
Example project
Dependencies: PM2_Libary Eigen
Diff: Controller.cpp
- Revision:
- 37:698d6b73b50c
- Child:
- 38:8aae5cbcf25f
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Controller.cpp Tue May 10 10:04:51 2022 +0200 @@ -0,0 +1,192 @@ +/* + * Controller.cpp + * Copyright (c) 2022, ZHAW + * All rights reserved. + */ + +#include "Controller.h" + +using namespace std; + +const float Controller::PERIOD = 0.001f; // period of control task, given in [s] +const float Controller::M_PI = 3.14159265f; // the mathematical constant PI +const float Controller::WHEEL_DISTANCE = 0.190f; // distance between wheels, given in [m] +const float Controller::WHEEL_RADIUS = 0.0375f; // radius of wheels, given in [m] +const float Controller::MAXIMUM_VELOCITY = 500.0; // maximum wheel velocity, given in [rpm] +const float Controller::MAXIMUM_ACCELERATION = 1000.0; // maximum wheel acceleration, given in [rpm/s] +const float Controller::COUNTS_PER_TURN = 1200.0f; // encoder resolution (pololu motors: 1200.0f, maxon motors: 86016.0f) +const float Controller::LOWPASS_FILTER_FREQUENCY = 300.0f; // given in [rad/s] +const float Controller::KN = 40.0f; // speed constant in [rpm/V] (pololu motors: 40.0f, maxon motors: 45.0f) +const float Controller::KP = 0.15f; // speed control parameter +const float Controller::MAX_VOLTAGE = 12.0f; // battery voltage in [V] +const float Controller::MIN_DUTY_CYCLE = 0.02f; // minimum duty-cycle +const float Controller::MAX_DUTY_CYCLE = 0.98f; // maximum duty-cycle + +/** + * Creates and initialises the robot controller. + * @param pwmLeft a reference to the pwm output for the left motor. + * @param pwmRight a reference to the pwm output for the right motor. + * @param counterLeft a reference to the encoder counter of the left motor. + * @param counterRight a reference to the encoder counter of the right motor. + */ +Controller::Controller(PwmOut& pwmLeft, PwmOut& pwmRight, EncoderCounterROME2& counterLeft, EncoderCounterROME2& counterRight) : pwmLeft(pwmLeft), pwmRight(pwmRight), counterLeft(counterLeft), counterRight(counterRight), thread(osPriorityHigh, STACK_SIZE) { + + // initialise pwm outputs + + pwmLeft.period(0.00005f); // pwm period of 50 us + pwmLeft = 0.5f; // duty-cycle of 50% + + pwmRight.period(0.00005f); // pwm period of 50 us + pwmRight = 0.5f; // duty-cycle of 50% + + // initialise local variables + + translationalVelocity = 0.0f; + rotationalVelocity = 0.0f; + + actualTranslationalVelocity = 0.0f; + actualRotationalVelocity = 0.0f; + + desiredSpeedLeft = 0.0f; + desiredSpeedRight = 0.0f; + + actualSpeedLeft = 0.0f; + actualSpeedRight = 0.0f; + + motionLeft.setProfileVelocity(MAXIMUM_VELOCITY); + motionLeft.setProfileAcceleration(MAXIMUM_ACCELERATION); + motionLeft.setProfileDeceleration(MAXIMUM_ACCELERATION); + + motionRight.setProfileVelocity(MAXIMUM_VELOCITY); + motionRight.setProfileAcceleration(MAXIMUM_ACCELERATION); + motionRight.setProfileDeceleration(MAXIMUM_ACCELERATION); + + previousValueCounterLeft = counterLeft.read(); + previousValueCounterRight = counterRight.read(); + + speedLeftFilter.setPeriod(PERIOD); + speedLeftFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); + + speedRightFilter.setPeriod(PERIOD); + speedRightFilter.setFrequency(LOWPASS_FILTER_FREQUENCY); + + // start thread and timer interrupt + + thread.start(callback(this, &Controller::run)); + ticker.attach(callback(this, &Controller::sendThreadFlag), PERIOD); +} + +/** + * Deletes this Controller object. + */ +Controller::~Controller() { + + ticker.detach(); // stop the timer interrupt +} + +/** + * Sets the desired translational velocity of the robot. + * @param