action recognizer with theremin

Dependencies:   mbed

Revision:
0:b9ac53c439ed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/svm/svm.cpp	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,3262 @@
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <float.h>
+#include <string.h>
+#include <stdarg.h>
+#include "svm.h"
+int libsvm_version = LIBSVM_VERSION;
+typedef float Qfloat;
+typedef signed char schar;
+#ifndef min
+template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
+#endif
+#ifndef max
+template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
+#endif
+template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
+template <class S, class T> static inline void clone(T*& dst, S* src, int n)
+{
+    dst = new T[n];
+    memcpy((void *)dst,(void *)src,sizeof(T)*n);
+}
+static inline double powi(double base, int times)
+{
+    double tmp = base, ret = 1.0;
+
+    for(int t=times; t>0; t/=2)
+    {
+        if(t%2==1) ret*=tmp;
+        tmp = tmp * tmp;
+    }
+    return ret;
+}
+#define INF HUGE_VAL
+#define TAU 1e-12
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+static void print_string_stdout(const char *s)
+{
+    fputs(s,stdout);
+    fflush(stdout);
+}
+static void (*svm_print_string) (const char *) = &print_string_stdout;
+#if 1
+static void info(const char *fmt,...)
+{
+    char buf[BUFSIZ];
+    va_list ap;
+    va_start(ap,fmt);
+    vsprintf(buf,fmt,ap);
+    va_end(ap);
+    (*svm_print_string)(buf);
+}
+#else
+static void info(const char *fmt,...) {}
+#endif
+
+//
+// Kernel Cache
+//
+// l is the number of total data items
+// size is the cache size limit in bytes
+//
+class Cache
+{
+public:
+    Cache(int l,long int size);
+    ~Cache();
+
+    // request data [0,len)
+    // return some position p where [p,len) need to be filled
+    // (p >= len if nothing needs to be filled)
+    int get_data(const int index, Qfloat **data, int len);
+    void swap_index(int i, int j);    
+private:
+    int l;
+    long int size;
+    struct head_t
+    {
+        head_t *prev, *next;    // a circular list
+        Qfloat *data;
+        int len;        // data[0,len) is cached in this entry
+    };
+
+    head_t *head;
+    head_t lru_head;
+    void lru_delete(head_t *h);
+    void lru_insert(head_t *h);
+};
+
+Cache::Cache(int l_,long int size_):l(l_),size(size_)
+{
+    head = (head_t *)calloc(l,sizeof(head_t));    // initialized to 0
+    size /= sizeof(Qfloat);
+    size -= l * sizeof(head_t) / sizeof(Qfloat);
+    size = max(size, 2 * (long int) l);    // cache must be large enough for two columns
+    lru_head.next = lru_head.prev = &lru_head;
+}
+
+Cache::~Cache()
+{
+    for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
+        free(h->data);
+    free(head);
+}
+
+void Cache::lru_delete(head_t *h)
+{
+    // delete from current location
+    h->prev->next = h->next;
+    h->next->prev = h->prev;
+}
+
+void Cache::lru_insert(head_t *h)
+{
+    // insert to last position
+    h->next = &lru_head;
+    h->prev = lru_head.prev;
+    h->prev->next = h;
+    h->next->prev = h;
+}
+
+int Cache::get_data(const int index, Qfloat **data, int len)
+{
+    head_t *h = &head[index];
+    if(h->len) lru_delete(h);
+    int more = len - h->len;
+
+    if(more > 0)
+    {
+        // free old space
+        while(size < more)
+        {
+            head_t *old = lru_head.next;
+            lru_delete(old);
+            free(old->data);
+            size += old->len;
+            old->data = 0;
+            old->len = 0;
+        }
+
+        // allocate new space
+        h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
+        size -= more;
+        swap(h->len,len);
+    }
+
+    lru_insert(h);
+    *data = h->data;
+    return len;
+}
+
+void Cache::swap_index(int i, int j)
+{
+    if(i==j) return;
+
+    if(head[i].len) lru_delete(&head[i]);
+    if(head[j].len) lru_delete(&head[j]);
+    swap(head[i].data,head[j].data);
+    swap(head[i].len,head[j].len);
+    if(head[i].len) lru_insert(&head[i]);
+    if(head[j].len) lru_insert(&head[j]);
+
+    if(i>j) swap(i,j);
+    for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
+    {
+        if(h->len > i)
+        {
+            if(h->len > j)
+                swap(h->data[i],h->data[j]);
+            else
+            {
+                // give up
+                lru_delete(h);
+                free(h->data);
+                size += h->len;
+                h->data = 0;
+                h->len = 0;
+            }
+        }
+    }
+}
+
+//
+// Kernel evaluation
+//
+// the static method k_function is for doing single kernel evaluation
+// the constructor of Kernel prepares to calculate the l*l kernel matrix
+// the member function get_Q is for getting one column from the Q Matrix
+//
+class QMatrix {
+public:
+    virtual Qfloat *get_Q(int column, int len) const = 0;
+    virtual double *get_QD() const = 0;
+    virtual void swap_index(int i, int j) const = 0;
+    virtual ~QMatrix() {}
+};
+
+class Kernel: public QMatrix {
+public:
+    Kernel(int l, svm_node * const * x, const svm_parameter& param);
+    virtual ~Kernel();
+
+    static double k_function(const svm_node *x, const svm_node *y,
+                 const svm_parameter& param);
+    virtual Qfloat *get_Q(int column, int len) const = 0;
+    virtual double *get_QD() const = 0;
+    virtual void swap_index(int i, int j) const    // no so const...
