Kentarou Shimatani
/
Theremi
action recognizer with theremin
Revision 0:b9ac53c439ed, committed 2011-09-14
- Comitter:
- peccu
- Date:
- Wed Sep 14 13:42:46 2011 +0000
- Commit message:
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Output.cpp Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,174 @@ +/* + * Output.cpp + * Theremi + * + * Created by peccu on 11/09/12. + * Copyright 2011 __MyCompanyName__. All rights reserved. + * + */ +#include "stdlib.h" +#include "main.h" +#include "Output.h" +#include "lib.h" +#include "predict.h" +#include "svm-scale.h" +LocalFileSystem local("local"); +Serial pc2(USBTX, USBRX); // tx, rx + +void showDistance(int count){ + if(count>300){ + return; + } + printf("%4d",count); + //std::cout << count; + for(int i=0;i<(count-100);i++){ + printf(" "); + //std::cout << " "; + } + printf("*\r\n"); + //std::cout << "*\r\n"; + return; +} + +void showCounts(int *count,int size){ + for(int i=0;i<size;i++){ + printf("%d: %d\r\n",i, *(count+i)); + //std::cout << i << ": " << *(count+i) << "\r\n"; + } +} + +// public method +Output::Output(void){ + counts=(int*)malloc(sizeof(int)*DIVISION); + data=(int*)malloc((sizeof(int)*READSIZE*DIVISION)/THRESHOLD); + for(int i=0;i<DIVISION;i++){ + *(counts+i)=0; + } + countNumber = 0; + loopCounter = 0; + prev = 1; + init(); + ave = 0.0; + var = 0.0; +} + +void Output::init(void){ + windowSize=0; + newCount=0; +} + +void Output::reset(void){ + for(int i=0;i<DIVISION;i++){ + *(counts+i)=0; + } + countNumber = 0; + loopCounter = 0; + prev = 1; + init(); + ave = 0.0; + var = 0.0; +} + +void Output::fopen(void){ +#ifdef SAVE +/* if ( NULL == (fp = fopen( "/local/test.csv", "w" )) ){ + error( "" ); + } + if ( NULL == (fft = fopen( "/local/fft.csv", "w" )) ){ + error( "" ); + } +*/ + fp.open( "/local/test.csv" ); + fft.open( "/local/fft.csv" ); +#endif +} + +void Output::fclose(void){ +#ifdef SAVE + fp.close(); + fft.close(); +#endif +} + +bool Output::iterate(void){ + windowSize++; +#ifdef SAVE + // for ( int i = 0; i < READSIZE; i++ ) { + return loopCounter++<READSIZE; +#else + return true; +#endif +} + +void Output::write(float plus, float minus){ +#ifdef SAVE +/* + fprintf( fp, "%f\t%f\n", plus, minus ); + fprintf( fft, "%d %d\n", sum(counts,DIVISION),countNumber ); +*/ + fp << plus << "\t" << minus << "\n"; + fft << sum(counts,DIVISION) << " " << countNumber << "\n"; +#else + showDistance(sum(counts,DIVISION)); +#endif + ave += sum(counts,DIVISION); + *(data+countNumber-DIVISION) = sum(counts,DIVISION); +} + +void Output::count(float plus, float minus){ + if(((plus-minus)*prev)<0){ // 0をまたいだ回数を数える + newCount++; + prev*=-1; + } + if (windowSize > THRESHOLD/DIVISION) { + // ウィンドウサイズ分データが集まったらcountsにプッシュする + countNumber++;// = pushed count + if(countNumber>DIVISION-1){ + write(plus,minus); + } + counts = pushCount(counts,DIVISION,newCount); + init(); + } +} + +void Output::calcAveVar(void){ + int dataSize = countNumber-DIVISION+1; + ave = average(data,dataSize)-(*data); + var = variance(data,ave+(*data),dataSize); +} + +void Output::writeTest(void){ +/* FILE *test; + if ( NULL == (test = fopen( "/local/test.txt", "w" )) ){ + error( "" ); + } +*/ + std::ofstream ofs( "/local/test.txt" ); + + ofs << "+0 1:" << ave << " 2:" << var << "\n"; + ofs.close(); +/* + fprintf(test,"+0 1:%f 2:%f\n",ave,var); + fclose(test); +*/ + pc2.printf("+0 1:%f 2:%f\n",ave,var); +} + +void Output::scale(void){ + main_scale(); +} +void Output::predict(void){ + main_(); +} + +// デストラクタ +Output::~Output(){ +#ifdef SAVE +/* + fclose(fp); + fclose(fft); +*/ +fp.close(); +fft.close(); +#endif +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Output.h Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,45 @@ +/* + * Output.h + * Theremi + * + * Created by peccu on 11/09/12. + * Copyright 2011 __MyCompanyName__. All rights reserved. + * + */ + +#ifndef _INC_OUTPUT +#define _INC_OUTPUT +#include <fstream> + +class Output { +private: +#ifdef SAVE + /* + FILE *fp,*fft; + */ + std::ofstream fp,fft; +#endif + int windowSize, newCount, countNumber; + int *counts,*data; + int readSize; + int loopCounter; + int division; + int prev; + float ave,var; +public: + Output(void); + void reset(void); + void init(void); + void fopen(void); + void fclose(void); + bool iterate(void); + void write(float plus, float minus); + void count(float plus, float minus); + void calcAveVar(void); + void writeTest(void); + void scale(void); + void predict(void); + ~Output(); +}; + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Svm.cpp Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,14 @@ +class Svm{ +public: + // for SVM + struct svm_model *model; + struct svm_node *node; + + Svm(void){}; + /*Coin(void):Music(2,200){}; + void play(void){ + s.p(&s.B4,8); + s.p(&s.E5,8.0/7); + s.s(8); + }*/ +};
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib.cpp Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,59 @@ +/* + * lib.cpp + * Theremi + * + * Created by peccu on 11/09/12. + * Copyright 2011 __MyCompanyName__. All rights reserved. + * + */ + +#include "main.h" +#include "lib.h" + +// 配列とかの演算用 + +// for output +// 配列もどきの操作 +int *pushCount(int *count,int size,int newcount){ + for(int i=0;i<size-1;i++){ + *(count+i)=*(count+i+1); + } + *(count+size-1)=newcount; + return count; +} + +// 演算補助 +int sum(int *count, int size){ + int ret=0; + for(int i=0;i<size;i++){ + ret+=(*count++); + } + return ret; +} + +float average(int *data, int size){ + float ret=0.0; + ret = sum(data,size) / size; + return ret; +} + +// 平均がわかってるときの分散 +float variance(int *data, float average, int size){ + float ret=0.0; + for(int i=0;i<size-1;i++){ + ret += (*(data+i)-average) * (*(data+i)-average); + } + ret /= size -1; + return ret; +} + +// 平均の計算もする分散 +float variance(int *data, int size){ + float ret=0.0; + float ave=average(data, size); + for(int i=0;i<size-1;i++){ + ret += (*(data+i)-ave) * (*(data+i)-ave); + } + ret /= size -1; + return ret; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib.h Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,19 @@ +/* + * lib.h + * Theremi + * + * Created by peccu on 11/09/12. + * Copyright 2011 __MyCompanyName__. All rights reserved. + * + */ + +#ifndef _INC_LIB +#define _INC_LIB + +int sum(int *count, int size); +int *pushCount(int *count,int size,int newcount); +float average(int *data, int size); +float variance(int *data, float average, int size); +float variance(int *data, int size); + +#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,101 @@ + #include "main.h" + #include "lib.h" + #include "Output.h" + + AnalogIn myinput20(p20); // speaker minus + AnalogIn myinput19(p19); // speaker plus + DigitalInOut io(p5); + Serial pc(USBTX, USBRX); // tx, rx + + DigitalOut myled1(LED1); + DigitalOut myled2(LED2); + DigitalOut myled3(LED3); + DigitalOut myled4(LED4); + void lighton(void){ + myled1 = 1; + myled2 = 1; + myled3 = 1; + myled4 = 1; + } + + void lightoff(void){ + myled1 = 0; + myled2 = 0; + myled3 = 0; + myled4 = 0; + } + + int main (int argc, char * const argv[]) { + //std::cout << "Hello, World!\n"; + io.mode( PullUp ); + io.input(); + io = 0; + + // このへんでSVMのモデルを読み込む + //main_(); + + Output *out; + out = new Output(); + + float inplus,inminus; + + bool reset=false; + while(!reset){ + // このループは認識を繰り返すループになると思う + pc.printf("Let's start!"); + myled1 = 0; + wait(1); + lighton(); + + out->reset(); + out->fopen(); + + pc.printf("start\r\n"); + while(out->iterate()){ + // このループは一回の認識に必要な分のセンサデータを集める + // まだOutputクラスに分離しきれてない + inplus=(float)myinput19; + inminus=(float)myinput20; + + // 0をまたいだ回数を数えてウィンドウサイズ分集まったらcountsにプッシュする + out->count(inplus, inminus); + } + pc.printf("end\r\n"); + // ここで一回の認識に必要なセンサデータが集まっている + + // この辺で平均と分散を計算 + // lib.cppに関数書いた気がする + out->calcAveVar(); + //pc.printf("\r"); + + // この辺で平均と分散を2次元のデータとしてSVMで識別する + out->writeTest(); + pc.printf("\r"); + out->scale(); + pc.printf("-sc\r"); + out->predict(); + pc.printf("\r"); + + // この辺でマリオの曲を読み込んで,コンテキストごとにメロディを切り替えて再生 + + out->fclose(); + lightoff(); + wait(1); + // ここから,ループするかやめるか選ぶ入力待ち + char c = 'a'; + while (1) { + pc.printf("restart to type r\r\nreset to c :\r\n"); + c = pc.getc(); + if (c=='r') { + break; + } else if (c=='c') { + reset=true; + break; + } + } + // ここまで + } + pc.printf("reset!!\r\n"); + io.output(); + //mbed_reset(); + }
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.h Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,26 @@ + +/* + * main.h + * Theremin + * + * Created by peccu on 11/09/13. + * Copyright 2011 __MyCompanyName__. All rights reserved. + * + */ + +#include <iostream> +#include "mbed.h" + +#ifndef _INC_MAIN +#define _INC_MAIN + +#define EPSILON 0.001 +#define READSIZE 30000 +// 10000 = 7secs +// 7150 = 5secs +#define THRESHOLD 1000 +#define DIVISION 2 + +#define SAVE + +#endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed/builds/63bcd7ba4912
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/predict.c Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,237 @@ +#include <stdio.h> +#include <ctype.h> +#include <stdlib.h> +#include <string.h> +#include <errno.h> +#include "svm.h" +#include "predict.h" + +struct svm_node *x; +int max_nr_attr = 64; + +struct svm_model* model; +int predict_probability=0; + +static char *line = NULL; +static int max_line_len; + +static char* readline(FILE *input) +{ + int len; + + if(fgets(line,max_line_len,input) == NULL) + return NULL; + + while(strrchr(line,'\n') == NULL) + { + max_line_len *= 2; + line = (char *) realloc(line,max_line_len); + len = (int) strlen(line); + if(fgets(line+len,max_line_len-len,input) == NULL) + break; + } + return line; +} + +void exit_input_error(int line_num) +{ + printf("Wrong input format at line %d\n", line_num); + exit(1); +} + +void predict(FILE *input, FILE *output) +{ + int correct = 0; + int total = 0; + double error = 0; + double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0; + + int svm_type=svm_get_svm_type(model); + int nr_class=svm_get_nr_class(model); + double *prob_estimates=NULL; + int j; + + if(predict_probability) + { + if (svm_type==NU_SVR || svm_type==EPSILON_SVR) + printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); + else + { + int *labels=(int *) malloc(nr_class*sizeof(int)); + svm_get_labels(model,labels); + prob_estimates = (double *) malloc(nr_class*sizeof(double)); + fprintf(output,"labels"); + for(j=0;j<nr_class;j++) + fprintf(output," %d",labels[j]); + fprintf(output,"\n"); + free(labels); + } + } + + max_line_len = 1024; + line = (char *)malloc(max_line_len*sizeof(char)); + while(readline(input) != NULL) + { + int i = 0; + double target_label, predict_label; + char *idx, *val, *label, *endptr; + int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0 + + label = strtok(line," \t"); + target_label = strtod(label,&endptr); + if(endptr == label) + exit_input_error(total+1); + + while(1) + { + if(i>=max_nr_attr-1) // need one more for index = -1 + { + max_nr_attr *= 2; + x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node)); + } + + idx = strtok(NULL,":"); + val = strtok(NULL," \t"); + + if(val == NULL) + break; + errno = 0; + x[i].index = (int) strtol(idx,&endptr,10); + if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index) + exit_input_error(total+1); + else + inst_max_index = x[i].index; + + errno = 0; + x[i].value = strtod(val,&endptr); + if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr))) + exit_input_error(total+1); + + ++i; + } + x[i].index = -1; + + if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC)) + { + predict_label = svm_predict_probability(model,x,prob_estimates); + fprintf(output,"%g",predict_label); + for(j=0;j<nr_class;j++) + fprintf(output," %g",prob_estimates[j]); + fprintf(output,"\n"); + } + else + { + predict_label = svm_predict(model,x); + fprintf(output,"%g\n",predict_label); + } + printf("predicted:%g\r\n",predict_label); + if(predict_label == target_label) + ++correct; + error += (predict_label-target_label)*(predict_label-target_label); + sump += predict_label; + sumt += target_label; + sumpp += predict_label*predict_label; + sumtt += target_label*target_label; + sumpt += predict_label*target_label; + ++total; + } + if (svm_type==NU_SVR || svm_type==EPSILON_SVR) + { + printf("Mean squared error = %g (regression)\n",error/total); + printf("Squared correlation coefficient = %g (regression)\n", + ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ + ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)) + ); + } + else + printf("Accuracy = %g%% (%d/%d) (classification)\n", + (double)correct/total*100,correct,total); + if(predict_probability) + free(prob_estimates); +} + +void exit_with_help() +{ + printf( + "Usage: svm-predict [options] test_file model_file output_file\n" + "options:\n" + "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n" + ); + exit(1); +} + +int main_(void) +{ + FILE *input, *output; + int i; + + //printf("*in main_\r\n"); + /*// parse options + for(i=1;i<argc;i++) + { + if(argv[i][0] != '-') break; + ++i; + switch(argv[i-1][1]) + { + case 'b': + predict_probability = atoi(argv[i]); + break; + default: + // fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]); + printf("Unknown option: -%c\n", argv[i-1][1]); + exit_with_help(); + } + } + if(i>=argc-2) + exit_with_help(); + */ + //printf("in main_\r\n"); + input = fopen("/local/test.txt","r"); + if(input == NULL) + { + // fprintf(stderr,"can't open input file %s\n",argv[i]); + printf("can't open input file %s\n","/local/test.txt"); + exit(1); + } + //printf("in main_\r\n"); + output = fopen("/local/output.txt","w"); + if(output == NULL) + { + // fprintf(stderr,"can't open output file %s\n",argv[i+2]); + printf("can't open output file %s\n","/local/output.txt"); + exit(1); + } + //printf("in main_\r\n"); + if((model=svm_load_model("/local/model.txt"))==0) + { + // fprintf(stderr,"can't open model file %s\n",argv[i+1]); + printf("can't open model file %s\n","/local/model.txt"); + exit(1); + } + + //printf("in main_\r\n"); + x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node)); + if(predict_probability) + { + if(svm_check_probability_model(model)==0) + { + printf("Model does not support probabiliy estimates\n"); + exit(1); + } + } + else + { + if(svm_check_probability_model(model)!=0) + printf("Model supports probability estimates, but disabled in prediction.\n"); + } + //printf("in main_\r\n"); + predict(input,output); +//printf("in main_\r\n"); + svm_free_and_destroy_model(&model); +//printf("in main_\r\n"); + free(x); + free(line); + fclose(input); + fclose(output); + return 0; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/predict.h Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,6 @@ +#include "svm.h" +static char* readline(FILE *input); +void exit_input_error(int line_num); +void predict(FILE *input, FILE *output); +void exit_with_help(); +int main_(void);
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/svm-scale.c Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,353 @@ +#include <float.h> +#include <stdio.h> +#include <stdlib.h> +#include <ctype.h> +#include <string.h> + +void _exit_with_help() +{ + printf( + "Usage: svm-scale [options] data_filename\n" + "options:\n" + "-l lower : x scaling lower limit (default -1)\n" + "-u scale_upper : x scaling scale_upper limit (default +1)\n" + "-y y_lower y_scale_upper : y scaling limits (default: no y scaling)\n" + "-s save_filename : save scaling parameters to save_filename\n" + "-r restore_filename : restore scaling parameters from restore_filename\n" + ); + exit(1); +} + +char *scale_line = NULL; +int scale_max_line_len = 1024; +double scale_lower=-1.0,scale_upper=1.0,y_scale_lower,y_scale_upper; +int y_scaling = 0; +double *feature_max; +double *feature_min; +double y_max = -DBL_MAX; +double y_min = DBL_MAX; +int max_index; +long int num_nonzeros = 0; +long int new_num_nonzeros = 0; + +#define max(x,y) (((x)>(y))?(x):(y)) +#define min(x,y) (((x)<(y))?(x):(y)) + +void output_target(double value); +void output(int index, double value); +char* readline(FILE *input); + +int main_scale(void) +{ + int i,index; + FILE *fp, *fp_restore = NULL; + char *save_filename = NULL; + char *restore_filename = "/local/range.txt"; + + /*for(i=1;i<argc;i++) + { + if(argv[i][0] != '-') break; + ++i; + switch(argv[i-1][1]) + { + case 'l': scale_lower = atof(argv[i]); break; + case 'u': scale_upper = atof(argv[i]); break; + case 'y': + y_scale_lower = atof(argv[i]); + ++i; + y_scale_upper = atof(argv[i]); + y_scaling = 1; + break; + case 's': save_filename = argv[i]; break; + case 'r': restore_filename = argv[i]; break; + default: + fprintf(stderr,"unknown option\n"); + exit_with_help(); + } + } +*/ + if(!(scale_upper > scale_lower) || (y_scaling && !(y_scale_upper > y_scale_lower))) + { + fprintf(stderr,"inconsistent scale_lower/scale_upper specification\n"); + exit(1); + } + + if(restore_filename && save_filename) + { + fprintf(stderr,"cannot use -r and -s simultaneously\n"); + exit(1); + } + +/* if(argc != i+1) + _exit_with_help(); +*/ + fp=fopen("/local/test.txt","r"); + + if(fp==NULL) + { + fprintf(stderr,"can't open file %s\n", "/local/test.txt"); + exit(1); + } + + scale_line = (char *) malloc(scale_max_line_len*sizeof(char)); + +#define SKIP_TARGET\ + while(isspace(*p)) ++p;\ + while(!isspace(*p)) ++p; + +#define SKIP_ELEMENT\ + while(*p!=':') ++p;\ + ++p;\ + while(isspace(*p)) ++p;\ + while(*p && !isspace(*p)) ++p; + + /* assumption: min index of attributes is 1 */ + /* pass 1: find out max index of attributes */ + max_index = 0; + + if(restore_filename) + { + int idx, c; + + fp_restore = fopen(restore_filename,"r"); + if(fp_restore==NULL) + { + fprintf(stderr,"can't open file %s\n", restore_filename); + exit(1); + } + + c = fgetc(fp_restore); + if(c == 'y') + { + readline(fp_restore); + readline(fp_restore); + readline(fp_restore); + } + readline(fp_restore); + readline(fp_restore); + + while(fscanf(fp_restore,"%d %*f %*f\n",&idx) == 1) + max_index = max(idx,max_index); + rewind(fp_restore); + } + + while(readline(fp)!=NULL) + { + char *p=scale_line; + + SKIP_TARGET + + while(sscanf(p,"%d:%*f",&index)==1) + { + max_index = max(max_index, index); + SKIP_ELEMENT + num_nonzeros++; + } + } + rewind(fp); + + feature_max = (double *)malloc((max_index+1)* sizeof(double)); + feature_min = (double *)malloc((max_index+1)* sizeof(double)); + + if(feature_max == NULL || feature_min == NULL) + { + fprintf(stderr,"can't allocate enough memory\n"); + exit(1); + } + + for(i=0;i<=max_index;i++) + { + feature_max[i]=-DBL_MAX; + feature_min[i]=DBL_MAX; + } + + /* pass 2: find out min/max value */ + while(readline(fp)!=NULL) + { + char *p=scale_line; + int next_index=1; + double target; + double value; + + sscanf(p,"%lf",&target); + y_max = max(y_max,target); + y_min = min(y_min,target); + + SKIP_TARGET + + while(sscanf(p,"%d:%lf",&index,&value)==2) + { + for(i=next_index;i<index;i++) + { + feature_max[i]=max(feature_max[i],0); + feature_min[i]=min(feature_min[i],0); + } + + feature_max[index]=max(feature_max[index],value); + feature_min[index]=min(feature_min[index],value); + + SKIP_ELEMENT + next_index=index+1; + } + + for(i=next_index;i<=max_index;i++) + { + feature_max[i]=max(feature_max[i],0); + feature_min[i]=min(feature_min[i],0); + } + } + + rewind(fp); + + /* pass 2.5: save/restore feature_min/feature_max */ + + if(restore_filename) + { + /* fp_restore rewinded in finding max_index */ + int idx, c; + double fmin, fmax; + + if((c = fgetc(fp_restore)) == 'y') + { + fscanf(fp_restore, "%lf %lf\n", &y_scale_lower, &y_scale_upper); + fscanf(fp_restore, "%lf %lf\n", &y_min, &y_max); + y_scaling = 1; + } + else + ungetc(c, fp_restore); + + if (fgetc(fp_restore) == 'x') { + fscanf(fp_restore, "%lf %lf\n", &scale_lower, &scale_upper); + while(fscanf(fp_restore,"%d %lf %lf\n",&idx,&fmin,&fmax)==3) + { + if(idx<=max_index) + { + feature_min[idx] = fmin; + feature_max[idx] = fmax; + } + } + } + fclose(fp_restore); + } + + if(save_filename) + { + FILE *fp_save = fopen(save_filename,"w"); + if(fp_save==NULL) + { + fprintf(stderr,"can't open file %s\n", save_filename); + exit(1); + } + if(y_scaling) + { + fprintf(fp_save, "y\n"); + fprintf(fp_save, "%.16g %.16g\n", y_scale_lower, y_scale_upper); + fprintf(fp_save, "%.16g %.16g\n", y_min, y_max); + } + fprintf(fp_save, "x\n"); + fprintf(fp_save, "%.16g %.16g\n", scale_lower, scale_upper); + for(i=1;i<=max_index;i++) + { + if(feature_min[i]!=feature_max[i]) + fprintf(fp_save,"%d %.16g %.16g\n",i,feature_min[i],feature_max[i]); + } + fclose(fp_save); + } + + /* pass 3: scale */ + while(readline(fp)!=NULL) + { + char *p=scale_line; + int next_index=1; + double target; + double value; + + sscanf(p,"%lf",&target); + output_target(target); + + SKIP_TARGET + + while(sscanf(p,"%d:%lf",&index,&value)==2) + { + for(i=next_index;i<index;i++) + output(i,0); + + output(index,value); + + SKIP_ELEMENT + next_index=index+1; + } + + for(i=next_index;i<=max_index;i++) + output(i,0); + + printf("\n"); + } + + if (new_num_nonzeros > num_nonzeros) + fprintf(stderr, + "Warning: original #nonzeros %ld\n" + " new #nonzeros %ld\n" + "Use -l 0 if many original feature values are zeros\n", + num_nonzeros, new_num_nonzeros); + + free(scale_line); + free(feature_max); + free(feature_min); + fclose(fp); + return 0; +} + +char* readline(FILE *input) +{ + int len; + + if(fgets(scale_line,scale_max_line_len,input) == NULL) + return NULL; + + while(strrchr(scale_line,'\n') == NULL) + { + scale_max_line_len *= 2; + scale_line = (char *) realloc(scale_line, scale_max_line_len); + len = (int) strlen(scale_line); + if(fgets(scale_line+len,scale_max_line_len-len,input) == NULL) + break; + } + return scale_line; +} + +void output_target(double value) +{ + if(y_scaling) + { + if(value == y_min) + value = y_scale_lower; + else if(value == y_max) + value = y_scale_upper; + else value = y_scale_lower + (y_scale_upper-y_scale_lower) * + (value - y_min)/(y_max-y_min); + } + printf("%g ",value); +} + +void output(int index, double value) +{ + /* skip single-valued attribute */ + if(feature_max[index] == feature_min[index]) + return; + + if(value == feature_min[index]) + value = scale_lower; + else if(value == feature_max[index]) + value = scale_upper; + else + value = scale_lower + (scale_upper-scale_lower) * + (value-feature_min[index])/ + (feature_max[index]-feature_min[index]); + + if(value != 0) + { + printf("%d:%g ",index, value); + new_num_nonzeros++; + } +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/svm-scale.h Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,10 @@ +/* + * svm-scale.h + * Theremin + * + * Created by peccu on 11/09/13. + * Copyright 2011 __MyCompanyName__. All rights reserved. + * + */ + +int main_scale(void);
