blue mbed code for the BNO055 imu from adafruit

Dependencies:   BNO055 MODSERIAL mbed

Fork of bmbed_lidar_belt by sensory_array

Committer:
baraki
Date:
Fri Oct 16 19:37:40 2015 +0000
Revision:
11:c972bf9c24de
Parent:
9:59d23ab8d73b
Child:
12:6deb3b41c9e3
printfs off;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
baraki 0:ce4f790399d9 1 #include "mbed.h"
baraki 0:ce4f790399d9 2 #include "MODSERIAL.h"
baraki 7:660e8ddb231e 3 #include <math.h>
baraki 7:660e8ddb231e 4 #include "BNO055.h"
baraki 0:ce4f790399d9 5
baraki 0:ce4f790399d9 6 #define PC_BAUD 9600
baraki 0:ce4f790399d9 7 #define BT_BAUD 9600
baraki 0:ce4f790399d9 8 #define TX_PIN p13
baraki 0:ce4f790399d9 9 #define RX_PIN p14
baraki 0:ce4f790399d9 10 #define SDA_PIN p9 //SDA pin on LPC1768
baraki 0:ce4f790399d9 11 #define SCL_PIN p10 //SCL pin on LPC1768
baraki 7:660e8ddb231e 12 #define IMU_SDA p28
baraki 7:660e8ddb231e 13 #define IMU_SCL p27
baraki 7:660e8ddb231e 14 #define PI 3.14159265
baraki 0:ce4f790399d9 15
baraki 7:660e8ddb231e 16 BNO055 imu(p28,p27);
baraki 0:ce4f790399d9 17 I2C sensor(SDA_PIN, SCL_PIN); //Define LIDAR Lite sensor 1
baraki 0:ce4f790399d9 18 MODSERIAL bt(TX_PIN, RX_PIN);
baraki 0:ce4f790399d9 19 MODSERIAL pc(USBTX,USBRX);
baraki 0:ce4f790399d9 20
baraki 7:660e8ddb231e 21 //for calculating allowable change in height for the down lidar
baraki 7:660e8ddb231e 22 float allowHeight = 120; //120 mm
baraki 9:59d23ab8d73b 23 float downAngle = -5.6;
baraki 7:660e8ddb231e 24 //for calibrating IMU
baraki 9:59d23ab8d73b 25 //for IMU1:
baraki 9:59d23ab8d73b 26 //char cal_vals[22] = {255, 255, 220, 255, 13, 0, 83, 255, 36, 1, 80, 0, 253, 255, 0, 0, 1, 0, 232, 3, 235, 2};
baraki 9:59d23ab8d73b 27 //for IMU2:
baraki 9:59d23ab8d73b 28 char cal_vals[22] = {231, 255, 253, 255, 8, 0, 43, 255, 31, 1, 221, 255, 0, 0, 254, 255, 2, 0, 232, 3, 210, 2};
baraki 9:59d23ab8d73b 29
baraki 7:660e8ddb231e 30
baraki 7:660e8ddb231e 31 //for encoder:
baraki 7:660e8ddb231e 32 //need to set pins to DigitalIn with internal pullup resistors
baraki 7:660e8ddb231e 33 //DigitalIn mySwitch(p21);
baraki 7:660e8ddb231e 34 //mySwitch.mode(PullUp);
baraki 7:660e8ddb231e 35
baraki 0:ce4f790399d9 36 bool newline_detected = false;
baraki 0:ce4f790399d9 37 bool newline_sent = false;
baraki 0:ce4f790399d9 38
baraki 7:660e8ddb231e 39 void setCal(){
baraki 7:660e8ddb231e 40 imu.write_calibration_data();
baraki 7:660e8ddb231e 41 }
baraki 7:660e8ddb231e 42
baraki 0:ce4f790399d9 43 // Called everytime a new character goes into
baraki 0:ce4f790399d9 44 // the RX buffer. Test that character for \n
baraki 0:ce4f790399d9 45 // Note, rxGetLastChar() gets the last char that
baraki 0:ce4f790399d9 46 // we received but it does NOT remove it from
baraki 0:ce4f790399d9 47 // the RX buffer.