+    {
+        swap(x[i],x[j]);
+        if(x_square) swap(x_square[i],x_square[j]);
+    }
+protected:
+
+    double (Kernel::*kernel_function)(int i, int j) const;
+
+private:
+    const svm_node **x;
+    double *x_square;
+
+    // svm_parameter
+    const int kernel_type;
+    const int degree;
+    const double gamma;
+    const double coef0;
+
+    static double dot(const svm_node *px, const svm_node *py);
+    double kernel_linear(int i, int j) const
+    {
+        return dot(x[i],x[j]);
+    }
+    double kernel_poly(int i, int j) const
+    {
+        return powi(gamma*dot(x[i],x[j])+coef0,degree);
+    }
+    double kernel_rbf(int i, int j) const
+    {
+        return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
+    }
+    double kernel_sigmoid(int i, int j) const
+    {
+        return tanh(gamma*dot(x[i],x[j])+coef0);
+    }
+    double kernel_precomputed(int i, int j) const
+    {
+        return x[i][(int)(x[j][0].value)].value;
+    }
+};
+
+Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
+:kernel_type(param.kernel_type), degree(param.degree),
+ gamma(param.gamma), coef0(param.coef0)
+{
+    switch(kernel_type)
+    {
+        case LINEAR:
+            kernel_function = &Kernel::kernel_linear;
+            break;
+        case POLY:
+            kernel_function = &Kernel::kernel_poly;
+            break;
+        case RBF:
+            kernel_function = &Kernel::kernel_rbf;
+            break;
+        case SIGMOID:
+            kernel_function = &Kernel::kernel_sigmoid;
+            break;
+        case PRECOMPUTED:
+            kernel_function = &Kernel::kernel_precomputed;
+            break;
+    }
+
+    clone(x,x_,l);
+
+    if(kernel_type == RBF)
+    {
+        x_square = new double[l];
+        for(int i=0;i<l;i++)
+            x_square[i] = dot(x[i],x[i]);
+    }
+    else
+        x_square = 0;
+}
+
+Kernel::~Kernel()
+{
+    delete[] x;
+    delete[] x_square;
+}
+
+double Kernel::dot(const svm_node *px, const svm_node *py)
+{
+    double sum = 0;
+    while(px->index != -1 && py->index != -1)
+    {
+        if(px->index == py->index)
+        {
+            sum += px->value * py->value;
+            ++px;
+            ++py;
+        }
+        else
+        {
+            if(px->index > py->index)
+                ++py;
+            else
+                ++px;
+        }            
+    }
+    return sum;
+}
+
+double Kernel::k_function(const svm_node *x, const svm_node *y,
+              const svm_parameter& param)
+{
+    switch(param.kernel_type)
+    {
+        case LINEAR:
+            return dot(x,y);
+        case POLY:
+            return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
+        case RBF:
+        {
+            double sum = 0;
+            while(x->index != -1 && y->index !=-1)
+            {
+                if(x->index == y->index)
+                {
+                    double d = x->value - y->value;
+                    sum += d*d;
+                    ++x;
+                    ++y;
+                }
+                else
+                {
+                    if(x->index > y->index)
+                    {    
+                        sum += y->value * y->value;
+                        ++y;
+                    }
+                    else
+                    {
+                        sum += x->value * x->value;
+                        ++x;
+                    }
+                }
+            }
+
+            while(x->index != -1)
+            {
+                sum += x->value * x->value;
+                ++x;
+            }
+
+            while(y->index != -1)
+            {
+                sum += y->value * y->value;
+                ++y;
+            }
+            
+            return exp(-param.gamma*sum);
+        }
+        case SIGMOID:
+            return tanh(param.gamma*dot(x,y)+param.coef0);
+        case PRECOMPUTED:  //x: test (validation), y: SV
+            return x[(int)(y->value)].value;
+        default:
+            return 0;  // Unreachable 
+    }
+}
+
+// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
+// Solves:
+//
+//    min 0.5(\alpha^T Q \alpha) + p^T \alpha
+//
+//        y^T \alpha = \delta
+//        y_i = +1 or -1
+//        0 <= alpha_i <= Cp for y_i = 1
+//        0 <= alpha_i <= Cn for y_i = -1
+//
+// Given:
+//
+//    Q, p, y, Cp, Cn, and an initial feasible point \alpha
+//    l is the size of vectors and matrices
+//    eps is the stopping tolerance
+//
+// solution will be put in \alpha, objective value will be put in obj
+//
+class Solver {
+public:
+    Solver() {};
+    virtual ~Solver() {};
+
+    struct SolutionInfo {
+        double obj;