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/svm/svm.cpp Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,3262 @@ +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <ctype.h> +#include <float.h> +#include <string.h> +#include <stdarg.h> +#include "svm.h" +int libsvm_version = LIBSVM_VERSION; +typedef float Qfloat; +typedef signed char schar; +#ifndef min +template <class T> static inline T min(T x,T y) { return (x<y)?x:y; } +#endif +#ifndef max +template <class T> static inline T max(T x,T y) { return (x>y)?x:y; } +#endif +template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; } +template <class S, class T> static inline void clone(T*& dst, S* src, int n) +{ + dst = new T[n]; + memcpy((void *)dst,(void *)src,sizeof(T)*n); +} +static inline double powi(double base, int times) +{ + double tmp = base, ret = 1.0; + + for(int t=times; t>0; t/=2) + { + if(t%2==1) ret*=tmp; + tmp = tmp * tmp; + } + return ret; +} +#define INF HUGE_VAL +#define TAU 1e-12 +#define Malloc(type,n) (type *)malloc((n)*sizeof(type)) + +static void print_string_stdout(const char *s) +{ + fputs(s,stdout); + fflush(stdout); +} +static void (*svm_print_string) (const char *) = &print_string_stdout; +#if 1 +static void info(const char *fmt,...) +{ + char buf[BUFSIZ]; + va_list ap; + va_start(ap,fmt); + vsprintf(buf,fmt,ap); + va_end(ap); + (*svm_print_string)(buf); +} +#else +static void info(const char *fmt,...) {} +#endif + +// +// Kernel Cache +// +// l is the number of total data items +// size is the cache size limit in bytes +// +class Cache +{ +public: + Cache(int l,long int size); + ~Cache(); + + // request data [0,len) + // return some position p where [p,len) need to be filled + // (p >= len if nothing needs to be filled) + int get_data(const int index, Qfloat **data, int len); + void swap_index(int i, int j); +private: + int l; + long int size; + struct head_t + { + head_t *prev, *next; // a circular list + Qfloat *data; + int len; // data[0,len) is cached in this entry + }; + + head_t *head; + head_t lru_head; + void lru_delete(head_t *h); + void lru_insert(head_t *h); +}; + +Cache::Cache(int l_,long int size_):l(l_),size(size_) +{ + head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 + size /= sizeof(Qfloat); + size -= l * sizeof(head_t) / sizeof(Qfloat); + size = max(size, 2 * (long int) l); // cache must be large enough for two columns + lru_head.next = lru_head.prev = &lru_head; +} + +Cache::~Cache() +{ + for(head_t *h = lru_head.next; h != &lru_head; h=h->next) + free(h->data); + free(head); +} + +void Cache::lru_delete(head_t *h) +{ + // delete from current location + h->prev->next = h->next; + h->next->prev = h->prev; +} + +void Cache::lru_insert(head_t *h) +{ + // insert to last position + h->next = &lru_head; + h->prev = lru_head.prev; + h->prev->next = h; + h->next->prev = h; +} + +int Cache::get_data(const int index, Qfloat **data, int len) +{ + head_t *h = &head[index]; + if(h->len) lru_delete(h); + int more = len - h->len; + + if(more > 0) + { + // free old space + while(size < more) + { + head_t *old = lru_head.next; + lru_delete(old); + free(old->data); + size += old->len; + old->data = 0; + old->len = 0; + } + + // allocate new space + h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); + size -= more; + swap(h->len,len); + } + + lru_insert(h); + *data = h->data; + return len; +} + +void Cache::swap_index(int i, int j) +{ + if(i==j) return; + + if(head[i].len) lru_delete(&head[i]); + if(head[j].len) lru_delete(&head[j]); + swap(head[i].data,head[j].data); + swap(head[i].len,head[j].len); + if(head[i].len) lru_insert(&head[i]); + if(head[j].len) lru_insert(&head[j]); + + if(i>j) swap(i,j); + for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) + { + if(h->len > i) + { + if(h->len > j) + swap(h->data[i],h->data[j]); + else + { + // give up + lru_delete(h); + free(h->data); + size += h->len; + h->data = 0; + h->len = 0; + } + } + } +} + +// +// Kernel evaluation +// +// the static method k_function is for doing single kernel evaluation +// the constructor of Kernel prepares to calculate the l*l kernel matrix +// the member function get_Q is for getting one column from the Q Matrix +// +class QMatrix { +public: + virtual Qfloat *get_Q(int column, int len) const = 0; + virtual double *get_QD() const = 0; + virtual void swap_index(int i, int j) const = 0; + virtual ~QMatrix() {} +}; + +class Kernel: public QMatrix { +public: + Kernel(int l, svm_node * const * x, const svm_parameter& param); + virtual ~Kernel(); + + static double k_function(const svm_node *x, const svm_node *y, + const svm_parameter& param); + virtual Qfloat *get_Q(int column, int len) const = 0; + virtual double *get_QD() const = 0; + virtual void swap_index(int i, int j) const // no so const... + { + swap(x[i],x[j]); + if(x_square) swap(x_square[i],x_square[j]); + } +protected: + + double (Kernel::*kernel_function)(int i, int j) const; + +private: + const svm_node **x; + double *x_square; + + // svm_parameter + const int kernel_type; + const int degree; + const double gamma; + const double coef0; + + static double dot(const svm_node *px, const svm_node *py); + double kernel_linear(int i, int j) const + { + return dot(x[i],x[j]); + } + double kernel_poly(int i, int j) const + { + return powi(gamma*dot(x[i],x[j])+coef0,degree); + } + double kernel_rbf(int i, int j) const + { + return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); + } + double kernel_sigmoid(int i, int j) const + { + return tanh(gamma*dot(x[i],x[j])+coef0); + } + double kernel_precomputed(int i, int j) const + { + return x[i][(int)(x[j][0].value)].value; + } +}; + +Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param) +:kernel_type(param.kernel_type), degree(param.degree), + gamma(param.gamma), coef0(param.coef0) +{ + switch(kernel_type) + { + case LINEAR: + kernel_function = &Kernel::kernel_linear; + break; + case POLY: + kernel_function = &Kernel::kernel_poly; + break; + case RBF: + kernel_function = &Kernel::kernel_rbf; + break; + case SIGMOID: + kernel_function = &Kernel::kernel_sigmoid; + break; + case PRECOMPUTED: + kernel_function = &Kernel::kernel_precomputed; + break; + } + + clone(x,x_,l); + + if(kernel_type == RBF) + { + x_square = new double[l]; + for(int i=0;i<l;i++) + x_square[i] = dot(x[i],x[i]); + } + else + x_square = 0; +} + +Kernel::~Kernel() +{ + delete[] x; + delete[] x_square; +} + +double Kernel::dot(const svm_node *px, const svm_node *py) +{ + double sum = 0; + while(px->index != -1 && py->index != -1) + { + if(px->index == py->index) + { + sum += px->value * py->value; + ++px; + ++py; + } + else + { + if(px->index > py->index) + ++py; + else + ++px; + } + } + return sum; +} + +double Kernel::k_function(const svm_node *x, const svm_node *y, + const svm_parameter& param) +{ + switch(param.kernel_type) + { + case LINEAR: + return dot(x,y); + case POLY: + return powi(param.gamma*dot(x,y)+param.coef0,param.degree); + case RBF: + { + double sum = 0; + while(x->index != -1 && y->index !=-1) + { + if(x->index == y->index) + { + double d = x->value - y->value; + sum += d*d; + ++x; + ++y; + } + else + { + if(x->index > y->index) + { + sum += y->value * y->value; + ++y; + } + else + { + sum += x->value * x->value; + ++x; + } + } + } + + while(x->index != -1) + { + sum += x->value * x->value; + ++x; + } + + while(y->index != -1) + { + sum += y->value * y->value; + ++y; + } + + return exp(-param.gamma*sum); + } + case SIGMOID: + return tanh(param.gamma*dot(x,y)+param.coef0); + case PRECOMPUTED: //x: test (validation), y: SV + return x[(int)(y->value)].value; + default: + return 0; // Unreachable + } +} + +// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 +// Solves: +// +// min 0.5(\alpha^T Q \alpha) + p^T \alpha +// +// y^T \alpha = \delta +// y_i = +1 or -1 +// 0 <= alpha_i <= Cp for y_i = 1 +// 0 <= alpha_i <= Cn for y_i = -1 +// +// Given: +// +// Q, p, y, Cp, Cn, and an initial feasible point \alpha +// l is the size of vectors and matrices +// eps is the stopping tolerance +// +// solution will be put in \alpha, objective value will be put in obj +// +class Solver { +public: + Solver() {}; + virtual ~Solver() {}; + + struct SolutionInfo { + double obj; + double rho; + double upper_bound_p; + double upper_bound_n; + double r; // for Solver_NU + }; + + void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, + double *alpha_, double Cp, double Cn, double eps, + SolutionInfo* si, int shrinking); +protected: + int active_size; + schar *y; + double *G; // gradient of objective function + enum { LOWER_BOUND, UPPER_BOUND, FREE }; + char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE + double *alpha; + const QMatrix *Q; + const double *QD; + double eps; + double Cp,Cn; + double *p; + int *active_set; + double *G_bar; // gradient, if we treat free variables as 0 + int l; + bool unshrink; // XXX + + double get_C(int i) + { + return (y[i] > 0)? Cp : Cn; + } + void update_alpha_status(int i) + { + if(alpha[i] >= get_C(i)) + alpha_status[i] = UPPER_BOUND; + else if(alpha[i] <= 0) + alpha_status[i] = LOWER_BOUND; + else alpha_status[i] = FREE; + } + bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } + bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } + bool is_free(int i) { return alpha_status[i] == FREE; } + void swap_index(int i, int j); + void reconstruct_gradient(); + virtual int select_working_set(int &i, int &j); + virtual double calculate_rho(); + virtual void do_shrinking(); +private: + bool be_shrunk(int i, double Gmax1, double Gmax2); +}; + +void Solver::swap_index(int i, int j) +{ + Q->swap_index(i,j); + swap(y[i],y[j]); + swap(G[i],G[j]); + swap(alpha_status[i],alpha_status[j]); + swap(alpha[i],alpha[j]); + swap(p[i],p[j]); + swap(active_set[i],active_set[j]); + swap(G_bar[i],G_bar[j]); +} + +void Solver::reconstruct_gradient() +{ + // reconstruct inactive elements of G from G_bar and free variables + + if(active_size == l) return; + + int i,j; + int nr_free = 0; + + for(j=active_size;j<l;j++) + G[j] = G_bar[j] + p[j]; + + for(j=0;j<active_size;j++) + if(is_free(j)) + nr_free++; + + if(2*nr_free < active_size) + info("\nWarning: using -h 0 may be faster\n"); + + if (nr_free*l > 2*active_size*(l-active_size)) + { + for(i=active_size;i<l;i++) + { + const Qfloat *Q_i = Q->get_Q(i,active_size); + for(j=0;j<active_size;j++) + if(is_free(j)) + G[i] += alpha[j] * Q_i[j]; + } + } + else + { + for(i=0;i<active_size;i++) + if(is_free(i)) + { + const Qfloat *Q_i = Q->get_Q(i,l); + double alpha_i = alpha[i]; + for(j=active_size;j<l;j++) + G[j] += alpha_i * Q_i[j]; + } + } +} + +void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, + double *alpha_, double Cp, double Cn, double eps, + SolutionInfo* si, int shrinking) +{ + this->l = l; + this->Q = &Q; + QD=Q.get_QD(); + clone(p, p_,l); + clone(y, y_,l); + clone(alpha,alpha_,l); + this->Cp = Cp; + this->Cn = Cn; + this->eps = eps; + unshrink = false; + + // initialize alpha_status + { + alpha_status = new char[l]; + for(int i=0;i<l;i++) + update_alpha_status(i); + } + + // initialize active set (for shrinking) + { + active_set = new int[l]; + for(int i=0;i<l;i++) + active_set[i] = i; + active_size = l; + } + + // initialize gradient + { + G = new double[l]; + G_bar = new double[l]; + int i; + for(i=0;i<l;i++) + { + G[i] = p[i]; + G_bar[i] = 0; + } + for(i=0;i<l;i++) + if(!is_lower_bound(i)) + { + const Qfloat *Q_i = Q.get_Q(i,l); + double alpha_i = alpha[i]; + int j; + for(j=0;j<l;j++) + G[j] += alpha_i*Q_i[j]; + if(is_upper_bound(i)) + for(j=0;j<l;j++) + G_bar[j] += get_C(i) * Q_i[j]; + } + } + + // optimization step + + int iter = 0; + int counter = min(l,1000)+1; + + while(1) + { + // show progress and do shrinking + + if(--counter == 0) + { + counter = min(l,1000); + if(shrinking) do_shrinking(); + info("."); + } + + int i,j; + if(select_working_set(i,j)!