2014 Eurobot fork
Dependencies: mbed-rtos mbed QEI
main.cpp
- Committer:
- madcowswe
- Date:
- 2013-04-14
- Revision:
- 63:c2c6269767b8
- Parent:
- 62:78d99b781f02
- Child:
- 64:c979fb1cd3b5
File content as of revision 63:c2c6269767b8:
#include "globals.h" #include "Kalman.h" #include "mbed.h" #include "rtos.h" #include "Arm.h" #include "MainMotor.h" #include "Encoder.h" #include "Colour.h" #include "CakeSensor.h" #include "Printing.h" #include "coprocserial.h" #include <algorithm> #include "motion.h" #include "MotorControl.h" #include "system.h" #include "ai.h" void motortest(); void encodertest(); void motorencodetest(); void motorencodetestline(); void motorsandservostest(); void armtest(); void motortestline(); void colourtest(); void cakesensortest(); void printingtestthread(void const*); void printingtestthread2(void const*); void feedbacktest(); int main() { /***************** * Test Code * *****************/ //motortest(); //encodertest(); //motorencodetest(); //motorencodetestline(); //motorsandservostest(); //armtest(); //motortestline(); //ledtest(); //phototransistortest(); //ledphototransistortest(); //colourtest(); // Red SnR too low //cakesensortest(); //feedbacktest(); /* DigitalOut l1(LED1); Thread p(Printing::printingloop, NULL, osPriorityNormal, 2048); l1=1; Thread a(printingtestthread, NULL, osPriorityNormal, 1024); Thread b(printingtestthread2, NULL, osPriorityNormal, 1024); Thread::wait(osWaitForever); */ SystemTime.start(); Serial pc(USBTX, USBRX); pc.baud(115200); InitSerial(); wait(3); Kalman::KalmanInit(); Thread predictthread(Kalman::predictloop, NULL, osPriorityNormal, 2084);//512); //temp 2k Kalman::start_predict_ticker(&predictthread); Thread updatethread(Kalman::updateloop, NULL, osPriorityNormal, 2084); Ticker motorcontroltestticker; motorcontroltestticker.attach(MotorControl::motor_control_isr, 0.05); // ai layer thread //Thread aithread(AI::ailayer, NULL, osPriorityNormal, 2048); // motion layer periodic callback //RtosTimer motion_timer(motion::motionlayer, osTimerPeriodic); //motion_timer.start(50); //Thread printingThread(Printing::printingloop, NULL, osPriorityLow, 2048); //while(1){ // printf("r:%f, l:%f, t:%f\r\n", right_encoder.getTicks()*ENCODER_M_PER_TICK, left_encoder.getTicks()*ENCODER_M_PER_TICK, SystemTime.read()); //} //measureCPUidle(); //repurpose thread for idle measurement MotorControl::set_omegacmd(0); for(float spd = 0.02; spd <= 0.5; spd *= 1.4){ MotorControl::set_fwdcmd(spd); Thread::wait(3000); float f = MotorControl::mfwdpowdbg; float r = MotorControl::mrotpowdbg; MotorControl::set_fwdcmd(0); printf("targetspd:%f, fwd:%f, rot:%f\r\n", spd, f, r); Thread::wait(5000); } MotorControl::set_fwdcmd(0); for(float spd = 0.05; spd <= 2; spd *= 1.4){ MotorControl::set_omegacmd(spd); Thread::wait(3000); float f = MotorControl::mfwdpowdbg; float r = MotorControl::mrotpowdbg; MotorControl::set_omegacmd(0); printf("targetspd:%f, fwd:%f, rot:%f\r\n", spd, f, r); Thread::wait(5000); } Thread::wait(osWaitForever); } #include <cstdlib> using namespace std; void printingtestthread(void const*) { const char ID = 1; float buffer[3] = {ID}; Printing::registerID(ID,sizeof(buffer)/sizeof(buffer[0])); while (true){ for(size_t i = 1; i != sizeof(buffer)/sizeof(buffer[0]); ++i){ buffer[i] = ID ; } Printing::updateval(ID, buffer, sizeof(buffer)/sizeof(buffer[0])); Thread::wait(200); } } void printingtestthread2(void const*) { const char ID = 2; float buffer[5] = {ID}; Printing::registerID(ID,sizeof(buffer)/sizeof(buffer[0])); while (true){ for(size_t i = 1; i != sizeof(buffer)/sizeof(buffer[0]); ++i){ buffer[i] = ID; } Printing::updateval(ID, buffer, sizeof(buffer)/sizeof(buffer[0])); Thread::wait(500); } } /* void feedbacktest(){ //Encoder Eright(P_ENC_RIGHT_A, P_ENC_RIGHT_B), Eleft(P_ENC_LEFT_A, P_ENC_LEFT_B); MainMotor mright(P_MOT_RIGHT_A, P_MOT_RIGHT_B), mleft(P_MOT_LEFT_A, P_MOT_LEFT_B); Kalman::State state; float Pgain = -0.01; float fwdspeed = -400/3.0f; Timer timer; timer.start(); while(true) { float expecdist = fwdspeed * timer.read(); state = Kalman::getState(); float errleft = left_encoder.getTicks() - (expecdist); float errright = right_encoder.getTicks() - expecdist; mleft(max(min(errleft*Pgain, 0.4f), -0.4f)); mright(max(min(errright*Pgain, 0.4f), -0.4f)); } } */ void cakesensortest() { wait(1); printf("cakesensortest"); CakeSensor cs(P_DISTANCE_SENSOR); while(true) { wait(0.1); printf("distance: %f\t %f\r\n", cs.Distance(),cs.Distanceincm()); } } void colourtest() { Colour c_upper(P_COLOR_SENSOR_BLUE_UPPER, P_COLOR_SENSOR_RED_UPPER, P_COLOR_SENSOR_IN_UPPER,UPPER); Colour c_lower(P_COLOR_SENSOR_BLUE_LOWER, P_COLOR_SENSOR_RED_LOWER, P_COLOR_SENSOR_IN_LOWER,LOWER); while(true) { wait(0.1); switch(c_lower.getColour()) { case BLUE : printf("BLUE\n"); break; case RED: printf("RED\n"); break; case WHITE: printf("WHITE\n"); break; case BLACK: printf("BLACK\n"); break; default: printf("BUG\n"); } } } /* void pt_test() { DigitalOut _blue_led(p10); DigitalOut _red_led(p11); AnalogIn _pt(p18); bytepack_t datapackage; // first 3 bytes of header is used for alignment datapackage.data.header[0] = 0xFF; datapackage.data.header[1] = 0xFF; datapackage.data.header[2] = 0xFF; while(true) { //toggles leds for the next state _blue_led = 1; _red_led = 0; wait(0.01); volatile float blue_temp = _pt.read(); datapackage.data.ID = (unsigned char)0; datapackage.data.value = blue_temp; datapackage.data.aux = 0; for (int i = 0; i < sizeof(datapackage); i++) { //mbed_serial.putc(datapackage.type_char[i]); pc.putc(datapackage.type_char[i]); } _blue_led = 0; _red_led = 1; wait(0.01); volatile float red_temp = _pt.read(); datapackage.data.ID = (unsigned char)1; datapackage.data.value = red_temp; datapackage.data.aux = 0; for (int i = 0; i < sizeof(datapackage); i++) { //mbed_serial.putc(datapackage.type_char[i]); pc.putc(datapackage.type_char[i]); } _blue_led = 0; _red_led = 0; wait(0.01); volatile float noise_temp = _pt.read(); datapackage.data.ID = (unsigned