+        double rho;
+        double upper_bound_p;
+        double upper_bound_n;
+        double r;    // for Solver_NU
+    };
+
+    void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+           double *alpha_, double Cp, double Cn, double eps,
+           SolutionInfo* si, int shrinking);
+protected:
+    int active_size;
+    schar *y;
+    double *G;        // gradient of objective function
+    enum { LOWER_BOUND, UPPER_BOUND, FREE };
+    char *alpha_status;    // LOWER_BOUND, UPPER_BOUND, FREE
+    double *alpha;
+    const QMatrix *Q;
+    const double *QD;
+    double eps;
+    double Cp,Cn;
+    double *p;
+    int *active_set;
+    double *G_bar;        // gradient, if we treat free variables as 0
+    int l;
+    bool unshrink;    // XXX
+
+    double get_C(int i)
+    {
+        return (y[i] > 0)? Cp : Cn;
+    }
+    void update_alpha_status(int i)
+    {
+        if(alpha[i] >= get_C(i))
+            alpha_status[i] = UPPER_BOUND;
+        else if(alpha[i] <= 0)
+            alpha_status[i] = LOWER_BOUND;
+        else alpha_status[i] = FREE;
+    }
+    bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
+    bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
+    bool is_free(int i) { return alpha_status[i] == FREE; }
+    void swap_index(int i, int j);
+    void reconstruct_gradient();
+    virtual int select_working_set(int &i, int &j);
+    virtual double calculate_rho();
+    virtual void do_shrinking();
+private:
+    bool be_shrunk(int i, double Gmax1, double Gmax2);    
+};
+
+void Solver::swap_index(int i, int j)
+{
+    Q->swap_index(i,j);
+    swap(y[i],y[j]);
+    swap(G[i],G[j]);
+    swap(alpha_status[i],alpha_status[j]);
+    swap(alpha[i],alpha[j]);
+    swap(p[i],p[j]);
+    swap(active_set[i],active_set[j]);
+    swap(G_bar[i],G_bar[j]);
+}
+
+void Solver::reconstruct_gradient()
+{
+    // reconstruct inactive elements of G from G_bar and free variables
+
+    if(active_size == l) return;
+
+    int i,j;
+    int nr_free = 0;
+
+    for(j=active_size;j<l;j++)
+        G[j] = G_bar[j] + p[j];
+
+    for(j=0;j<active_size;j++)
+        if(is_free(j))
+            nr_free++;
+
+    if(2*nr_free < active_size)
+        info("\nWarning: using -h 0 may be faster\n");
+
+    if (nr_free*l > 2*active_size*(l-active_size))
+    {
+        for(i=active_size;i<l;i++)
+        {
+            const Qfloat *Q_i = Q->get_Q(i,active_size);
+            for(j=0;j<active_size;j++)
+                if(is_free(j))
+                    G[i] += alpha[j] * Q_i[j];
+        }
+    }
+    else
+    {
+        for(i=0;i<active_size;i++)
+            if(is_free(i))
+            {
+                const Qfloat *Q_i = Q->get_Q(i,l);
+                double alpha_i = alpha[i];
+                for(j=active_size;j<l;j++)
+                    G[j] += alpha_i * Q_i[j];
+            }
+    }
+}
+
+void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+           double *alpha_, double Cp, double Cn, double eps,
+           SolutionInfo* si, int shrinking)
+{
+    this->l = l;
+    this->Q = &Q;
+    QD=Q.get_QD();
+    clone(p, p_,l);
+    clone(y, y_,l);
+    clone(alpha,alpha_,l);
+    this->Cp = Cp;
+    this->Cn = Cn;
+    this->eps = eps;
+    unshrink = false;
+
+    // initialize alpha_status
+    {
+        alpha_status = new char[l];
+        for(int i=0;i<l;i++)
+            update_alpha_status(i);
+    }
+
+    // initialize active set (for shrinking)
+    {
+        active_set = new int[l];
+        for(int i=0;i<l;i++)
+            active_set[i] = i;
+        active_size = l;
+    }
+
+    // initialize gradient
+    {
+        G = new double[l];
+        G_bar = new double[l];
+        int i;
+        for(i=0;i<l;i++)
+        {
+            G[i] = p[i];
+            G_bar[i] = 0;
+        }
+        for(i=0;i<l;i++)
+            if(!is_lower_bound(i))
+            {
+                const Qfloat *Q_i = Q.get_Q(i,l);
+                double alpha_i = alpha[i];
+                int j;
+                for(j=0;j<l;j++)
+                    G[j] += alpha_i*Q_i[j];
+                if(is_upper_bound(i))
+                    for(j=0;j<l;j++)
+                        G_bar[j] += get_C(i) * Q_i[j];
+            }
+    }
+
+    // optimization step
+
+    int iter = 0;
+    int counter = min(l,1000)+1;
+
+    while(1)
+    {
+        // show progress and do shrinking
+
+        if(--counter == 0)
+        {
+            counter = min(l,1000);
+            if(shrinking) do_shrinking();
+            info(".");
+        }
+
+        int i,j;
+        if(select_working_set(i,j)!=0)
+        {
+            // reconstruct the whole gradient