velocity the desired translational velocity, given in [m/s]. + */ +void Controller::setTranslationalVelocity(float velocity) { + + this->translationalVelocity = velocity; +} + +/** + * Sets the desired rotational velocity of the robot. + * @param velocity the desired rotational velocity, given in [rad/s]. + */ +void Controller::setRotationalVelocity(float velocity) { + + this->rotationalVelocity = velocity; +} + +/** + * Gets the actual translational velocity of the robot. + * @return the actual translational velocity, given in [m/s]. + */ +float Controller::getActualTranslationalVelocity() { + + return actualTranslationalVelocity; +} + +/** + * Gets the actual rotational velocity of the robot. + * @return the actual rotational velocity, given in [rad/s]. + */ +float Controller::getActualRotationalVelocity() { + + return actualRotationalVelocity; +} + +/** + * This method is called by the ticker timer interrupt service routine. + * It sends a flag to the thread to make it run again. + */ +void Controller::sendThreadFlag() { + + thread.flags_set(threadFlag); +} + +/** + * This is an internal method of the controller that is running periodically. + */ +void Controller::run() { + + while (true) { + + // wait for the periodic thread flag + + ThisThread::flags_wait_any(threadFlag); + + // calculate the values 'desiredSpeedLeft' and 'desiredSpeedRight' using the kinematic model + + desiredSpeedLeft = (translationalVelocity-WHEEL_DISTANCE/2.0f*rotationalVelocity)/WHEEL_RADIUS*60.0f/2.0f/M_PI; + desiredSpeedRight = -(translationalVelocity+WHEEL_DISTANCE/2.0f*rotationalVelocity)/WHEEL_RADIUS*60.0f/2.0f/M_PI; + + // calculate planned speedLeft and speedRight values using the motion planner + + motionLeft.incrementToVelocity(desiredSpeedLeft, PERIOD); + motionRight.incrementToVelocity(desiredSpeedRight, PERIOD); + + desiredSpeedLeft = motionLeft.getVelocity(); + desiredSpeedRight = motionRight.getVelocity(); + + // calculate the actual speed of the motors in [rpm] + + short valueCounterLeft = counterLeft.read(); + short valueCounterRight = counterRight.read(); + + short countsInPastPeriodLeft = valueCounterLeft-previousValueCounterLeft; + short countsInPastPeriodRight = valueCounterRight-previousValueCounterRight; + + previousValueCounterLeft = valueCounterLeft; + previousValueCounterRight = valueCounterRight; + + actualSpeedLeft = speedLeftFilter.filter((float)countsInPastPeriodLeft/COUNTS_PER_TURN/PERIOD*60.0f); + actualSpeedRight = speedRightFilter.filter((float)countsInPastPeriodRight/COUNTS_PER_TURN/PERIOD*60.0f); + + // calculate desired motor voltages Uout + + float voltageLeft = KP*(desiredSpeedLeft-actualSpeedLeft)+desiredSpeedLeft/KN; + float voltageRight = KP*(desiredSpeedRight-actualSpeedRight)+desiredSpeedRight/KN; + + // calculate, limit and set the duty-cycle + + float dutyCycleLeft = 0.5f+0.5f*voltageLeft/MAX_VOLTAGE; + if (dutyCycleLeft < MIN_DUTY_CYCLE) dutyCycleLeft = MIN_DUTY_CYCLE; + else if (dutyCycleLeft > MAX_DUTY_CYCLE) dutyCycleLeft = MAX_DUTY_CYCLE; + pwmLeft = dutyCycleLeft; + + float dutyCycleRight = 0.5f+0.5f*voltageRight/MAX_VOLTAGE; + if (dutyCycleRight < MIN_DUTY_CYCLE) dutyCycleRight = MIN_DUTY_CYCLE; + else if (dutyCycleRight > MAX_DUTY_CYCLE) dutyCycleRight = MAX_DUTY_CYCLE; + pwmRight = dutyCycleRight; + + // calculate the values 'actualTranslationalVelocity' and 'actualRotationalVelocity' using the kinematic model + + actualTranslationalVelocity = (actualSpeedLeft-actualSpeedRight)*2.0f*M_PI/60.0f*WHEEL_RADIUS/2.0f; + actualRotationalVelocity = (-actualSpeedRight-actualSpeedLeft)*2.0f*M_PI/60.0f*WHEEL_RADIUS/WHEEL_DISTANCE; + } +}