=0) + { + // reconstruct the whole gradient + reconstruct_gradient(); + // reset active set size and check + active_size = l; + info("*"); + if(select_working_set(i,j)!=0) + break; + else + counter = 1; // do shrinking next iteration + } + + ++iter; + + // update alpha[i] and alpha[j], handle bounds carefully + + const Qfloat *Q_i = Q.get_Q(i,active_size); + const Qfloat *Q_j = Q.get_Q(j,active_size); + + double C_i = get_C(i); + double C_j = get_C(j); + + double old_alpha_i = alpha[i]; + double old_alpha_j = alpha[j]; + + if(y[i]!=y[j]) + { + double quad_coef = QD[i]+QD[j]+2*Q_i[j]; + if (quad_coef <= 0) + quad_coef = TAU; + double delta = (-G[i]-G[j])/quad_coef; + double diff = alpha[i] - alpha[j]; + alpha[i] += delta; + alpha[j] += delta; + + if(diff > 0) + { + if(alpha[j] < 0) + { + alpha[j] = 0; + alpha[i] = diff; + } + } + else + { + if(alpha[i] < 0) + { + alpha[i] = 0; + alpha[j] = -diff; + } + } + if(diff > C_i - C_j) + { + if(alpha[i] > C_i) + { + alpha[i] = C_i; + alpha[j] = C_i - diff; + } + } + else + { + if(alpha[j] > C_j) + { + alpha[j] = C_j; + alpha[i] = C_j + diff; + } + } + } + else + { + double quad_coef = QD[i]+QD[j]-2*Q_i[j]; + if (quad_coef <= 0) + quad_coef = TAU; + double delta = (G[i]-G[j])/quad_coef; + double sum = alpha[i] + alpha[j]; + alpha[i] -= delta; + alpha[j] += delta; + + if(sum > C_i) + { + if(alpha[i] > C_i) + { + alpha[i] = C_i; + alpha[j] = sum - C_i; + } + } + else + { + if(alpha[j] < 0) + { + alpha[j] = 0; + alpha[i] = sum; + } + } + if(sum > C_j) + { + if(alpha[j] > C_j) + { + alpha[j] = C_j; + alpha[i] = sum - C_j; + } + } + else + { + if(alpha[i] < 0) + { + alpha[i] = 0; + alpha[j] = sum; + } + } + } + + // update G + + double delta_alpha_i = alpha[i] - old_alpha_i; + double delta_alpha_j = alpha[j] - old_alpha_j; + + for(int k=0;k<active_size;k++) + { + G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j; + } + + // update alpha_status and G_bar + + { + bool ui = is_upper_bound(i); + bool uj = is_upper_bound(j); + update_alpha_status(i); + update_alpha_status(j); + int k; + if(ui != is_upper_bound(i)) + { + Q_i = Q.get_Q(i,l); + if(ui) + for(k=0;k<l;k++) + G_bar[k] -= C_i * Q_i[k]; + else + for(k=0;k<l;k++) + G_bar[k] += C_i * Q_i[k]; + } + + if(uj != is_upper_bound(j)) + { + Q_j = Q.get_Q(j,l); + if(uj) + for(k=0;k<l;k++) + G_bar[k] -= C_j * Q_j[k]; + else + for(k=0;k<l;k++) + G_bar[k] += C_j * Q_j[k]; + } + } + } + + // calculate rho + + si->rho = calculate_rho(); + + // calculate objective value + { + double v = 0; + int i; + for(i=0;i<l;i++) + v += alpha[i] * (G[i] + p[i]); + + si->obj = v/2; + } + + // put back the solution + { + for(int i=0;i<l;i++) + alpha_[active_set[i]] = alpha[i]; + } + + // juggle everything back + /*{ + for(int i=0;i<l;i++) + while(active_set[i] != i) + swap_index(i,active_set[i]); + // or Q.swap_index(i,active_set[i]); + }*/ + + si->upper_bound_p = Cp; + si->upper_bound_n = Cn; + + info("\noptimization finished, #iter = %d\n",iter); + + delete[] p; + delete[] y; + delete[] alpha; + delete[] alpha_status; + delete[] active_set; + delete[] G; + delete[] G_bar; +} + +// return 1 if already optimal, return 0 otherwise +int Solver::select_working_set(int &out_i, int &out_j) +{ + // return i,j such that + // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) + // j: minimizes the decrease of obj value + // (if quadratic coefficeint <= 0, replace it with tau) + // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) + + double Gmax = -INF; + double Gmax2 = -INF; + int Gmax_idx = -1; + int Gmin_idx = -1; + double obj_diff_min = INF; + + for(int t=0;t<active_size;t++) + if(y[t]==+1) + { + if(!is_upper_bound(t)) + if(-G[t] >= Gmax) + { + Gmax = -G[t]; + Gmax_idx = t; + } + } + else + { + if(!is_lower_bound(t)) + if(G[t] >= Gmax) + { + Gmax = G[t]; + Gmax_idx = t; + } + } + + int i = Gmax_idx; + const Qfloat *Q_i = NULL; + if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 + Q_i = Q->get_Q(i,active_size); + + for(int j=0;j<active_size;j++) + { + if(y[j]==+1) + { + if (!is_lower_bound(j)) + { + double grad_diff=Gmax+G[j]; + if (G[j] >= Gmax2) + Gmax2 = G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + else + { + if (!is_upper_bound(j)) + { + double grad_diff= Gmax-G[j]; + if (-G[j] >= Gmax2) + Gmax2 = -G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + } + + if(Gmax+Gmax2 < eps) + return 1; + + out_i = Gmax_idx; + out_j = Gmin_idx; + return 0; +} + +bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) +{ + if(is_upper_bound(i)) + { + if(y[i]==+1) + return(-G[i] > Gmax1); + else + return(-G[i] > Gmax2); + } + else if(is_lower_bound(i)) + { + if(y[i]==+1) + return(G[i] > Gmax2); + else + return(G[i] > Gmax1); + } + else + return(false); +} + +void Solver::do_shrinking() +{ + int i; + double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } + double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } + + // find maximal violating pair first + for(i=0;i<active_size;i++) + { + if(y[i]==+1) + { + if(!is_upper_bound(i)) + { + if(-G[i] >= Gmax1) + Gmax1 = -G[i]; + } + if(!is_lower_bound(i)) + { + if(G[i] >= Gmax2) + Gmax2 = G[i]; + } + } + else + { + if(!is_upper_bound(i)) + { + if(-G[i] >= Gmax2) + Gmax2 = -G[i]; + } + if(!is_lower_bound(i)) + { + if(G[i] >= Gmax1) + Gmax1 = G[i]; + } + } + } + + if(unshrink == false && Gmax1 + Gmax2 <= eps*10) + { + unshrink = true; + reconstruct_gradient(); + active_size = l; + info("*"); + } + + for(i=0;i<active_size;i++) + if (be_shrunk(i, Gmax1, Gmax2)) + { + active_size--; + while (active_size > i) + { + if (!be_shrunk(active_size, Gmax1, Gmax2)) + { + swap_index(i,active_size); + break; + } + active_size--; + } + } +} + +double Solver::calculate_rho() +{ + double r; + int nr_free = 0; + double ub = INF, lb = -INF, sum_free = 0; + for(int i=0;i<active_size;i++) + { + double yG = y[i]*G[i]; + + if(is_upper_bound(i)) + { + if(y[i]==-1) + ub = min(ub,yG); + else + lb = max(lb,yG); + } + else if(is_lower_bound(i)) + { + if(y[i]==+1) + ub = min(ub,yG); + else + lb = max(lb,yG); + } + else + { + ++nr_free; + sum_free += yG; + } + } + + if(nr_free>0) + r = sum_free/nr_free; + else + r = (ub+lb)/2; + + return r; +} + +// +// Solver for nu-svm classification and regression +// +// additional constraint: e^T \alpha = constant +// +class Solver_NU : public Solver +{ +public: + Solver_NU() {} + void Solve(int l, const QMatrix& Q, const double *p, const schar *y, + double *alpha, double Cp, double Cn, double eps, + SolutionInfo* si, int shrinking) + { + this->si = si; + Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); + } +private: + SolutionInfo *si; + int select_working_set(int &i, int &j); + double calculate_rho(); + bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); + void do_shrinking(); +}; + +// return 1 if already optimal, return 0 otherwise +int Solver_NU::select_working_set(int &out_i, int &out_j) +{ + // return i,j such that y_i = y_j and + // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) + // j: minimizes the decrease of obj value + // (if quadratic coefficeint <= 0, replace it with tau) + // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) + + double Gmaxp = -INF; + double Gmaxp2 = -INF; + int Gmaxp_idx = -1; + + double Gmaxn = -INF; + double Gmaxn2 = -INF; + int Gmaxn_idx = -1; + + int Gmin_idx = -1; + double obj_diff_min = INF; + + for(int t=0;t<active_size;t++) + if(y[t]==+1) + { + if(!is_upper_bound(t)) + if(-G[t] >= Gmaxp) + { + Gmaxp = -G[t]; + Gmaxp_idx = t; + } + } + else + { + if(!is_lower_bound(t)) + if(G[t] >= Gmaxn) + { + Gmaxn = G[t]; + Gmaxn_idx = t; + } + } + + int ip = Gmaxp_idx; + int in = Gmaxn_idx; + const Qfloat *Q_ip = NULL; + const Qfloat *Q_in = NULL; + if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 + Q_ip = Q->get_Q(ip,active_size); + if(in != -1) + Q_in = Q->get_Q(in,active_size); + + for(int j=0;j<active_size;j++) + { + if(y[j]==+1) + { + if (!is_lower_bound(j)) + { + double grad_diff=Gmaxp+G[j]; + if (G[j] >= Gmaxp2) + Gmaxp2 = G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[ip]+QD[j]-2*Q_ip[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + else + { + if (!is_upper_bound(j)) + { + double grad_diff=Gmaxn-G[j]; + if (-G[j] >= Gmaxn2) + Gmaxn2 = -G[j]; + if (grad_diff > 0) + { + double obj_diff; + double quad_coef = QD[in]+QD[j]-2*Q_in[j]; + if (quad_coef > 0) + obj_diff = -(grad_diff*grad_diff)/quad_coef; + else + obj_diff = -(grad_diff*grad_diff)/TAU; + + if (obj_diff <= obj_diff_min) + { + Gmin_idx=j; + obj_diff_min = obj_diff; + } + } + } + } + } + + if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) + return 1; + + if (y[Gmin_idx] == +1) + out_i = Gmaxp_idx; + else + out_i = Gmaxn_idx; + out_j = Gmin_idx; + + return 0; +} + +bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) +{ + if(is_upper_bound(i)) + { + if(y[i]==+1) + return(-G[i] > Gmax1); + else + return(-G[i] > Gmax4); + } + else if(is_lower_bound(i)) + { + if(y[i]==+1) + return(G[i] > Gmax2); + else + return(G[i] > Gmax3); + } + else + return(false); +} + +void Solver_NU::do_shrinking() +{ + double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } + double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } + double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } + double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } + + // find maximal violating pair first + int i; + for(i=0;i<active_size;i++) + { + if(!is_upper_bound(i)) + { + if(y[i]==+1) + { + if(-G[i] > Gmax1) Gmax1 = -G[i]; + } + else if(-G[i] > Gmax4) Gmax4 = -G[i]; + } + if(!is_lower_bound(i)) + { + if(y[i]==+1) + { + if(G[i] > Gmax2) Gmax2 = G[i]; + } + else if(G[i] > Gmax3) Gmax3 = G[i]; + } + } + + if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) + { + unshrink = true; + reconstruct_gradient(); + active_size = l; + } + + for(i=0;i<active_size;i++) + if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4)) + { + active_size--; + while (active_size > i) + { + if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) + { + swap_index(i,active_size); + break; + } + active_size--; + } + } +} + +double Solver_NU::calculate_rho() +{ + int nr_free1 = 0,nr_free2 = 0; + double ub1 = INF, ub2 = INF; + double lb1 = -INF, lb2 = -INF; + double sum_free1 = 0, sum_free2 = 0; + + for(int i=0;i<active_size;i++) + { + if(y[i]==+1) + { + if(is_upper_bound(i)) + lb1 = max(lb1,G[i]); + else if(is_lower_bound(i)) + ub1 = min(ub1,G[i]); + else + { + ++nr_free1; + sum_free1 += G[i]; + } + } + else + { + if(is_upper_bound(i)) + lb2 = max(lb2,G[i]); + else if(is_lower_bound(i)) + ub2 = min(ub2,G[i]); + else + { + ++nr_free2; + sum_free2 += G[i]; + } + } + } + + double r1,r2; + if(nr_free1 > 0) + r1 = sum_free1/nr_free1; + else + r1 = (ub1+lb1)/2; + + if(nr_free2 > 0) + r2 = sum_free2/nr_free2; + else + r2 = (ub2+lb2)/2; + + si->r = (r1+r2)/2; + return (r1-r2)/2; +} + +// +// Q