+            reconstruct_gradient();
+            // reset active set size and check
+            active_size = l;
+            info("*");
+            if(select_working_set(i,j)!=0)
+                break;
+            else
+                counter = 1;    // do shrinking next iteration
+        }
+        
+        ++iter;
+
+        // update alpha[i] and alpha[j], handle bounds carefully
+        
+        const Qfloat *Q_i = Q.get_Q(i,active_size);
+        const Qfloat *Q_j = Q.get_Q(j,active_size);
+
+        double C_i = get_C(i);
+        double C_j = get_C(j);
+
+        double old_alpha_i = alpha[i];
+        double old_alpha_j = alpha[j];
+
+        if(y[i]!=y[j])
+        {
+            double quad_coef = QD[i]+QD[j]+2*Q_i[j];
+            if (quad_coef <= 0)
+                quad_coef = TAU;
+            double delta = (-G[i]-G[j])/quad_coef;
+            double diff = alpha[i] - alpha[j];
+            alpha[i] += delta;
+            alpha[j] += delta;
+            
+            if(diff > 0)
+            {
+                if(alpha[j] < 0)
+                {
+                    alpha[j] = 0;
+                    alpha[i] = diff;
+                }
+            }
+            else
+            {
+                if(alpha[i] < 0)
+                {
+                    alpha[i] = 0;
+                    alpha[j] = -diff;
+                }
+            }
+            if(diff > C_i - C_j)
+            {
+                if(alpha[i] > C_i)
+                {
+                    alpha[i] = C_i;
+                    alpha[j] = C_i - diff;
+                }
+            }
+            else
+            {
+                if(alpha[j] > C_j)
+                {
+                    alpha[j] = C_j;
+                    alpha[i] = C_j + diff;
+                }
+            }
+        }
+        else
+        {
+            double quad_coef = QD[i]+QD[j]-2*Q_i[j];
+            if (quad_coef <= 0)
+                quad_coef = TAU;
+            double delta = (G[i]-G[j])/quad_coef;
+            double sum = alpha[i] + alpha[j];
+            alpha[i] -= delta;
+            alpha[j] += delta;
+
+            if(sum > C_i)
+            {
+                if(alpha[i] > C_i)
+                {
+                    alpha[i] = C_i;
+                    alpha[j] = sum - C_i;
+                }
+            }
+            else
+            {
+                if(alpha[j] < 0)
+                {
+                    alpha[j] = 0;
+                    alpha[i] = sum;
+                }
+            }
+            if(sum > C_j)
+            {
+                if(alpha[j] > C_j)
+                {
+                    alpha[j] = C_j;
+                    alpha[i] = sum - C_j;
+                }
+            }
+            else
+            {
+                if(alpha[i] < 0)
+                {
+                    alpha[i] = 0;
+                    alpha[j] = sum;
+                }
+            }
+        }
+
+        // update G
+
+        double delta_alpha_i = alpha[i] - old_alpha_i;
+        double delta_alpha_j = alpha[j] - old_alpha_j;
+        
+        for(int k=0;k<active_size;k++)
+        {
+            G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
+        }
+
+        // update alpha_status and G_bar
+
+        {
+            bool ui = is_upper_bound(i);
+            bool uj = is_upper_bound(j);
+            update_alpha_status(i);
+            update_alpha_status(j);
+            int k;
+            if(ui != is_upper_bound(i))
+            {
+                Q_i = Q.get_Q(i,l);
+                if(ui)
+                    for(k=0;k<l;k++)
+                        G_bar[k] -= C_i * Q_i[k];
+                else
+                    for(k=0;k<l;k++)
+                        G_bar[k] += C_i * Q_i[k];
+            }
+
+            if(uj != is_upper_bound(j))
+            {
+                Q_j = Q.get_Q(j,l);
+                if(uj)
+                    for(k=0;k<l;k++)
+                        G_bar[k] -= C_j * Q_j[k];
+                else
+                    for(k=0;k<l;k++)
+                        G_bar[k] += C_j * Q_j[k];
+            }
+        }
+    }
+
+    // calculate rho
+
+    si->rho = calculate_rho();
+
+    // calculate objective value
+    {
+        double v = 0;
+        int i;
+        for(i=0;i<l;i++)
+            v += alpha[i] * (G[i] + p[i]);
+
+        si->obj = v/2;
+    }
+
+    // put back the solution
+    {
+        for(int i=0;i<l;i++)
+            alpha_[active_set[i]] = alpha[i];
+    }
+
+    // juggle everything back
+    /*{
+        for(int i=0;i<l;i++)
+            while(active_set[i] != i)
+                swap_index(i,active_set[i]);
