, 1 }; // Observer matrix maps measurements to state transition
+float K[4]={ 0, 0, 0, 0 }; // Kalman gain
+static float P[4]={ 1000, 0, 0, 1000 }; // Covariance matrix
+static float R[4]={ 3, 0, 0, 0.03 }; // Measurement noise, hdg, hdg rate
+static float Q[4]={ 0.01, 0, 0, 0.01 }; // Process noise matrix
+static float I[4]={ 1, 0, 0, 1 }; // Identity matrix
+
+float kfGetX(int i)
+{
+ return (i >= 0 && i < 2) ? x[i] : 0xFFFFFFFF;
+}
+
+/** headingKalmanInit
+ *
+ * initialize x, z, K, and P
+ */
+void headingKalmanInit(float x0)
+{
+ x[0] = x0;
+ x[1] = 0;
+
+ z[0] = 0;
+ z[1] = 0;
+
+ K[0] = 0; K[1] = 0;
+ K[2] = 0; K[3] = 0;
+
+ P[0] = 1000; P[1] = 0;
+ P[2] = 0; P[3] = 1000;
+}
+
+
+/* headingKalman
+ *
+ * Implements a 1-dimensional, 1st order Kalman Filter
+ *
+ * That is, it deals with heading and heading rate (h and h') but no other
+ * state variables. The state equations are:
+ *
+ * X = A X^
+ * h = h + h'dt --> | h | = | 1 dt | | h |
+ * h' = h' | h' | | 0 1 | | h' |
+ *
+ * Kalman Filtering is not that hard. If it's hard you haven't found the right
+ * teacher. Try taking CS373 from Udacity.com
+ *
+ * This notation is Octave (Matlab) syntax and is based on the Bishop-Welch
+ * paper and references the equation numbers in that paper.
+ * http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
+ *
+ * returns : current heading estimate
+ */
+float headingKalman(float dt, float Hgps, bool gps, float dHgyro, bool gyro)
+{
+ A[1] = dt;
+
+ /* Initialize, first time thru
+ x = H*z0
+ */
+
+ //fprintf(stdout, "gyro? %c gps? %c\n", (gyro)?'Y':'N', (gps)?'Y':'N');
+
+ // Depending on what sensor measurements we've gotten,
+ // switch between observer (H) matrices and measurement noise (R) matrices
+ // TODO: incorporate HDOP or sat count in R
+ if (gps) {
+ H[0] = 1.0;
+ z[0] = Hgps;
+ } else {
+ H[0] = 0;
+ z[0] = 0;
+ }
+
+ if (gyro) {
+ H[3] = 1.0;
+ z[1] = dHgyro;
+ } else {
+ H[3] = 0;
+ z[1] = 0;
+ }
+
+ //Matrix_print(2,2, A, "1. A");
+ //Matrix_print(2,2, P, " P");
+ //Matrix_print(2,1, x, " x");
+ //Matrix_print(2,1, K, " K");
+ //Matrix_print(2,2, H, "2. H");
+ //Matrix_print(2,1, z, " z");
+
+ /**********************************************************************
+ * Predict
+ %
+ * In this step we "move" our state estimate according to the equation
+ *
+ * x = A*x; // Eq 1.9
+ ***********************************************************************/
+ float xp[2];
+ Matrix_Multiply(2,2,1, xp, A, x);
+
+ //Matrix_print(2,1, xp, "3. xp");
+
+ /**********************************************************************
+ * We also have to "move" our uncertainty and add noise. Whenever we move,
+ * we lose certainty because of system noise.
+ *
+ * P = A*P*A' + Q; // Eq 1.10
+ ***********************************************************************/
+ float At[4];
+ Matrix_Transpose(2,2, At, A);
+ float AP[4];
+ Matrix_Multiply(2,2,2, AP, A, P);
+ float APAt[4];
+ Matrix_Multiply(2,2,2, APAt, AP, At);
+ Matrix_Add(2,2, P, APAt, Q);
+
+ //Matrix_print(2,2, P, "4. P");
+
+ /**********************************************************************
+ * Measurement aka Correct
+ * First, we have to figure out the Kalman Gain which is basically how
+ * much we trust the sensor measurement versus our prediction.