matrices for various formulations +// +class SVC_Q: public Kernel +{ +public: + SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_) + :Kernel(prob.l, prob.x, param) + { + clone(y,y_,prob.l); + cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); + QD = new double[prob.l]; + for(int i=0;i<prob.l;i++) + QD[i] = (this->*kernel_function)(i,i); + } + + Qfloat *get_Q(int i, int len) const + { + Qfloat *data; + int start, j; + if((start = cache->get_data(i,&data,len)) < len) + { + for(j=start;j<len;j++) + data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j)); + } + return data; + } + + double *get_QD() const + { + return QD; + } + + void swap_index(int i, int j) const + { + cache->swap_index(i,j); + Kernel::swap_index(i,j); + swap(y[i],y[j]); + swap(QD[i],QD[j]); + } + + ~SVC_Q() + { + delete[] y; + delete cache; + delete[] QD; + } +private: + schar *y; + Cache *cache; + double *QD; +}; + +class ONE_CLASS_Q: public Kernel +{ +public: + ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param) + :Kernel(prob.l, prob.x, param) + { + cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); + QD = new double[prob.l]; + for(int i=0;i<prob.l;i++) + QD[i] = (this->*kernel_function)(i,i); + } + + Qfloat *get_Q(int i, int len) const + { + Qfloat *data; + int start, j; + if((start = cache->get_data(i,&data,len)) < len) + { + for(j=start;j<len;j++) + data[j] = (Qfloat)(this->*kernel_function)(i,j); + } + return data; + } + + double *get_QD() const + { + return QD; + } + + void swap_index(int i, int j) const + { + cache->swap_index(i,j); + Kernel::swap_index(i,j); + swap(QD[i],QD[j]); + } + + ~ONE_CLASS_Q() + { + delete cache; + delete[] QD; + } +private: + Cache *cache; + double *QD; +}; + +class SVR_Q: public Kernel +{ +public: + SVR_Q(const svm_problem& prob, const svm_parameter& param) + :Kernel(prob.l, prob.x, param) + { + l = prob.l; + cache = new Cache(l,(long int)(param.cache_size*(1<<20))); + QD = new double[2*l]; + sign = new schar[2*l]; + index = new int[2*l]; + for(int k=0;k<l;k++) + { + sign[k] = 1; + sign[k+l] = -1; + index[k] = k; + index[k+l] = k; + QD[k] = (this->*kernel_function)(k,k); + QD[k+l] = QD[k]; + } + buffer[0] = new Qfloat[2*l]; + buffer[1] = new Qfloat[2*l]; + next_buffer = 0; + } + + void swap_index(int i, int j) const + { + swap(sign[i],sign[j]); + swap(index[i],index[j]); + swap(QD[i],QD[j]); + } + + Qfloat *get_Q(int i, int len) const + { + Qfloat *data; + int j, real_i = index[i]; + if(cache->get_data(real_i,&data,l) < l) + { + for(j=0;j<l;j++) + data[j] = (Qfloat)(this->*kernel_function)(real_i,j); + } + + // reorder and copy + Qfloat *buf = buffer[next_buffer]; + next_buffer = 1 - next_buffer; + schar si = sign[i]; + for(j=0;j<len;j++) + buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]]; + return buf; + } + + double *get_QD() const + { + return QD; + } + + ~SVR_Q() + { + delete cache; + delete[] sign; + delete[] index; + delete[] buffer[0]; + delete[] buffer[1]; + delete[] QD; + } +private: + int l; + Cache *cache; + schar *sign; + int *index; + mutable int next_buffer; + Qfloat *buffer[2]; + double *QD; +}; + +// +// construct and solve various formulations +// +static void solve_c_svc( + const svm_problem *prob, const svm_parameter* param, + double *alpha, Solver::SolutionInfo* si, double Cp, double Cn) +{ + int l = prob->l; + double *minus_ones = new double[l]; + schar *y = new schar[l]; + + int i; + + for(i=0;i<l;i++) + { + alpha[i] = 0; + minus_ones[i] = -1; + if(prob->y[i] > 0) y[i] = +1; else y[i] = -1; + } + + Solver s; + s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, + alpha, Cp, Cn, param->eps, si, param->shrinking); + + double sum_alpha=0; + for(i=0;i<l;i++) + sum_alpha += alpha[i]; + + if (Cp==Cn) + info("nu = %f\n", sum_alpha/(Cp*prob->l)); + + for(i=0;i<l;i++) + alpha[i] *= y[i]; + + delete[] minus_ones; + delete[] y; +} + +static void solve_nu_svc( + const svm_problem *prob, const svm_parameter *param, + double *alpha, Solver::SolutionInfo* si) +{ + int i; + int l = prob->l; + double nu = param->nu; + + schar *y = new schar[l]; + + for(i=0;i<l;i++) + if(prob->y[i]>0) + y[i] = +1; + else + y[i] = -1; + + double sum_pos = nu*l/2; + double sum_neg = nu*l/2; + + for(i=0;i<l;i++) + if(y[i] == +1) + { + alpha[i] = min(1.0,sum_pos); + sum_pos -= alpha[i]; + } + else + { + alpha[i] = min(1.0,sum_neg); + sum_neg -= alpha[i]; + } + + double *zeros = new double[l]; + + for(i=0;i<l;i++) + zeros[i] = 0; + + Solver_NU s; + s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, + alpha, 1.0, 1.0, param->eps, si, param->shrinking); + double r = si->r; + + info("C = %f\n",1/r); + + for(i=0;i<l;i++) + alpha[i] *= y[i]/r; + + si->rho /= r; + si->obj /= (r*r); + si->upper_bound_p = 1/r; + si->upper_bound_n = 1/r; + + delete[] y; + delete[] zeros; +} + +static void solve_one_class( + const svm_problem *prob, const svm_parameter *param, + double *alpha, Solver::SolutionInfo* si) +{ + int l = prob->l; + double *zeros = new double[l]; + schar *ones = new schar[l]; + int i; + + int n = (int)(param->nu*prob->l); // # of alpha's at upper bound + + for(i=0;i<n;i++) + alpha[i] = 1; + if(n<prob->l) + alpha[n] = param->nu * prob->l - n; + for(i=n+1;i<l;i++) + alpha[i] = 0; + + for(i=0;i<l;i++) + { + zeros[i] = 0; + ones[i] = 1; + } + + Solver s; + s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones, + alpha, 1.0, 1.0, param->eps, si, param->shrinking); + + delete[] zeros; + delete[] ones; +} + +static void solve_epsilon_svr( + const svm_problem *prob, const svm_parameter *param, + double *alpha, Solver::SolutionInfo* si) +{ + int l = prob->l; + double *alpha2 = new double[2*l]; + double *linear_term = new double[2*l]; + schar *y = new schar[2*l]; + int i; + + for(i=0;i<l;i++) + { + alpha2[i] = 0; + linear_term[i] = param->p - prob->y[i]; + y[i] = 1; + + alpha2[i+l] = 0; + linear_term[i+l] = param->p + prob->y[i]; + y[i+l] = -1; + } + + Solver s; + s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, + alpha2, param->C, param->C, param->eps, si, param->shrinking); + + double sum_alpha = 0; + for(i=0;i<l;i++) + { + alpha[i] = alpha2[i] - alpha2[i+l]; + sum_alpha += fabs(alpha[i]); + } + info("nu = %f\n",sum_alpha/(param->C*l)); + + delete[] alpha2; + delete[] linear_term; + delete[] y; +} + +static void solve_nu_svr( + const svm_problem *prob, const svm_parameter *param, + double *alpha, Solver::SolutionInfo* si) +{ + int l = prob->l; + double C = param->C; + double *alpha2 = new double[2*l]; + double *linear_term = new double[2*l]; + schar *y = new schar[2*l]; + int i; + + double sum = C * param->nu * l / 2; + for(i=0;i<l;i++) + { + alpha2[i] = alpha2[i+l] = min(sum,C); + sum -= alpha2[i]; + + linear_term[i] = - prob->y[i]; + y[i] = 1; + + linear_term[i+l] = prob->y[i]; + y[i+l] = -1; + } + + Solver_NU s; + s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, + alpha2, C, C, param->eps, si, param->shrinking); + + info("epsilon = %f\n",-si->r); + + for(i=0;i<l;i++) + alpha[i] = alpha2[i] - alpha2[i+l]; + + delete[] alpha2; + delete[] linear_term; + delete[] y; +} + +// +// decision_function +// +struct decision_function +{ + double *alpha; + double rho; +}; + +static decision_function svm_train_one( + const svm_problem *prob, const svm_parameter *param, + double Cp, double Cn) +{ + double *alpha = Malloc(double,prob->l); + Solver::SolutionInfo si; + switch(param->svm_type) + { + case C_SVC: + solve_c_svc(prob,param,alpha,&si,Cp,Cn); + break; + case NU_SVC: + solve_nu_svc(prob,param,alpha,&si); + break; + case ONE_CLASS: + solve_one_class(prob,param,alpha,&si); + break; + case EPSILON_SVR: + solve_epsilon_svr(prob,param,alpha,&si); + break; + case NU_SVR: + solve_nu_svr(prob,param,alpha,&si); + break; + } + + info("obj = %f, rho = %f\n",si.obj,si.rho); + + // output SVs + + int nSV = 0; + int nBSV = 0; + for(int i=0;i<prob->l;i++) + { + if(fabs(alpha[i]) > 0) + { + ++nSV; + if(prob->y[i] > 0) + { + if(fabs(alpha[i]) >= si.upper_bound_p) + ++nBSV; + } + else + { + if(fabs(alpha[i]) >= si.upper_bound_n) + ++nBSV; + } + } + } + + info("nSV = %d, nBSV = %d\n",nSV,nBSV); + + decision_function f; + f.alpha = alpha; + f.rho = si.rho; + return f; +} + +// Platt's binary SVM Probablistic Output: an improvement from Lin et al. +static void sigmoid_train( + int l, const double *dec_values, const double *labels, + double& A, double& B) +{ + double prior1=0, prior0 = 0; + int i; + + for (i=0;i<l;i++) + if (labels[i] > 0) prior1+=1; + else prior0+=1; + + int max_iter=100; // Maximal number of iterations + double min_step=1e-10; // Minimal step taken in line search + double sigma=1e-12; // For numerically strict PD of Hessian + double eps=1e-5; + double hiTarget=(prior1+1.0)/(prior1+2.0); + double loTarget=1/(prior0+2.0); + double *t=Malloc(double,l); + double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; + double newA,newB,newf,d1,d2; + int iter; + + // Initial Point and Initial Fun Value + A=0.0; B=log((prior0+1.0)/(prior1+1.0)); + double fval = 0.0; + + for (i=0;i<l;i++) + { + if (labels[i]>0) t[i]=hiTarget; + else t[i]=loTarget; + fApB = dec_values[i]*A+B; + if (fApB>=0) + fval += t[i]*fApB + log(1+exp(-fApB)); + else + fval += (t[i] - 1)*fApB +log(1+exp(fApB)); + } + for (iter=0;iter<max_iter;iter++) + { + // Update Gradient and Hessian (use H' = H + sigma I) + h11=sigma; // numerically ensures strict PD + h22=sigma; + h21=0.0;g1=0.0;g2=0.0; + for (i=0;i<l;i++) + { + fApB = dec_values[i]*A+B; + if (fApB >= 0) + { + p=exp(-fApB)/(1.0+exp(-fApB)); + q=1.0/(1.0+exp(-fApB)); + } + else + { + p=1.0/(1.0+exp(fApB)); + q=exp(fApB)/(1.0+exp(fApB)); + } + d2=p*q; + h11+=dec_values[i]*dec_values[i]*d2; + h22+=d2; + h21+=dec_values[i]*d2; + d1=t[i]-p; + g1+=dec_values[i]*d1; + g2+=d1; + } + + // Stopping Criteria + if (fabs(g1)<eps && fabs(g2)<eps) + break; + + // Finding Newton direction: -inv(H') * g + det=h11*h22-h21*h21; + dA=-(h22*g1 - h21 * g2) / det; + dB=-(-h21*g1+ h11 * g2) / det; + gd=g1*dA+g2*dB; + + + stepsize = 1; // Line Search + while (stepsize >= min_step) + { + newA = A + stepsize * dA; + newB = B + stepsize * dB; + + // New function value + newf = 0.0; + for (i=0;i<l;i++) + { + fApB = dec_values[i]*newA+newB; + if (fApB >= 0) + newf += t[i]*fApB + log(1+exp(-fApB)); + else + newf += (t[i] - 1)*fApB +log(1+exp(fApB)); + } + // Check sufficient decrease + if (newf<fval+0.0001*stepsize*gd) + { + A=newA;B=newB;fval=newf; + break; + } + else + stepsize = stepsize / 2.0; + } + + if (stepsize < min_step) + { + info("Line search fails in two-class probability estimates\n"); + break; + } + } + + if (iter>=max_iter) + info("Reaching maximal iterations in two-class probability estimates\n"); + free(t); +} + +static double sigmoid_predict(double decision_value, double A, double B) +{ + double fApB = decision_value*A+B; + if (fApB >= 0) + return exp(-fApB)/(1.0+exp(-fApB)); + else + return 1.0/(1+exp(fApB)) ; +} + +// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng +static void multiclass_probability(int k, double **r, double *p) +{ + int t,j; + int iter = 0, max_iter=max(100,k); + double **Q=Malloc(double *,k); + double *Qp=Malloc(double,k); + double pQp, eps=0.005/k; + + for (t=0;t<k;t++) + { + p[t]=1.0/k; // Valid if k = 1 + Q[t]=Malloc(double,k); + Q[t][t]=0; + for (j=0;j<t;j++) + { + Q[t][t]+=r[j][t]*r[j][t]; + Q[t][j]=Q[j][t]; + } + for (j=t+1;j<k;j++) + { + Q[t][t]+=r[j][t]*r[j][t]; + Q[t][j]=-r[j][t]*r[t][j]; + } + } + for (iter=0;iter<max_iter;iter++) + { + // stopping condition, recalculate QP,pQP for numerical accuracy + pQp=0; + for (t=0;t<k;t++) + { + Qp[t]=0; + for (j=0;j<k;j++) + Qp[t]+=Q[t][j]*p[j]; + pQp+=p[t]*Qp[t]; + } + double max_error=0; + for (t=0;t<k;t++) + { + double error=fabs(Qp[t]-pQp); + if (error>max_error) + max_error=error; + } + if (max_error<eps) break; + + for (t=0;t<k;t++) + { + double diff=(-Qp[t]+pQp)/Q[t][t]; + p[t]+=diff; + pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff); + for (j=0;j<k;j++) + { + Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff); + p[j]/=(1+diff); + } + } + } + if (iter>=max_iter) + info("Exceeds max_iter in multiclass_prob\n"); + for(t=0;t<k;t++) free(Q[t]); + free(Q); + free(Qp); +} + +// Cross-validation decision values for probability estimates +static void svm_binary_svc_probability( + const svm_problem *prob, const svm_parameter *param, + double Cp, double Cn, double& probA, double& probB) +{ + int i; + int nr_fold = 5; + int *perm = Malloc(int,prob->l); + double *dec_values = Malloc(double,prob->l); + + // random shuffle + for(i=0;i<prob->l;i++) perm[i]=i; + for(i=0;i<prob->l;i++) + { + int j = i+rand()%(prob->l-i); + swap(perm[i],perm[j]); + } + for(i=0;i<nr_fold;i++) + { + int begin = i*prob->l/nr_fold; + int end = (i+1)*prob->l/nr_fold; + int j,k; + struct svm_problem subprob; + + subprob.l = prob->l-(end-begin); + subprob.x = Malloc(struct svm_node*,subprob.l); + subprob.y = Malloc(double,subprob.l); + + k=0; + for(j=0;j<begin;j++) + { + subprob.x[k] = prob->x[perm[j]]; + subprob.y[k] = prob->y[perm[j]]; + ++k; + } + for(j=end;j<prob->l;j++) + { + subprob.x[k] = prob->x[perm[j]]; + subprob.y[k] = prob->y[perm[j]]; + ++k; + } + int p_count=0,n_count=0; + for(j=0;j<k;j++) + if(subprob.y[j]>0) + p_count++; + else + n_count++; + + if(p_count==0 && n_count==0) + for(j=begin;j<end;j++) + dec_values[perm[j]] = 0; + else if(p_count > 0 && n_count == 0) + for(j=begin;j<end;j++) + dec_values[perm[j]] = 1; + else if(p_count == 0 && n_count > 0) + for(j=begin;j<end;j++) + dec_values[perm[j]] = -1; + else + { + svm_parameter subparam = *param; + subparam.probability=0; + subparam.C=1.0; + subparam.nr_weight=2; + subparam.weight_label = Malloc(int,2); + subparam.weight = Malloc(double,2); + subparam.weight_label[0]=+1; + subparam.weight_label[1]=-1; + subparam.weight[0]=Cp; + subparam.weight[1]=Cn; + struct svm_model *submodel = svm_train(&subprob,&subparam); + for(j=begin;j<end;j++) + { + svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); + // ensure +1 -1 order; reason not using CV subroutine + dec_values[perm[j]] *= submodel->label[0]; + } + svm_free_and_destroy_model(&submodel); + svm_destroy_param(&subparam); + } + free(subprob.x); + free(subprob.y); + } + sigmoid_train(prob->l,dec_values,prob->y,probA,probB); + free(dec_values); + free(perm); +} + +// Return parameter of a Laplace distribution +static double svm_svr_probability( + const svm_problem *prob, const svm_parameter *param) +{ + int i; + int nr_fold = 5; + double *ymv = Malloc(double,prob->l); + double mae = 0; + + svm_parameter newparam = *param; + newparam.probability = 0; + svm_cross_validation(prob,&newparam,nr_fold,ymv); + for(i=0;i<prob->l;i++) + { + ymv[i]=prob->y[i]-ymv[i]; + mae += fabs(ymv[i]); + } + mae /= prob->l; + double std=sqrt(2*mae*mae); + int count=0; + mae=0; + for(i=0;i<prob->l;i++) + if (fabs(ymv[i]) > 5*std) + count=count+1; + else + mae+=fabs(ymv[i]); + mae /= (prob->l-count); + info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); + free(ymv); + return mae; +} + + +// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data +// perm, length l, must be allocated before calling this subroutine +static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) +{ + int l = prob->l; + int max_nr_class = 16; + int nr_class = 0; + int *label = Malloc(int,max_nr_class); + int *count = Malloc(int,max_nr_class); + int *data_label = Malloc(int,l); + int i; + + for(i=0;i<l;i++) + { + int this_label = (int)prob->y[i]; + int j; + for(j=0;j<nr_class;j++) + { + if(this_label == label[j]) + { + ++count[j]; + break; + } + } + data_label[i] = j; + if(j == nr_class) + { + if(nr_class == max_nr_class) + { + max_nr_class *= 2; + label = (int *)realloc(label,max_nr_class*sizeof(int)); + count = (int *)realloc(count,max_nr_class*sizeof(int)); + } + label[nr_class] = this_label; + count[nr_class] = 1; + ++nr_class; + } + } + + int *start = Malloc(int,nr_class); + start[0] = 0; + for(i=1;i<nr_class;i++) + start[i] = start[i-1]+count[i-1]; + for(i=0;i<l;i++) + { + perm[start[data_label[i]]] = i; + ++start[data_label[i]]; + } + start[0] = 0; + for(i=1;i<nr_class;i++) + start[i] = start[i-1]+count[i-1]; + + *nr_class_ret = nr_class; + *label_ret = label; + *start_ret = start; + *count_ret = count; + free(data_label); +} + +// +// Interface functions +// +svm_model *svm_train(const svm_problem *prob, const svm_parameter *param) +{ + svm_model *model = Malloc(svm_model,1); + model->param = *param; + model->free_sv = 0; // XXX + + if(param->svm_type == ONE_CLASS || + param->svm_type == EPSILON_SVR || + param->svm_type == NU_SVR) + { + // regression or one-class-svm + model->nr_class = 2; + model->label = NULL; + model->nSV = NULL; + model->probA = NULL; model->probB = NULL; + model->sv_coef = Malloc(double *,1); + + if(param->probability && + (param->svm_type == EPSILON_SVR || + param->svm_type == NU_SVR)) + { + model->probA = Malloc(double,1); + model->probA[0] = svm_svr_probability(prob,param); + } + + decision_function f = svm_train_one(prob,param,0,0); + model->rho = Malloc(double,1); + model->rho[0] = f.rho; + + int nSV = 0; + int i; + for(i=0;i<prob->l;i++) + if(fabs(f.alpha[i]) > 0) ++nSV; + model->l = nSV; + model->SV = Malloc(svm_node *,nSV); + model->sv_coef[0] = Malloc(double,nSV); + int j = 0; + for(i=0;i<prob->l;i++) + if(fabs(f.alpha[i]) > 0) + { + model->SV[j] = prob->x[i]; + model->sv_coef[0][j] = f.alpha[i]; + ++j; + } + + free(f.alpha); + } + else + { + // classification + int l = prob->l; + int nr_class; + int *label = NULL; + int *start = NULL; + int *count = NULL; + int *perm = Malloc(int,l); + + // group training data of the same class + svm_group_classes(prob,&nr_class,&label,&start,&count,perm); + svm_node **x = Malloc(svm_node *,l); + int i; + for(i=0;i<l;i++) + x[i] = prob->x[perm[i]]; + + // calculate weighted C + + double *weighted_C = Malloc(double, nr_class); + for(i=0;i<nr_class;i++) + weighted_C[i] = param->C; + for(i=0;i<param->nr_weight;i++) + { + int j; + for(j=0;j<nr_class;j++) + if(param->weight_label[i] == label[j]) + break; + if(j == nr_class) + fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); + else + weighted_C[j] *= param->weight[i]; + } + + // train k*(k-1)/2 models + + bool *nonzero = Malloc(bool,l); + for(i=0;i<l;i++) + nonzero[i] = false; + decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2); + + double *probA=NULL,*probB=NULL; + if (param->probability) + { + probA=Malloc(double,nr_class*(nr_class-1)/2); + probB=Malloc(double,nr_class*(nr_class-1)/2); + } + + int p = 0; + for(i=0;i<nr_class;i++) + for(int j=i+1;j<nr_class;j++) + { + svm_problem sub_prob; + int si = start[i], sj = start[j]; + int ci = count[i], cj = count[j]; + sub_prob.l = ci+cj; + sub_prob.x = Malloc(svm_node *,sub_prob.l); + sub_prob.y = Malloc(double,sub_prob.l); + int k; + for(k=0;k<ci;k++) + { + sub_prob.x[k] = x[si+k]; + sub_prob.y[k] = +1; + } + for(k=0;k<cj;k++) + { + sub_prob.x[ci+k] = x[sj+k]; + sub_prob.y[ci+k] = -1; + } + + if(param->probability) + svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]); + + f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); + for(k=0;k<ci;k++) + if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0) + nonzero[si+k] = true; + for(k=0;k<cj;k++) + if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0) + nonzero[sj+k] = true; + free(sub_prob.x); + free(sub_prob.y); + ++p; + } + + // build output + + model->nr_class = nr_class; + + model->label = Malloc(int,nr_class); + for(i=0;i<nr_class;i++) + model->label[i] = label[i]; + + model->rho = Malloc(double,nr_class*(nr_class-1)/2); + for(i=0;i<nr_class*(nr_class-1)/2;i++) + model->rho[i] = f[i].rho; + + if(param->probability) + { + model->probA = Malloc(double,nr_class*(nr_class-1)/2); + model->probB = Malloc(double,nr_class*(nr_class-1)/2); + for(i=0;i<nr_class*(nr_class-1)/2;i++) + { + model->probA[i] = probA[i]; + model->probB[i] = probB[i]; + } + } + else + { + model->probA=NULL; + model->probB=NULL; + } + + int total_sv = 0; + int *nz_count = Malloc(int,nr_class); + model->nSV = Malloc(int,nr_class); + for(i=0;i<nr_class;i++) + { + int nSV = 0; + for(int j=0;j<count[i];j++) + if(nonzero[start[i]+j]) + { + ++nSV; + ++total_sv; + } + model->nSV[i] = nSV; + nz_count[i] = nSV; + } + + info("Total nSV = %d\n",total_sv); + + model->l = total_sv; + model->SV = Malloc(svm_node *,total_sv); + p = 0; + for(i=0;i<l;i++) + if(nonzero[i]) model->SV[p++] = x[i]; + + int *nz_start = Malloc(int,nr_class); + nz_start[0] = 0; + for(i=1;i<nr_class;i++) + nz_start[i] = nz_start[i-1]+nz_count[i-1]; + + model->sv_coef = Malloc(double *,nr_class-1); + for(i=0;i<nr_class-1;i++) + model->sv_coef[i] = Malloc(double,total_sv); + + p = 0; + for(i=0;i<nr_class;i++) + for(int j=i+1;j<nr_class;j++) + { + // classifier (i,j): coefficients with + // i are in sv_coef[j-1][nz_start[i]...], + // j are in sv_coef[i][nz_start[j]...] + + int si = start[i]; + int sj = start[j]; + int ci = count[i]; + int cj = count[j]; + + int q = nz_start[i]; + int k; + for(k=0;k<ci;k++) + if(nonzero[si+k]) + model->sv_coef[j-1][q++] = f[p].alpha[k]; + q = nz_start[j]; + for(k=0;k<cj;k++) + if(nonzero[sj+k]) + model->sv_coef[i][q++] = f[p].alpha[ci+k]; + ++p; + } + + free(label); + free(probA); + free(probB); + free(count); + free(perm); + free(start); + free(x); + free(weighted_C); + free(nonzero); + for(i=0;i<nr_class*(nr_class-1)/2;i++) + free(f[i].alpha); + free(f); + free(nz_count); + free(nz_start); + } + return model; +} + +// Stratified cross validation +void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target) +{ + int i; + int *fold_start = Malloc(int,nr_fold+1); + int l = prob->l; + int *perm = Malloc(int,l); + int nr_class; + + // stratified cv may not give leave-one-out rate + // Each class to l folds -> some folds may have zero elements + if((param->svm_type == C_SVC || + param->svm_type == NU_SVC) && nr_fold < l) + { + int *start = NULL; + int *label = NULL; + int *count = NULL; + svm_group_classes(prob,&nr_class,&label,&start,&count,perm); + + // random shuffle and then data grouped by fold using the array perm + int *fold_count = Malloc(int,nr_fold); + int c; + int *index = Malloc(int,l); + for(i=0;i<l;i++) + index[i]=perm[i]; + for (c=0; c<nr_class; c++) + for(i=0;i<count[c];i++) + { + int j = i+rand()%(count[c]-i); + swap(index[start[c]+j],index[start[c]+i]); + } + for(i=0;i<nr_fold;i++) + { + fold_count[i] = 0; + for (c=0; c<nr_class;c++) + fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold; + } + fold_start[0]=0; + for (i=1;i<=nr_fold;i++) + fold_start[i] = fold_start[i-1]+fold_count[i-1]; + for (c=0; c<nr_class;c++) + for(i=0;i<nr_fold;i++) + { + int begin = start[c]+i*count[c]/nr_fold; + int end = start[c]+(i+1)*count[c]/nr_fold; + for(int