+                // or Q.swap_index(i,active_set[i]);
+    }*/
+
+    si->upper_bound_p = Cp;
+    si->upper_bound_n = Cn;
+
+    info("\noptimization finished, #iter = %d\n",iter);
+
+    delete[] p;
+    delete[] y;
+    delete[] alpha;
+    delete[] alpha_status;
+    delete[] active_set;
+    delete[] G;
+    delete[] G_bar;
+}
+
+// return 1 if already optimal, return 0 otherwise
+int Solver::select_working_set(int &out_i, int &out_j)
+{
+    // return i,j such that
+    // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+    // j: minimizes the decrease of obj value
+    //    (if quadratic coefficeint <= 0, replace it with tau)
+    //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+    
+    double Gmax = -INF;
+    double Gmax2 = -INF;
+    int Gmax_idx = -1;
+    int Gmin_idx = -1;
+    double obj_diff_min = INF;
+
+    for(int t=0;t<active_size;t++)
+        if(y[t]==+1)    
+        {
+            if(!is_upper_bound(t))
+                if(-G[t] >= Gmax)
+                {
+                    Gmax = -G[t];
+                    Gmax_idx = t;
+                }
+        }
+        else
+        {
+            if(!is_lower_bound(t))
+                if(G[t] >= Gmax)
+                {
+                    Gmax = G[t];
+                    Gmax_idx = t;
+                }
+        }
+
+    int i = Gmax_idx;
+    const Qfloat *Q_i = NULL;
+    if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
+        Q_i = Q->get_Q(i,active_size);
+
+    for(int j=0;j<active_size;j++)
+    {
+        if(y[j]==+1)
+        {
+            if (!is_lower_bound(j))
+            {
+                double grad_diff=Gmax+G[j];
+                if (G[j] >= Gmax2)
+                    Gmax2 = G[j];
+                if (grad_diff > 0)
+                {
+                    double obj_diff; 
+                    double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
+                    if (quad_coef > 0)
+                        obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                    else
+                        obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                    if (obj_diff <= obj_diff_min)
+                    {
+                        Gmin_idx=j;
+                        obj_diff_min = obj_diff;
+                    }
+                }
+            }
+        }
+        else
+        {
+            if (!is_upper_bound(j))
+            {
+                double grad_diff= Gmax-G[j];
+                if (-G[j] >= Gmax2)
+                    Gmax2 = -G[j];
+                if (grad_diff > 0)
+                {
+                    double obj_diff; 
+                    double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
+                    if (quad_coef > 0)
+                        obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                    else
+                        obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                    if (obj_diff <= obj_diff_min)
+                    {
+                        Gmin_idx=j;
+                        obj_diff_min = obj_diff;
+                    }
+                }
+            }
+        }
+    }
+
+    if(Gmax+Gmax2 < eps)
+        return 1;
+
+    out_i = Gmax_idx;
+    out_j = Gmin_idx;
+    return 0;
+}
+
+bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
+{
+    if(is_upper_bound(i))
+    {
+        if(y[i]==+1)
+            return(-G[i] > Gmax1);
+        else
+            return(-G[i] > Gmax2);
+    }
+    else if(is_lower_bound(i))
+    {
+        if(y[i]==+1)
+            return(G[i] > Gmax2);
+        else    
+            return(G[i] > Gmax1);
+    }
+    else
+        return(false);
+}
+
+void Solver::do_shrinking()
+{
+    int i;
+    double Gmax1 = -INF;        // max { -y_i * grad(f)_i | i in I_up(\alpha) }
+    double Gmax2 = -INF;        // max { y_i * grad(f)_i | i in I_low(\alpha) }
+
+    // find maximal violating pair first
+    for(i=0;i<active_size;i++)
+    {
+        if(y[i]==+1)    
+        {
+            if(!is_upper_bound(i))    
+            {
+                if(-G[i] >= Gmax1)
+                    Gmax1 = -G[i];
+            }
+            if(!is_lower_bound(i))    
+            {
+                if(G[i] >= Gmax2)
+                    Gmax2 = G[i];
+            }
+        }
+        else    
+        {
+            if(!is_upper_bound(i))    
+            {
+                if(-G[i] >= Gmax2)
+                    Gmax2 = -G[i];
+            }
+            if(!is_lower_bound(i))    
+            {
+                if(G[i] >= Gmax1)
+                    Gmax1 = G[i];
+            }
+        }