baraki 0:ce4f790399d9 48 void rxCallback(MODSERIAL_IRQ_INFO *q)
baraki 0:ce4f790399d9 49 {
baraki 0:ce4f790399d9 50 MODSERIAL *serial = q->serial;
baraki 0:ce4f790399d9 51 if ( serial->rxGetLastChar() == '\n') {
baraki 0:ce4f790399d9 52 newline_detected = true;
baraki 0:ce4f790399d9 53 }
baraki 0:ce4f790399d9 54
baraki 0:ce4f790399d9 55 }
baraki 0:ce4f790399d9 56
baraki 0:ce4f790399d9 57 void txCallback(MODSERIAL_IRQ_INFO *q)
baraki 0:ce4f790399d9 58 {
baraki 0:ce4f790399d9 59 MODSERIAL *serial = q->serial;
baraki 0:ce4f790399d9 60 if ( serial->txGetLastChar() == '\0') {
baraki 0:ce4f790399d9 61 newline_sent = true;
baraki 0:ce4f790399d9 62 }
baraki 0:ce4f790399d9 63 }
baraki 0:ce4f790399d9 64
baraki 0:ce4f790399d9 65 int main()
baraki 0:ce4f790399d9 66 {
baraki 0:ce4f790399d9 67 pc.baud(PC_BAUD);
baraki 0:ce4f790399d9 68 bt.baud(BT_BAUD);
baraki 0:ce4f790399d9 69 pc.attach(&rxCallback, MODSERIAL::RxIrq);
baraki 0:ce4f790399d9 70 bt.attach(&txCallback, MODSERIAL::TxIrq);
baraki 0:ce4f790399d9 71
baraki 7:660e8ddb231e 72 //set up IMU
baraki 7:660e8ddb231e 73 imu.reset();
baraki 7:660e8ddb231e 74 imu.setmode(OPERATION_MODE_NDOF);
baraki 7:660e8ddb231e 75 setCal();
baraki 7:660e8ddb231e 76 imu.get_calib();
baraki 7:660e8ddb231e 77 while (imu.calib == 0)
baraki 7:660e8ddb231e 78 {
baraki 7:660e8ddb231e 79 imu.get_calib();
baraki 7:660e8ddb231e 80 }
baraki 7:660e8ddb231e 81
baraki 0:ce4f790399d9 82 sensor.frequency(100000);
baraki 0:ce4f790399d9 83
baraki 0:ce4f790399d9 84 char sendData[1] = {0x00};
baraki 0:ce4f790399d9 85
baraki 0:ce4f790399d9 86 int addresses[7];
baraki 0:ce4f790399d9 87 addresses[0] = 0x60; //0x60
baraki 0:ce4f790399d9 88 addresses[1] = 0x64; //0x64
baraki 0:ce4f790399d9 89 addresses[2] = 0x68; //middle
baraki 0:ce4f790399d9 90 addresses[3] = 0x6C;
baraki 0:ce4f790399d9 91 addresses[4] = 0x70;
baraki 0:ce4f790399d9 92 addresses[5] = 0x80; //up
baraki 0:ce4f790399d9 93 addresses[6] = 0x84; //down
baraki 0:ce4f790399d9 94
baraki 0:ce4f790399d9 95 uint8_t pulses[7] = {0};
baraki 0:ce4f790399d9 96 uint8_t intensity[7] = {0};
baraki 0:ce4f790399d9 97
baraki 0:ce4f790399d9 98 char btData[12] = {'a','b','c','d','e','f','g','\n','\0'};
baraki 0:ce4f790399d9 99
baraki 0:ce4f790399d9 100 //calibrate down sensor
baraki 0:ce4f790399d9 101 int down_cal = 0;
baraki 8:2ddeec5d8f84 102 float cospi = 0; //"cosine of initial pitch"
baraki 0:ce4f790399d9 103
baraki 0:ce4f790399d9 104 unsigned int i = 0;
baraki 0:ce4f790399d9 105 int count = 0; //for calibration
baraki 0:ce4f790399d9 106 int count2 = 0;//for averaging
baraki 0:ce4f790399d9 107 int differenceAvgSum = 0;
baraki 0:ce4f790399d9 108 int moving_ave[5] = {0};
baraki 0:ce4f790399d9 109 while (1) {
baraki 0:ce4f790399d9 110 for(int k=0; k<5; k++) {
baraki 0:ce4f790399d9 111 char receiveData[3] = {0};
baraki 0:ce4f790399d9 112 if(sensor.write(addresses[k], sendData, 1)){
baraki 1:5b1d88d69aa2 113 //pc.printf("writing to sensor %d failed\n", k);
baraki 0:ce4f790399d9 114 }
baraki 0:ce4f790399d9 115 //write ---> 0 on success, 1 on failure
baraki 0:ce4f790399d9 116 i = 0;
