Kentarou Shimatani
/
Theremi
action recognizer with theremin
Diff: predict.c
- Revision:
- 0:b9ac53c439ed
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/predict.c Wed Sep 14 13:42:46 2011 +0000 @@ -0,0 +1,237 @@ +#include <stdio.h> +#include <ctype.h> +#include <stdlib.h> +#include <string.h> +#include <errno.h> +#include "svm.h" +#include "predict.h" + +struct svm_node *x; +int max_nr_attr = 64; + +struct svm_model* model; +int predict_probability=0; + +static char *line = NULL; +static int max_line_len; + +static char* readline(FILE *input) +{ + int len; + + if(fgets(line,max_line_len,input) == NULL) + return NULL; + + while(strrchr(line,'\n') == NULL) + { + max_line_len *= 2; + line = (char *) realloc(line,max_line_len); + len = (int) strlen(line); + if(fgets(line+len,max_line_len-len,input) == NULL) + break; + } + return line; +} + +void exit_input_error(int line_num) +{ + printf("Wrong input format at line %d\n", line_num); + exit(1); +} + +void predict(FILE *input, FILE *output) +{ + int correct = 0; + int total = 0; + double error = 0; + double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0; + + int svm_type=svm_get_svm_type(model); + int nr_class=svm_get_nr_class(model); + double *prob_estimates=NULL; + int j; + + if(predict_probability) + { + if (svm_type==NU_SVR || svm_type==EPSILON_SVR) + printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); + else + { + int *labels=(int *) malloc(nr_class*sizeof(int)); + svm_get_labels(model,labels); + prob_estimates = (double *) malloc(nr_class*sizeof(double)); + fprintf(output,"labels"); + for(j=0;j<nr_class;j++) + fprintf(output," %d",labels[j]); + fprintf(output,"\n"); + free(labels); + } + } + + max_line_len = 1024; + line = (char *)malloc(max_line_len*sizeof(char)); + while(readline(input) != NULL) + { + int i = 0; + double target_label, predict_label; + char *idx, *val, *label, *endptr; + int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0 + + label = strtok(line," \t"); + target_label = strtod(label,&endptr); + if(endptr == label) + exit_input_error(total+1); + + while(1) + { + if(i>=max_nr_attr-1) // need one more for index = -1 + { + max_nr_attr *= 2; + x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node)); + } + + idx = strtok(NULL,":"); + val = strtok(NULL," \t"); + + if(val == NULL) + break; + errno = 0; + x[i].index = (int) strtol(idx,&endptr,10); + if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index) + exit_input_error(total+1); + else + inst_max_index = x[i].index; + + errno = 0; + x[i].value = strtod(val,&endptr); + if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr))) + exit_input_error(total+1); + + ++i; + } + x[i].index = -1; + + if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC)) + { + predict_label = svm_predict_probability(model,x,prob_estimates); + fprintf(output,"%g",predict_label); + for(j=0;j<nr_class;j++) + fprintf(output," %g",prob_estimates[j]); + fprintf(output,"\n"); + } + else + { + predict_label = svm_predict(model,x); + fprintf(output,"%g\n",predict_label); + } + printf("predicted:%g\r\n",predict_label); + if(predict_label == target_label) + ++correct; + error += (predict_label-target_label)*(predict_label-target_label); + sump += predict_label; + sumt += target_label; + sumpp += predict_label*predict_label; + sumtt += target_label*target_label; + sumpt += predict_label*target_label; + ++total; + } + if (svm_type==NU_SVR || svm_type==EPSILON_SVR) + { + printf("Mean squared error = %g (regression)\n",error/total); + printf("Squared correlation coefficient = %g (regression)\n", + ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ + ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)) + ); + } + else + printf("Accuracy = %g%% (%d/%d) (classification)\n", + (double)correct/total*100,correct,total); + if(predict_probability) + free(prob_estimates); +} + +void exit_with_help() +{ + printf( + "Usage: svm-predict [options] test_file model_file output_file\n" + "options:\n" + "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n" + ); + exit(1); +} + +int main_(void) +{ + FILE *input, *output; + int i; + + //printf("*in main_\r\n"); + /*// parse options + for(i=1;i<argc;i++) + { + if(argv[i][0] != '-') break; + ++i; + switch(argv[i-1][1]) + { + case 'b': + predict_probability = atoi(argv[i]); + break; + default: + // fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]); + printf("Unknown option: -%c\n", argv[i-1][1]); + exit_with_help(); + } + } + if(i>=argc-2) + exit_with_help(); + */ + //printf("in main_\r\n"); + input = fopen("/local/test.txt","r"); + if(input == NULL) + { + // fprintf(stderr,"can't open input file %s\n",argv[i]); + printf("can't open input file %s\n","/local/test.txt"); + exit(1); + } + //printf("in main_\r\n"); + output = fopen("/local/output.txt","w"); + if(output == NULL) + { + // fprintf(stderr,"can't open output file %s\n",argv[i+2]); + printf("can't open output file %s\n","/local/output.txt"); + exit(1); + } + //printf("in main_\r\n"); + if((model=svm_load_model("/local/model.txt"))==0) + { + // fprintf(stderr,"can't open model file %s\n",argv[i+1]); + printf("can't open model file %s\n","/local/model.txt"); + exit(1); + } + + //printf("in main_\r\n"); + x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node)); + if(predict_probability) + { + if(svm_check_probability_model(model)==0) + { + printf("Model does not support probabiliy estimates\n"); + exit(1); + } + } + else + { + if(svm_check_probability_model(model)!=0) + printf("Model supports probability estimates, but disabled in prediction.\n"); + } + //printf("in main_\r\n"); + predict(input,output); +//printf("in main_\r\n"); + svm_free_and_destroy_model(&model); +//printf("in main_\r\n"); + free(x); + free(line); + fclose(input); + fclose(output); + return 0; +}