+    }
+
+    if(unshrink == false && Gmax1 + Gmax2 <= eps*10) 
+    {
+        unshrink = true;
+        reconstruct_gradient();
+        active_size = l;
+        info("*");
+    }
+
+    for(i=0;i<active_size;i++)
+        if (be_shrunk(i, Gmax1, Gmax2))
+        {
+            active_size--;
+            while (active_size > i)
+            {
+                if (!be_shrunk(active_size, Gmax1, Gmax2))
+                {
+                    swap_index(i,active_size);
+                    break;
+                }
+                active_size--;
+            }
+        }
+}
+
+double Solver::calculate_rho()
+{
+    double r;
+    int nr_free = 0;
+    double ub = INF, lb = -INF, sum_free = 0;
+    for(int i=0;i<active_size;i++)
+    {
+        double yG = y[i]*G[i];
+
+        if(is_upper_bound(i))
+        {
+            if(y[i]==-1)
+                ub = min(ub,yG);
+            else
+                lb = max(lb,yG);
+        }
+        else if(is_lower_bound(i))
+        {
+            if(y[i]==+1)
+                ub = min(ub,yG);
+            else
+                lb = max(lb,yG);
+        }
+        else
+        {
+            ++nr_free;
+            sum_free += yG;
+        }
+    }
+
+    if(nr_free>0)
+        r = sum_free/nr_free;
+    else
+        r = (ub+lb)/2;
+
+    return r;
+}
+
+//
+// Solver for nu-svm classification and regression
+//
+// additional constraint: e^T \alpha = constant
+//
+class Solver_NU : public Solver
+{
+public:
+    Solver_NU() {}
+    void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
+           double *alpha, double Cp, double Cn, double eps,
+           SolutionInfo* si, int shrinking)
+    {
+        this->si = si;
+        Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
+    }
+private:
+    SolutionInfo *si;
+    int select_working_set(int &i, int &j);
+    double calculate_rho();
+    bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
+    void do_shrinking();
+};
+
+// return 1 if already optimal, return 0 otherwise
+int Solver_NU::select_working_set(int &out_i, int &out_j)
+{
+    // return i,j such that y_i = y_j and
+    // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+    // j: minimizes the decrease of obj value
+    //    (if quadratic coefficeint <= 0, replace it with tau)
+    //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+
+    double Gmaxp = -INF;
+    double Gmaxp2 = -INF;
+    int Gmaxp_idx = -1;
+
+    double Gmaxn = -INF;
+    double Gmaxn2 = -INF;
+    int Gmaxn_idx = -1;
+
+    int Gmin_idx = -1;
+    double obj_diff_min = INF;
+
+    for(int t=0;t<active_size;t++)
+        if(y[t]==+1)
+        {
+            if(!is_upper_bound(t))
+                if(-G[t] >= Gmaxp)
+                {
+                    Gmaxp = -G[t];
+                    Gmaxp_idx = t;
+                }
+        }
+        else
+        {
+            if(!is_lower_bound(t))
+                if(G[t] >= Gmaxn)
+                {
+                    Gmaxn = G[t];
+                    Gmaxn_idx = t;
+                }
+        }
+
+    int ip = Gmaxp_idx;
+    int in = Gmaxn_idx;
+    const Qfloat *Q_ip = NULL;
+    const Qfloat *Q_in = NULL;
+    if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
+        Q_ip = Q->get_Q(ip,active_size);
+    if(in != -1)
+        Q_in = Q->get_Q(in,active_size);
+
+    for(int j=0;j<active_size;j++)
+    {
+        if(y[j]==+1)
+        {
+            if (!is_lower_bound(j))    
+            {
+                double grad_diff=Gmaxp+G[j];
+                if (G[j] >= Gmaxp2)
+                    Gmaxp2 = G[j];
+                if (grad_diff > 0)
+                {
+                    double obj_diff; 
+                    double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
+                    if (quad_coef > 0)
+                        obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                    else
+                        obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                    if (obj_diff <= obj_diff_min)
+                    {
+                        Gmin_idx=j;
+                        obj_diff_min = obj_diff;
+                    }
+                }
+            }
+        }
+        else
+        {
+            if (!is_upper_bound(j))
+            {
+                double grad_diff=Gmaxn-G[j];
+                if (-G[j] >= Gmaxn2)
+                    Gmaxn2 = -G[j];
+                if (grad_diff > 0)
+                {
+                    double obj_diff; 
+                    double quad_coef = QD[in]+QD[j]-2*Q_in[j];
+                    if (quad_coef > 0)