char)2; datapackage.data.value = noise_temp; datapackage.data.aux = 0; for (int i = 0; i < sizeof(datapackage); i++) { //mbed_serial.putc(datapackage.type_char[i]); pc.putc(datapackage.type_char[i]); } } } */ void armtest() { Arm white(p26), black(p25, false, 0.0005, 180); while(true) { white(0); black(0); wait(1); white(1); black(1); wait(1); } } void motorsandservostest() { Encoder Eleft(p27, p28), Eright(p30, p29); MainMotor mleft(p24,p23), mright(p21,p22); Arm sTop(p25), sBottom(p26); //Serial pc(USBTX, USBRX); const float speed = 0.0; const float dspeed = 0.0; Timer servoTimer; mleft(speed); mright(speed); servoTimer.start(); while (true) { printf("Position is: %i \t %i \n\r", Eleft.getTicks(), Eright.getTicks()); if (Eleft.getTicks() < Eright.getTicks()) { mleft(speed); mright(speed - dspeed); } else { mright(speed); mleft(speed - dspeed); } if (servoTimer.read() < 1) { sTop.clockwise(); } else if (servoTimer.read() < 4) { sTop.halt(); } else if (servoTimer.read() < 5) { sBottom.anticlockwise(); //Led=1; } else if (servoTimer.read() < 6) { sBottom.clockwise(); //Led=0; } else if (servoTimer.read() < 7) { sBottom.halt(); } else { sTop.anticlockwise(); } if (servoTimer.read() >= 9) servoTimer.reset(); } } void motortestline() { MainMotor mleft(p24,p23), mright(p21,p22); const float speed = 0.2; mleft(speed); mright(speed); while(true) wait(1); } void motorencodetestline() { Encoder Eright(P_ENC_RIGHT_A, P_ENC_RIGHT_B), Eleft(P_ENC_LEFT_A, P_ENC_LEFT_B); MainMotor mright(P_MOT_RIGHT_A, P_MOT_RIGHT_B), mleft(P_MOT_LEFT_A, P_MOT_LEFT_B); //Serial pc(USBTX, USBRX); const float speed = 0.2; const float dspeed = 0.1; mleft(speed); mright(speed); while (true) { //left 27 cm = 113 -> 0.239 cm/pulse //right 27 cm = 72 -> 0.375 cm/pulse printf("Position is: %i \t %i \n\r", (int)(Eleft.getTicks()*0.239), (int)(Eright.getTicks()*0.375)); if (Eleft.getTicks()*0.239 < Eright.getTicks()*0.375) { mright(speed - dspeed); } else { mright(speed + dspeed); } } } void motorencodetest() { Encoder Eright(P_ENC_RIGHT_A, P_ENC_RIGHT_B), Eleft(P_ENC_LEFT_A, P_ENC_LEFT_B); MainMotor mright(P_MOT_RIGHT_A, P_MOT_RIGHT_B), mleft(P_MOT_LEFT_A, P_MOT_LEFT_B); Serial pc(USBTX, USBRX); const float speed = -0.3; const int enc = -38; while(true) { mleft(speed); mright(0); while(Eleft.getTicks()>enc) { printf("Position is: %i \t %i \n\r", Eleft.getTicks(), Eright.getTicks()); } Eleft.reset(); Eright.reset(); mleft(0); mright(speed); while(Eright.getTicks()>enc) { printf("Position is: %i \t %i \n\r", Eleft.getTicks(), Eright.getTicks()); } Eleft.reset(); Eright.reset(); } } void encodertest() { Encoder E1(P_ENC_LEFT_A, P_ENC_LEFT_B); //Encoder E2(P_ENC_RIGHT_A, P_ENC_RIGHT_B); Serial pc(USBTX, USBRX); while(true) { wait(0.1); printf("Position is: %i \t %i \n\r", E1.getTicks(), 0);//E2.getTicks()); } } void motortest() { MainMotor mright(p22,p21), mleft(p23,p24); while(true) { wait(1); mleft(0.8); mright(0.8); wait(1); mleft(-0.2); mright(0.2); wait(1); mleft(0); mright(0); } }