baraki 2:ec53792aef80 117 while(sensor.read(addresses[k], receiveData, 3) && i < 10) {
baraki 0:ce4f790399d9 118 i++;
baraki 1:5b1d88d69aa2 119 //pc.printf("reading from sensor %d failed\n",k);
baraki 1:5b1d88d69aa2 120 }
baraki 0:ce4f790399d9 121 //while(!twi_master_transfer(addresses[k], sendData, 1, TWI_ISSUE_STOP)){;}
baraki 0:ce4f790399d9 122 //while(!twi_master_transfer(addresses[k] + 1, receiveData, 3, TWI_ISSUE_STOP)){;}
baraki 0:ce4f790399d9 123 int distance = ((int)receiveData[0]<<8 )+ (int)receiveData[1];
baraki 0:ce4f790399d9 124 if(distance == 0){
baraki 0:ce4f790399d9 125 pulses[k] = 1;
baraki 0:ce4f790399d9 126 intensity[k] = 0;
baraki 0:ce4f790399d9 127 }
baraki 0:ce4f790399d9 128 if(distance > 0 && distance < 650) {
baraki 0:ce4f790399d9 129 pulses[k] = 5;
baraki 0:ce4f790399d9 130 intensity[k] = 7;
baraki 0:ce4f790399d9 131 } else if(distance >= 650 && distance < 900) {
baraki 0:ce4f790399d9 132 pulses[k] = 4;
baraki 0:ce4f790399d9 133 intensity[k] = 6;
baraki 0:ce4f790399d9 134 } else if(distance >= 900 && distance < 1350) {
baraki 0:ce4f790399d9 135 pulses[k] = 3;
baraki 0:ce4f790399d9 136 intensity[k] = 5;
baraki 0:ce4f790399d9 137 } else if(distance >= 1350 && distance < 1850) {
baraki 0:ce4f790399d9 138 pulses[k] = 2;
baraki 0:ce4f790399d9 139 intensity[k] = 2;
baraki 0:ce4f790399d9 140 } else if(distance >= 1800) {
baraki 0:ce4f790399d9 141 pulses[k] = 1;
baraki 0:ce4f790399d9 142 intensity[k] = 0;
baraki 0:ce4f790399d9 143 }
baraki 3:a0ccaf565e8d 144 //pc.printf("num: %d \t pulses: %d \t intensity: %d \n",k,pulses[k],intensity[k]);
baraki 0:ce4f790399d9 145 }
baraki 0:ce4f790399d9 146
baraki 0:ce4f790399d9 147 //find UP distance
baraki 0:ce4f790399d9 148 char receiveData2[3] = {0};
baraki 0:ce4f790399d9 149 sensor.write(addresses[5], sendData, 1);
baraki 0:ce4f790399d9 150 i = 0;
baraki 2:ec53792aef80 151 while(sensor.read(addresses[5]+1, receiveData2, 3) && i < 10){
baraki 0:ce4f790399d9 152 i++;}
baraki 0:ce4f790399d9 153 int distance2 = (receiveData2[0]<<8 )+ receiveData2[1];
baraki 0:ce4f790399d9 154 if(distance2 >= 500 && distance2 < 1000) {
baraki 0:ce4f790399d9 155 pulses[5] = 5;
baraki 0:ce4f790399d9 156 intensity[5] = 7;
baraki 0:ce4f790399d9 157 } else {
baraki 0:ce4f790399d9 158 pulses[5] = 1;
baraki 0:ce4f790399d9 159 intensity[5] = 0;
baraki 0:ce4f790399d9 160 }
baraki 0:ce4f790399d9 161
baraki 0:ce4f790399d9 162 //find DOWN distance
baraki 0:ce4f790399d9 163 char receiveData3[3] = {0};
baraki 2:ec53792aef80 164 i = 0;
baraki 0:ce4f790399d9 165 sensor.write(addresses[6], sendData, 1);
baraki 2:ec53792aef80 166 while(sensor.read(addresses[6]+1, receiveData3, 3) && i < 10){
baraki 0:ce4f790399d9 167 i++;}
baraki 0:ce4f790399d9 168 int distance3 = (receiveData3[0]<<8 )+ receiveData3[1];
baraki 8:2ddeec5d8f84 169 if(count > 100) { //calibration over
baraki 8:2ddeec5d8f84 170 //get allowableX and adjusted down_cal from IMU
baraki 8:2ddeec5d8f84 171 imu.get_angles();
baraki 8:2ddeec5d8f84 172 float pitch = imu.euler.pitch;
baraki 8:2ddeec5d8f84 173 float cosp = cos((pitch-downAngle) * PI/180.0);