+                        obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                    else
+                        obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                    if (obj_diff <= obj_diff_min)
+                    {
+                        Gmin_idx=j;
+                        obj_diff_min = obj_diff;
+                    }
+                }
+            }
+        }
+    }
+
+    if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
+        return 1;
+
+    if (y[Gmin_idx] == +1)
+        out_i = Gmaxp_idx;
+    else
+        out_i = Gmaxn_idx;
+    out_j = Gmin_idx;
+
+    return 0;
+}
+
+bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
+{
+    if(is_upper_bound(i))
+    {
+        if(y[i]==+1)
+            return(-G[i] > Gmax1);
+        else    
+            return(-G[i] > Gmax4);
+    }
+    else if(is_lower_bound(i))
+    {
+        if(y[i]==+1)
+            return(G[i] > Gmax2);
+        else    
+            return(G[i] > Gmax3);
+    }
+    else
+        return(false);
+}
+
+void Solver_NU::do_shrinking()
+{
+    double Gmax1 = -INF;    // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
+    double Gmax2 = -INF;    // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
+    double Gmax3 = -INF;    // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
+    double Gmax4 = -INF;    // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
+
+    // find maximal violating pair first
+    int i;
+    for(i=0;i<active_size;i++)
+    {
+        if(!is_upper_bound(i))
+        {
+            if(y[i]==+1)
+            {
+                if(-G[i] > Gmax1) Gmax1 = -G[i];
+            }
+            else    if(-G[i] > Gmax4) Gmax4 = -G[i];
+        }
+        if(!is_lower_bound(i))
+        {
+            if(y[i]==+1)
+            {    
+                if(G[i] > Gmax2) Gmax2 = G[i];
+            }
+            else    if(G[i] > Gmax3) Gmax3 = G[i];
+        }
+    }
+
+    if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) 
+    {
+        unshrink = true;
+        reconstruct_gradient();
+        active_size = l;
+    }
+
+    for(i=0;i<active_size;i++)
+        if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
+        {
+            active_size--;
+            while (active_size > i)
+            {
+                if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
+                {
+                    swap_index(i,active_size);
+                    break;
+                }
+                active_size--;
+            }
+        }
+}
+
+double Solver_NU::calculate_rho()
+{
+    int nr_free1 = 0,nr_free2 = 0;
+    double ub1 = INF, ub2 = INF;
+    double lb1 = -INF, lb2 = -INF;
+    double sum_free1 = 0, sum_free2 = 0;
+
+    for(int i=0;i<active_size;i++)
+    {
+        if(y[i]==+1)
+        {
+            if(is_upper_bound(i))
+                lb1 = max(lb1,G[i]);
+            else if(is_lower_bound(i))
+                ub1 = min(ub1,G[i]);
+            else
+            {
+                ++nr_free1;
+                sum_free1 += G[i];
+            }
+        }
+        else
+        {
+            if(is_upper_bound(i))
+                lb2 = max(lb2,G[i]);
+            else if(is_lower_bound(i))
+                ub2 = min(ub2,G[i]);
+            else
+            {
+                ++nr_free2;
+                sum_free2 += G[i];
+            }
+        }
+    }
+
+    double r1,r2;
+    if(nr_free1 > 0)
+        r1 = sum_free1/nr_free1;
+    else
+        r1 = (ub1+lb1)/2;
+    
+    if(nr_free2 > 0)
+        r2 = sum_free2/nr_free2;
+    else
+        r2 = (ub2+lb2)/2;
+    
+    si->r = (r1+r2)/2;
+    return (r1-r2)/2;
+}
+
+//
+// Q matrices for various formulations
+//
+class SVC_Q: public Kernel
+{ 
+public:
+    SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
+    :Kernel(prob.l, prob.x, param)
+    {
+        clone(y,y_,prob.l);
+        cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+        QD = new double[prob.l];
+        for(int i=0;i<prob.l;i++)
+            QD[i] = (this->*kernel_function)(i,i);
+    }
+    
+    Qfloat *get_Q(int i, int len) const
+    {
+        Qfloat *data;
+        int start, j;
+        if((start = cache->get_data(i,&data,len)) < len)
+        {
+            for(j=start;j<len;j++)
+                data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
+        }
+        return data;
+    }
+
+    double *get_QD() const
+    {
+        return QD;
+    }
+
+    void swap_index(int i, int j) const
+    {
+        cache->swap_index(i,j);
+        Kernel::swap_index(i,j);
+        swap(y[i],y[j]);
+        swap(QD[i],QD[j]);
+    }
+
+    ~SVC_Q()
+    {
+        delete[] y;