j=begin;j<end;j++) + { + perm[fold_start[i]] = index[j]; + fold_start[i]++; + } + } + fold_start[0]=0; + for (i=1;i<=nr_fold;i++) + fold_start[i] = fold_start[i-1]+fold_count[i-1]; + free(start); + free(label); + free(count); + free(index); + free(fold_count); + } + else + { + for(i=0;i<l;i++) perm[i]=i; + for(i=0;i<l;i++) + { + int j = i+rand()%(l-i); + swap(perm[i],perm[j]); + } + for(i=0;i<=nr_fold;i++) + fold_start[i]=i*l/nr_fold; + } + + for(i=0;i<nr_fold;i++) + { + int begin = fold_start[i]; + int end = fold_start[i+1]; + int j,k; + struct svm_problem subprob; + + subprob.l = l-(end-begin); + subprob.x = Malloc(struct svm_node*,subprob.l); + subprob.y = Malloc(double,subprob.l); + + k=0; + for(j=0;j<begin;j++) + { + subprob.x[k] = prob->x[perm[j]]; + subprob.y[k] = prob->y[perm[j]]; + ++k; + } + for(j=end;j<l;j++) + { + subprob.x[k] = prob->x[perm[j]]; + subprob.y[k] = prob->y[perm[j]]; + ++k; + } + struct svm_model *submodel = svm_train(&subprob,param); + if(param->probability && + (param->svm_type == C_SVC || param->svm_type == NU_SVC)) + { + double *prob_estimates=Malloc(double,svm_get_nr_class(submodel)); + for(j=begin;j<end;j++) + target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates); + free(prob_estimates); + } + else + for(j=begin;j<end;j++) + target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]); + svm_free_and_destroy_model(&submodel); + free(subprob.x); + free(subprob.y); + } + free(fold_start); + free(perm); +} + + +int svm_get_svm_type(const svm_model *model) +{ + return model->param.svm_type; +} + +int svm_get_nr_class(const svm_model *model) +{ + return model->nr_class; +} + +void svm_get_labels(const svm_model *model, int* label) +{ + if (model->label != NULL) + for(int i=0;i<model->nr_class;i++) + label[i] = model->label[i]; +} + +double svm_get_svr_probability(const svm_model *model) +{ + if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && + model->probA!=NULL) + return model->probA[0]; + else + { + fprintf(stderr,"Model doesn't contain information for SVR probability inference\n"); + return 0; + } +} + +double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values) +{ + if(model->param.svm_type == ONE_CLASS || + model->param.svm_type == EPSILON_SVR || + model->param.svm_type == NU_SVR) + { + double *sv_coef = model->sv_coef[0]; + double sum = 0; + for(int i=0;i<model->l;i++) + sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param); + sum -= model->rho[0]; + *dec_values = sum; + + if(model->param.svm_type == ONE_CLASS) + return (sum>0)?1:-1; + else + return sum; + } + else + { + int i; + int nr_class = model->nr_class; + int l = model->l; + + double *kvalue = Malloc(double,l); + for(i=0;i<l;i++) + kvalue[i] = Kernel::k_function(x,model->SV[i],model->param); + + int *start = Malloc(int,nr_class); + start[0] = 0; + for(i=1;i<nr_class;i++) + start[i] = start[i-1]+model->nSV[i-1]; + + int *vote = Malloc(int,nr_class); + for(i=0;i<nr_class;i++) + vote[i] = 0; + + int p=0; + for(i=0;i<nr_class;i++) + for(int j=i+1;j<nr_class;j++) + { + double sum = 0; + int si = start[i]; + int sj = start[j]; + int ci = model->nSV[i]; + int cj = model->nSV[j]; + + int k; + double *coef1 = model->sv_coef[j-1]; + double *coef2 = model->sv_coef[i]; + for(k=0;k<ci;k++) + sum += coef1[si+k] * kvalue[si+k]; + for(k=0;k<cj;k++) + sum += coef2[sj+k] * kvalue[sj+k]; + sum -= model->rho[p]; + dec_values[p] = sum; + + if(dec_values[p] > 0) + ++vote[i]; + else + ++vote[j]; + p++; + } + + int vote_max_idx = 0; + for(i=1;i<nr_class;i++) + if(vote[i] > vote[vote_max_idx]) + vote_max_idx = i; + + free(kvalue); + free(start); + free(vote); + return model->label[vote_max_idx]; + } +} + +double svm_predict(const svm_model *model, const svm_node *x) +{ + int nr_class = model->nr_class; + double *dec_values; + if(model->param.svm_type == ONE_CLASS || + model->param.svm_type == EPSILON_SVR || + model->param.svm_type == NU_SVR) + dec_values = Malloc(double, 1); + else + dec_values = Malloc(double, nr_class*(nr_class-1)/2); + double pred_result = svm_predict_values(model, x, dec_values); + free(dec_values); + return pred_result; +} + +double svm_predict_probability( + const svm_model *model, const svm_node *x, double *prob_estimates) +{ + if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && + model->probA!=NULL && model->probB!=NULL) + { + int i; + int nr_class = model->nr_class; + double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); + svm_predict_values(model, x, dec_values); + + double min_prob=1e-7; + double **pairwise_prob=Malloc(double *,nr_class); + for(i=0;i<nr_class;i++) + pairwise_prob[i]=Malloc(double,nr_class); + int k=0; + for(i=0;i<nr_class;i++) + for(int j=i+1;j<nr_class;j++) + { + pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob); + pairwise_prob[j][i]=1-pairwise_prob[i][j]; + k++; + } + multiclass_probability(nr_class,pairwise_prob,prob_estimates); + + int prob_max_idx = 0; + for(i=1;i<nr_class;i++) + if(prob_estimates[i] > prob_estimates[prob_max_idx]) + prob_max_idx = i; + for(i=0;i<nr_class;i++) + free(pairwise_prob[i]); + free(dec_values); + free(pairwise_prob); + return model->label[prob_max_idx]; + } + else + return svm_predict(model, x); +} + +static const char *svm_type_table[] = +{ + "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL +}; + +static const char *kernel_type_table[]= +{ + "linear","polynomial","rbf","sigmoid","precomputed",NULL +}; + +int svm_save_model(const char *model_file_name, const svm_model *model) +{ + FILE *fp = fopen(model_file_name,"w"); + if(fp==NULL) return -1; + + const svm_parameter& param = model->param; + + fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); + fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); + + if(param.kernel_type == POLY) + fprintf(fp,"degree %d\n", param.degree); + + if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) + fprintf(fp,"gamma %g\n", param.gamma); + + if(param.kernel_type == POLY || param.kernel_type == SIGMOID) + fprintf(fp,"coef0 %g\n", param.coef0); + + int nr_class = model->nr_class; + int l = model->l; + fprintf(fp, "nr_class %d\n", nr_class); + fprintf(fp, "total_sv %d\n",l); + + { + fprintf(fp, "rho"); + for(int i=0;i<nr_class*(nr_class-1)/2;i++) + fprintf(fp," %g",model->rho[i]); + fprintf(fp, "\n"); + } + + if(model->label) + { + fprintf(fp, "label"); + for(int i=0;i<nr_class;i++) + fprintf(fp," %d",model->label[i]); + fprintf(fp, "\n"); + } + + if(model->probA) // regression has probA only + { + fprintf(fp, "probA"); + for(int i=0;i<nr_class*(nr_class-1)/2;i++) + fprintf(fp," %g",model->probA[i]); + fprintf(fp, "\n"); + } + if(model->probB) + { + fprintf(fp, "probB"); + for(int i=0;i<nr_class*(nr_class-1)/2;i++) + fprintf(fp," %g",model->probB[i]); + fprintf(fp, "\n"); + } + + if(model->nSV) + { + fprintf(fp, "nr_sv"); + for(int i=0;i<nr_class;i++) + fprintf(fp," %d",model->nSV[i]); + fprintf(fp, "\n"); + } + + fprintf(fp, "SV\n"); + const double * const *sv_coef = model->sv_coef; + const svm_node * const *SV = model->SV; + + for(int i=0;i<l;i++) + { + for(int j=0;j<nr_class-1;j++) + fprintf(fp, "%.16g ",sv_coef[j][i]); + + const svm_node *p = SV[i]; + + if(param.kernel_type == PRECOMPUTED) + fprintf(fp,"0:%d ",(int)(p->value)); + else + while(p->index != -1) + { + fprintf(fp,"%d:%.8g ",p->index,p->value); + p++; + } + fprintf(fp, "\n"); + } + if (ferror(fp) != 0 || fclose(fp) != 0) return -1; + else return 0; +} + +static char *line = NULL; +static int max_line_len; + +static char* readline(FILE *input) +{ + int len; + + if(fgets(line,max_line_len,input) == NULL) + return NULL; + + while(strrchr(line,'\n') == NULL) + { + max_line_len *= 2; + line = (char *) realloc(line,max_line_len); + len = (int) strlen(line); + if(fgets(line+len,max_line_len-len,input) == NULL) + break; + } + return line; +} + +svm_model *svm_load_model(const char *model_file_name) +{ + FILE *fp = fopen(model_file_name,"rb"); + printf("load\r\n"); + if(fp==NULL) return NULL; + printf("loaded\r\n"); + // read parameters + + svm_model *model = Malloc(svm_model,1); + svm_parameter& param = model->param; + model->rho = NULL; + model->probA = NULL; + model->probB = NULL; + model->label = NULL; + model->nSV = NULL; + + char cmd[81]; + while(1) + { + fscanf(fp,"%80s",cmd); + + if(strcmp(cmd,"svm_type")==0) + { + fscanf(fp,"%80s",cmd); + int i; + for(i=0;svm_type_table[i];i++) + { + if(strcmp(svm_type_table[i],cmd)==0) + { + param.svm_type=i; + break; + } + } + if(svm_type_table[i] == NULL) + { + fprintf(stderr,"unknown svm type.\n"); + free(model->rho); + free(model->label); + free(model->nSV); + free(model); + return NULL; + } + } + else if(strcmp(cmd,"kernel_type")==0) + { + fscanf(fp,"%80s",cmd); + int i; + for(i=0;kernel_type_table[i];i++) + { + if(strcmp(kernel_type_table[i],cmd)==0) + { + param.kernel_type=i; + break; + } + } + if(kernel_type_table[i] == NULL) + { + fprintf(stderr,"unknown kernel function.\n"); + free(model->rho); + free(model->label); + free(model->nSV); + free(model); + return NULL; + } + } + else if(strcmp(cmd,"degree")==0) + fscanf(fp,"%d",¶m.degree); + else if(strcmp(cmd,"gamma")==0) + fscanf(fp,"%lf",¶m.gamma); + else if(strcmp(cmd,"coef0")==0) + fscanf(fp,"%lf",¶m.coef0); + else if(strcmp(cmd,"nr_class")==0) + fscanf(fp,"%d",&model->nr_class); + else if(strcmp(cmd,"total_sv")==0) + fscanf(fp,"%d",&model->l); + else if(strcmp(cmd,"rho")==0) + { + int n = model->nr_class * (model->nr_class-1)/2; + model->rho = Malloc(double,n); + for(int i=0;i<n;i++) + fscanf(fp,"%lf",&model->rho[i]); + } + else if(strcmp(cmd,"label")==0) + { + int n = model->nr_class; + model->label = Malloc(int,n); + for(int i=0;i<n;i++) + fscanf(fp,"%d",&model->label[i]); + } + else if(strcmp(cmd,"probA")==0) + { + int n = model->nr_class * (model->nr_class-1)/2; + model->probA = Malloc(double,n); + for(int i=0;i<n;i++) + fscanf(fp,"%lf",&model->probA[i]); + } + else if(strcmp(cmd,"probB")==0) + { + int n = model->nr_class * (model->nr_class-1)/2; + model->probB = Malloc(double,n); + for(int i=0;i<n;i++) + fscanf(fp,"%lf",&model->probB[i]); + } + else if(strcmp(cmd,"nr_sv")==0) + { + int n = model->nr_class; + model->nSV = Malloc(int,n); + for(int i=0;i<n;i++) + fscanf(fp,"%d",&model->nSV[i]); + } + else if(strcmp(cmd,"SV")==0) + { + while(1) + { + int c = getc(fp); + if(c==EOF || c=='\n') break; + } + break; + } + else + { + fprintf(stderr,"unknown text in model file: [%s]\n",cmd); + free(model->rho); + free(model->label); + free(model->nSV); + free(model); + return NULL; + } + } + + // read sv_coef and SV + + int elements = 0; + long pos = ftell(fp); + + max_line_len = 1024; + line = Malloc(char,max_line_len); + char *p,*endptr,*idx,*val; + + while(readline(fp)!