+ *
+ * K = P*H'*inv(H*P*H' + R); // Eq 1.11
+ ***********************************************************************/
+ float Ht[4];
+ //Matrix_print(2,2, H, "5. H");
+ Matrix_Transpose(2,2, Ht, H);
+ //Matrix_print(2,2, Ht, "5. Ht");
+
+ float HP[2];
+ //Matrix_print(2,2, P, "5. P");
+ Matrix_Multiply(2,2,2, HP, H, P);
+ //Matrix_print(2,2, HP, "5. HP");
+
+ float HPHt[4];
+ Matrix_Multiply(2,2,2, HPHt, HP, Ht);
+ //Matrix_print(2,2, HPHt, "5. HPHt");
+
+ float HPHtR[4];
+ //Matrix_print(2,2, R, "5. R");
+ Matrix_Add(2,2, HPHtR, HPHt, R);
+ //Matrix_print(2,2, HPHtR, "5. HPHtR");
+
+ Matrix_Inverse(2, HPHtR);
+ //Matrix_print(2,2, HPHtR, "5. HPHtR");
+
+ float PHt[2];
+ //Matrix_print(2,2, P, "5. P");
+ //Matrix_print(2,2, Ht, "5. Ht");
+ Matrix_Multiply(2,2,2, PHt, P, Ht);
+ //Matrix_print(2,2, PHt, "5. PHt");
+
+ Matrix_Multiply(2,2,2, K, PHt, HPHtR);
+
+ //Matrix_print(2,2, K, "5. K");
+
+ /**********************************************************************
+ * Then we determine the discrepancy between prediction and measurement
+ * with the "Innovation" or Residual: z-H*x, multiply that by the
+ * Kalman gain to correct the estimate towards the prediction a little
+ * at a time.
+ *
+ * x = x + K*(z-H*x); // Eq 1.12
+ ***********************************************************************/
+ float Hx[2];
+ Matrix_Multiply(2,2,1, Hx, H, xp);
+
+ //Matrix_print(2,2, H, "6. H");
+ //Matrix_print(2,1, x, "6. x");
+ //Matrix_print(2,1, Hx, "6. Hx");
+
+ float zHx[2];
+ Matrix_Subtract(2,1, zHx, z, Hx);
+
+ // At this point we need to be sure to correct heading to -180 to 180 range
+ if (zHx[0] > 180.0) zHx[0] -= 360.0;
+ if (zHx[0] <= -180.0) zHx[0] += 360.0;
+
+ //Matrix_print(2,1, z, "6. z");
+ //Matrix_print(2,1, zHx, "6. zHx");
+
+ float KzHx[2];
+ Matrix_Multiply(2,2,1, KzHx, K, zHx);
+
+ //Matrix_print(2,2, K, "6. K");
+ //Matrix_print(2,1, KzHx, "6. KzHx");
+
+ Matrix_Add(2,1, x, xp, KzHx);
+
+ // Clamp to 0-360 range
+ while (x[0] < 0) x[0] += 360.0;
+ while (x[0] >= 360.0) x[0] -= 360.0;
+
+ //Matrix_print(2,1, x, "6. x");
+
+ /**********************************************************************
+ * We also have to adjust the certainty. With a new measurement, the
+ * estimate certainty always increases.
+ *
+ * P = (I-K*H)*P; // Eq 1.13
+ ***********************************************************************/
+ float KH[4];
+ //Matrix_print(2,2, K, "7. K");
+ Matrix_Multiply(2,2,2, KH, K, H);
+ //Matrix_print(2,2, KH, "7. KH");
+ float IKH[4];
+ Matrix_Subtract(2,2, IKH, I, KH);
+ //Matrix_print(2,2, IKH, "7. IKH");
+ float P2[4];
+ Matrix_Multiply(2,2,2, P2, IKH, P);
+ Matrix_Copy(2, 2, P, P2);
+
+ //Matrix_print(2,2, P, "7. P");
+
+ return x[0];
+}