baraki 8:2ddeec5d8f84 174 float allowX = allowHeight/cosp;
baraki 8:2ddeec5d8f84 175 float new_down_cal = ((float)down_cal)*cospi/cosp;
baraki 8:2ddeec5d8f84 176
baraki 8:2ddeec5d8f84 177 //use moving average to find deltaX
baraki 8:2ddeec5d8f84 178 int difference = abs(new_down_cal - distance3);
baraki 0:ce4f790399d9 179 differenceAvgSum = differenceAvgSum - moving_ave[count2];
baraki 0:ce4f790399d9 180 moving_ave[count2] = difference;
baraki 0:ce4f790399d9 181 differenceAvgSum = differenceAvgSum + difference;
baraki 0:ce4f790399d9 182 count2 = count2 + 1;
baraki 0:ce4f790399d9 183 int ave = (int)(differenceAvgSum/5);
baraki 7:660e8ddb231e 184
baraki 11:c972bf9c24de 185 //pc.printf("distance: %d\tallowableX: %f\tdistance: %d\tpitch: %f\tdowncal: %d\tnewdowncal: %f\r\n",ave,allowX,distance3,pitch-downAngle,down_cal,new_down_cal);
baraki 7:660e8ddb231e 186
baraki 3:a0ccaf565e8d 187 //pc.printf("down_cal: %d \t diff: %d \t distance: %d\n",down_cal, ave, distance3);
baraki 7:660e8ddb231e 188 if(ave >= allowX) {
baraki 0:ce4f790399d9 189 pulses[6] = 5;
baraki 0:ce4f790399d9 190 intensity[6] = 7;
baraki 0:ce4f790399d9 191 } else {
baraki 0:ce4f790399d9 192 pulses[6] = 1;
baraki 0:ce4f790399d9 193 intensity[6] = 0;
baraki 0:ce4f790399d9 194 }
baraki 0:ce4f790399d9 195
baraki 0:ce4f790399d9 196 if(count2 >4) {
baraki 0:ce4f790399d9 197 count2 = 0;
baraki 0:ce4f790399d9 198 }
baraki 0:ce4f790399d9 199 } else {
baraki 8:2ddeec5d8f84 200
baraki 0:ce4f790399d9 201 down_cal = distance3;
baraki 8:2ddeec5d8f84 202 imu.get_angles();
baraki 8:2ddeec5d8f84 203 float pitch = imu.euler.pitch;
baraki 8:2ddeec5d8f84 204 cospi = cos((pitch-downAngle) * PI/180.0);
baraki 0:ce4f790399d9 205 count = count+1;
baraki 0:ce4f790399d9 206 }
baraki 3:a0ccaf565e8d 207 //pc.printf("num: %d \t pulses: %d \t intensity: %d \n",6,pulses[6],intensity[6]);
baraki 0:ce4f790399d9 208
baraki 1:5b1d88d69aa2 209 //pc.printf("about to send data\n");
baraki 0:ce4f790399d9 210 btData[0] = (pulses[0] << 5) | (intensity[0] << 2);
baraki 0:ce4f790399d9 211 btData[1] = (pulses[1] << 4) | (intensity[1] << 1);
baraki 0:ce4f790399d9 212 btData[2] = (pulses[2] << 3) | (intensity[2]);
baraki 0:ce4f790399d9 213 btData[3] = (pulses[3] << 2) | (intensity[3] >> 1);
baraki 0:ce4f790399d9 214 btData[4] = (intensity[3] << 7) | (pulses[4] << 1) | (intensity[4] >> 2);
baraki 0:ce4f790399d9 215 btData[5] = (intensity[4] << 6) | (0x3);
baraki 0:ce4f790399d9 216 btData[6] = (pulses[5] << 5) | (intensity[5] << 2);
baraki 0:ce4f790399d9 217 btData[7] = (pulses[6] << 5) | (intensity[6] << 2);
baraki 0:ce4f790399d9 218 btData[8] = '\0';
baraki 0:ce4f790399d9 219 for(int j=0;j<9;j++){
baraki 1:5b1d88d69aa2 220 if(bt.writeable())
baraki 1:5b1d88d69aa2 221 bt.putc(btData[j]);
baraki 1:5b1d88d69aa2 222 //wait(0.001);
baraki 0:ce4f790399d9 223 }
baraki 3:a0ccaf565e8d 224 wait(0.05);
baraki 1:5b1d88d69aa2 225 //pc.printf("finished sending data\n");
baraki 0:ce4f790399d9 226 //ble_uart_c_write_string(&m_ble_uart_c, (uint8_t *)btData, 9);
baraki 0:ce4f790399d9 227 }
baraki 0:ce4f790399d9 228 }