=NULL) + { + p = strtok(line,":"); + while(1) + { + p = strtok(NULL,":"); + if(p == NULL) + break; + ++elements; + } + } + elements += model->l; + + fseek(fp,pos,SEEK_SET); + + int m = model->nr_class - 1; + int l = model->l; + model->sv_coef = Malloc(double *,m); + int i; + for(i=0;i<m;i++) + model->sv_coef[i] = Malloc(double,l); + model->SV = Malloc(svm_node*,l); + svm_node *x_space = NULL; + if(l>0) x_space = Malloc(svm_node,elements); + + int j=0; + for(i=0;i<l;i++) + { + readline(fp); + model->SV[i] = &x_space[j]; + + p = strtok(line, " \t"); + model->sv_coef[0][i] = strtod(p,&endptr); + for(int k=1;k<m;k++) + { + p = strtok(NULL, " \t"); + model->sv_coef[k][i] = strtod(p,&endptr); + } + + while(1) + { + idx = strtok(NULL, ":"); + val = strtok(NULL, " \t"); + + if(val == NULL) + break; + x_space[j].index = (int) strtol(idx,&endptr,10); + x_space[j].value = strtod(val,&endptr); + + ++j; + } + x_space[j++].index = -1; + } + free(line); + + if (ferror(fp) != 0 || fclose(fp) != 0) + return NULL; + + model->free_sv = 1; // XXX + return model; +} + +void svm_free_model_content(svm_model* model_ptr) +{ + if(model_ptr->free_sv && model_ptr->l > 0) + free((void *)(model_ptr->SV[0])); + for(int i=0;i<model_ptr->nr_class-1;i++) + free(model_ptr->sv_coef[i]); + free(model_ptr->SV); + free(model_ptr->sv_coef); + free(model_ptr->rho); + free(model_ptr->label); + free(model_ptr->probA); + free(model_ptr->probB); + free(model_ptr->nSV); +} + +void svm_free_and_destroy_model(svm_model** model_ptr_ptr) +{ + svm_model* model_ptr = *model_ptr_ptr; + if(model_ptr != NULL) + { + svm_free_model_content(model_ptr); + free(model_ptr); + } +} + +void svm_destroy_model(svm_model* model_ptr) +{ + fprintf(stderr,"warning: svm_destroy_model is deprecated and should not be used. Please use svm_free_and_destroy_model(svm_model **model_ptr_ptr)\n"); + svm_free_and_destroy_model(&model_ptr); +} + +void svm_destroy_param(svm_parameter* param) +{ + free(param->weight_label); + free(param->weight); +} + +const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param) +{ + // svm_type + + int svm_type = param->svm_type; + if(svm_type != C_SVC && + svm_type != NU_SVC && + svm_type != ONE_CLASS && + svm_type != EPSILON_SVR && + svm_type != NU_SVR) + return "unknown svm type"; + + // kernel_type, degree + + int kernel_type = param->kernel_type; + if(kernel_type != LINEAR && + kernel_type != POLY && + kernel_type != RBF && + kernel_type != SIGMOID && + kernel_type != PRECOMPUTED) + return "unknown kernel type"; + + if(param->gamma < 0) + return "gamma < 0"; + + if(param->degree < 0) + return "degree of polynomial kernel < 0"; + + // cache_size,eps,C,nu,p,shrinking + + if(param->cache_size <= 0) + return "cache_size <= 0"; + + if(param->eps <= 0) + return "eps <= 0"; + + if(svm_type == C_SVC || + svm_type == EPSILON_SVR || + svm_type == NU_SVR) + if(param->C <= 0) + return "C <= 0"; + + if(svm_type == NU_SVC || + svm_type == ONE_CLASS || + svm_type == NU_SVR) + if(param->nu <= 0 || param->nu > 1) + return "nu <= 0 or nu > 1"; + + if(svm_type == EPSILON_SVR) + if(param->p < 0) + return "p < 0"; + + if(param->shrinking != 0 && + param->shrinking != 1) + return "shrinking != 0 and shrinking != 1"; + + if(param->probability != 0 && + param->probability != 1) + return "probability != 0 and probability != 1"; + + if(param->probability == 1 && + svm_type == ONE_CLASS) + return "one-class SVM probability output not supported yet"; + + + // check whether nu-svc is feasible + + if(svm_type == NU_SVC) + { + int l = prob->l; + int max_nr_class = 16; + int nr_class = 0; + int *label = Malloc(int,max_nr_class); + int *count = Malloc(int,max_nr_class); + + int i; + for(i=0;i<l;i++) + { + int this_label = (int)prob->y[i]; + int j; + for(j=0;j<nr_class;j++) + if(this_label == label[j]) + { + ++count[j]; + break; + } + if(j == nr_class) + { + if(nr_class == max_nr_class) + { + max_nr_class *= 2; + label = (int *)realloc(label,max_nr_class*sizeof(int)); + count = (int *)realloc(count,max_nr_class*sizeof(int)); + } + label[nr_class] = this_label; + count[nr_class] = 1; + ++nr_class; + } + } + + for(i=0;i<nr_class;i++) + { + int n1 = count[i]; + for(int j=i+1;j<nr_class;j++) + { + int n2 = count[j]; + if(param->nu*(n1+n2)/2 > min(n1,n2)) + { + free(label); + free(count); + return "specified nu is infeasible"; + } + } + } + free(label); + free(count); + } + + return NULL; +} + +int svm_check_probability_model(const svm_model *model) +{ + return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && + model->probA!=NULL && model->probB!=NULL) || + ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && + model->probA!=NULL); +} + +void svm_set_print_string_function(void (*print_func)(const char *)) +{ + if(print_func == NULL) + svm_print_string = &print_string_stdout; + else + svm_print_string = print_func; +} + +// this function is copied by shimatani +// for fopen on iPhone +svm_model *svm_load_model_fp(FILE *fp) +{ + if(fp==NULL) return NULL; + + // read parameters + + svm_model *model = Malloc(svm_model,1); + svm_parameter& param = model->param; + model->rho = NULL; + model->probA = NULL; + model->probB = NULL; + model->label = NULL; + model->nSV = NULL; + + char cmd[81]; + while(1) + { + fscanf(fp,"%80s",cmd); + + if(strcmp(cmd,"svm_type")==0) + { + fscanf(fp,"%80s",cmd); + int i; + for(i=0;svm_type_table[i];i++) + { + if(strcmp(svm_type_table[i],cmd)==0) + { + param.svm_type=i; + break; + } + } + if(svm_type_table[i] == NULL) + { + fprintf(stderr,"unknown svm type.\n"); + free(model->rho); + free(model->label); + free(model->nSV); + free(model); + return NULL; + } + } + else if(strcmp(cmd,"kernel_type")==0) + { + fscanf(fp,"%80s",cmd); + int i; + for(i=0;kernel_type_table[i];i++) + { + if(strcmp(kernel_type_table[i],cmd)==0) + { + param.kernel_type=i; + break; + } + } + if(kernel_type_table[i] == NULL) + { + fprintf(stderr,"unknown kernel function.\n"); + free(model->rho); + free(model->label); + free(model->nSV); + free(model); + return NULL; + } + } + else if(strcmp(cmd,"degree")==0) + fscanf(fp,"%d",¶m.degree); + else if(strcmp(cmd,"gamma")==0) + fscanf(fp,"%lf",¶m.gamma); + else if(strcmp(cmd,"coef0")==0) + fscanf(fp,"%lf",¶m.coef0); + else if(strcmp(cmd,"nr_class")==0) + fscanf(fp,"%d",&model->nr_class); + else if(strcmp(cmd,"total_sv")==0) + fscanf(fp,"%d",&model->l); + else if(strcmp(cmd,"rho")==0) + { + int n = model->nr_class * (model->nr_class-1)/2; + model->rho = Malloc(double,n); + for(int i=0;i<n;i++) + fscanf(fp,"%lf",&model->rho[i]); + } + else if(strcmp(cmd,"label")==0) + { + int n = model->nr_class; + model->label = Malloc(int,n); + for(int i=0;i<n;i++) + fscanf(fp,"%d",&model->label[i]); + } + else if(strcmp(cmd,"probA")==0) + { + int n = model->nr_class * (model->nr_class-1)/2; + model->probA = Malloc(double,n); + for(int i=0;i<n;i++) + fscanf(fp,"%lf",&model->probA[i]); + } + else if(strcmp(cmd,"probB")==0) + { + int n = model->nr_class * (model->nr_class-1)/2; + model->probB = Malloc(double,n); + for(int i=0;i<n;i++) + fscanf(fp,"%lf",&model->probB[i]); + } + else if(strcmp(cmd,"nr_sv")==0) + { + int n = model->nr_class; + model->nSV = Malloc(int,n); + for(int i=0;i<n;i++) + fscanf(fp,"%d",&model->nSV[i]); + } + else if(strcmp(cmd,"SV")==0) + { + while(1) + { + int c = getc(fp); + if(c==EOF || c=='\n') break; + } + break; + } + else + { + fprintf(stderr,"unknown text in model file: [%s]\n",cmd); + free(model->rho); + free(model->label); + free(model->nSV); + free(model); + return NULL; + } + } + + // read sv_coef and SV + + int elements = 0; + long pos = ftell(fp); + + max_line_len = 1024; + line = Malloc(char,max_line_len); + char *p,*endptr,*idx,*val; + + while(readline(fp)!=NULL) + { + p = strtok(line,":"); + while(1) + { + p = strtok(NULL,":"); + if(p == NULL) + break; + ++elements; + } + } + elements += model->l; + + fseek(fp,pos,SEEK_SET); + + int m = model->nr_class - 1; + int l = model->l; + model->sv_coef = Malloc(double *,m); + int i; + for(i=0;i<m;i++) + model->sv_coef[i] = Malloc(double,l); + model->SV = Malloc(svm_node*,l); + svm_node *x_space = NULL; + if(l>0) x_space = Malloc(svm_node,elements); + + int j=0; + for(i=0;i<l;i++) + { + readline(fp); + model->SV[i] = &x_space[j]; + + p = strtok(line, " \t"); + model->sv_coef[0][i] = strtod(p,&endptr); + for(int k=1;k<m;k++) + { + p = strtok(NULL, " \t"); + model->sv_coef[k][i] = strtod(p,&endptr); + } + + while(1) + { + idx = strtok(NULL, ":"); + val = strtok(NULL, " \t"); + + if(val == NULL) + break; + x_space[j].index = (int) strtol(idx,&endptr,10); + x_space[j].value = strtod(val,&endptr); + + ++j; + } + x_space[j++].index = -1; + } + free(line); + + if (ferror(fp) != 0 || fclose(fp) != 0) + return NULL; + + model->free_sv = 1; // XXX + return model; +}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/svm/svm.h Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,106 @@ +#ifndef _LIBSVM_H +#define _LIBSVM_H + +#define LIBSVM_VERSION 300 + +#ifdef __cplusplus +extern "C" { +#endif + +extern int libsvm_version; + +struct svm_node +{ + int index; + double value; +}; + +struct svm_problem +{ + int l; + double *y; + struct svm_node **x; +}; + +enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */ +enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */ + +struct svm_parameter +{ + int svm_type; + int kernel_type; + int degree; /* for poly */ + double gamma; /* for poly/rbf/sigmoid */ + double coef0; /* for poly/sigmoid */ + + /* these are for training only */ + double cache_size; /* in MB */ + double eps; /* stopping criteria */ + double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ + int nr_weight; /* for C_SVC */ + int *weight_label; /* for C_SVC */ + double* weight; /* for C_SVC */ + double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ + double p; /* for EPSILON_SVR */ + int shrinking; /* use the shrinking heuristics */ + int probability; /* do probability estimates */ +}; + +// +// svm_model +// +struct svm_model +{ + struct svm_parameter param; /* parameter */ + int nr_class; /* number of classes, = 2 in regression/one class svm */ + int l; /* total #SV */ + struct svm_node **SV; /* SVs (SV[l]) */ + double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */ + double *rho; /* constants in decision functions (rho[k*(k-1)/2]) */ + double *probA; /* pariwise probability information */ + double *probB; + + /* for classification only */ + + int *label; /* label of each class (label[k]) */ + int *nSV; /* number of SVs for each class (nSV[k]) */ + /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */ + /* XXX */ + int free_sv; /* 1 if svm_model is created by svm_load_model*/ + /* 0 if svm_model is created by svm_train */ +}; + +struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param); +void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target); + +int svm_save_model(const char *model_file_name, const struct svm_model *model); +struct svm_model *svm_load_model(const char *model_file_name); +struct svm_model *svm_load_model_fp(FILE *fp); + +int svm_get_svm_type(const struct svm_model *model); +int svm_get_nr_class(const struct svm_model *model); +void svm_get_labels(const struct svm_model *model, int *label); +double svm_get_svr_probability(const struct svm_model *model); + +double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values); +double svm_predict(const struct svm_model *model, const struct svm_node *x); +double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates); + +void svm_free_model_content(struct svm_model *model_ptr); +void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr); +void svm_destroy_param(struct svm_parameter *param); + +const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param); +int svm_check_probability_model(const struct svm_model *model); + +void svm_set_print_string_function(void (*print_func)(const char *)); + +// deprecated +// this function will be removed in future release +void svm_destroy_model(struct svm_model *model_ptr); + +#ifdef __cplusplus +} +#endif + +#endif /* _LIBSVM_H */