+        delete cache;
+        delete[] QD;
+    }
+private:
+    schar *y;
+    Cache *cache;
+    double *QD;
+};
+
+class ONE_CLASS_Q: public Kernel
+{
+public:
+    ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
+    :Kernel(prob.l, prob.x, param)
+    {
+        cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+        QD = new double[prob.l];
+        for(int i=0;i<prob.l;i++)
+            QD[i] = (this->*kernel_function)(i,i);
+    }
+    
+    Qfloat *get_Q(int i, int len) const
+    {
+        Qfloat *data;
+        int start, j;
+        if((start = cache->get_data(i,&data,len)) < len)
+        {
+            for(j=start;j<len;j++)
+                data[j] = (Qfloat)(this->*kernel_function)(i,j);
+        }
+        return data;
+    }
+
+    double *get_QD() const
+    {
+        return QD;
+    }
+
+    void swap_index(int i, int j) const
+    {
+        cache->swap_index(i,j);
+        Kernel::swap_index(i,j);
+        swap(QD[i],QD[j]);
+    }
+
+    ~ONE_CLASS_Q()
+    {
+        delete cache;
+        delete[] QD;
+    }
+private:
+    Cache *cache;
+    double *QD;
+};
+
+class SVR_Q: public Kernel
+{ 
+public:
+    SVR_Q(const svm_problem& prob, const svm_parameter& param)
+    :Kernel(prob.l, prob.x, param)
+    {
+        l = prob.l;
+        cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
+        QD = new double[2*l];
+        sign = new schar[2*l];
+        index = new int[2*l];
+        for(int k=0;k<l;k++)
+        {
+            sign[k] = 1;
+            sign[k+l] = -1;
+            index[k] = k;
+            index[k+l] = k;
+            QD[k] = (this->*kernel_function)(k,k);
+            QD[k+l] = QD[k];
+        }
+        buffer[0] = new Qfloat[2*l];
+        buffer[1] = new Qfloat[2*l];
+        next_buffer = 0;
+    }
+
+    void swap_index(int i, int j) const
+    {
+        swap(sign[i],sign[j]);
+        swap(index[i],index[j]);
+        swap(QD[i],QD[j]);
+    }
+    
+    Qfloat *get_Q(int i, int len) const
+    {
+        Qfloat *data;
+        int j, real_i = index[i];
+        if(cache->get_data(real_i,&data,l) < l)
+        {
+            for(j=0;j<l;j++)
+                data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
+        }
+
+        // reorder and copy
+        Qfloat *buf = buffer[next_buffer];
+        next_buffer = 1 - next_buffer;
+        schar si = sign[i];
+        for(j=0;j<len;j++)
+            buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
+        return buf;
+    }
+
+    double *get_QD() const
+    {
+        return QD;
+    }
+
+    ~SVR_Q()
+    {
+        delete cache;
+        delete[] sign;
+        delete[] index;
+        delete[] buffer[0];
+        delete[] buffer[1];
+        delete[] QD;
+    }
+private:
+    int l;
+    Cache *cache;
+    schar *sign;
+    int *index;
+    mutable int next_buffer;
+    Qfloat *buffer[2];
+    double *QD;
+};
+
+//
+// construct and solve various formulations
+//
+static void solve_c_svc(
+    const svm_problem *prob, const svm_parameter* param,
+    double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
+{
+    int l = prob->l;
+    double *minus_ones = new double[l];
+    schar *y = new schar[l];
+
+    int i;
+
+    for(i=0;i<l;i++)
+    {
+        alpha[i] = 0;
+        minus_ones[i] = -1;
+        if(prob->y[i] > 0) y[i] = +1; else y[i] = -1;
+    }
+
+    Solver s;
+    s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
+        alpha, Cp, Cn, param->eps, si, param->shrinking);
+
+    double sum_alpha=0;
+    for(i=0;i<l;i++)
+        sum_alpha += alpha[i];
+
+    if (Cp==Cn)
+        info("nu = %f\n", sum_alpha/(Cp*prob->l));
+
+    for(i=0;i<l;i++)
+        alpha[i] *= y[i];
+
+    delete[] minus_ones;
+    delete[] y;
+}
+
+static void solve_nu_svc(
+    const svm_problem *prob, const svm_parameter *param,
+    double *alpha, Solver::SolutionInfo* si)
+{
+    int i;
+    int l = prob->l;
+    double nu = param->nu;
+
+    schar *y = new schar[l];
+
+    for(i=0;i<l;i++)
+        if(prob->y[i]>0)
+            y[i] = +1;
+        else
+            y[i] = -1;
+
+    double sum_pos = nu*l/2;
+    double sum_neg = nu*l/2;
+
+    for(i=0;i<l;i++)
+        if(y[i] == +1)
+        {
+            alpha[i] = min(1.0,sum_pos);
+            sum_pos -= alpha[i];
+        }
+        else
+        {
+            alpha[i] = min(1.0,sum_neg);
+            sum_neg -= alpha[i];
+        }
+
+    double *zeros = new double[l];
+
+    for(i=0;i<l;i++)
+        zeros[i] = 0;
+
+    Solver_NU s;
+    s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
+        alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
+    double r = si->r;
+
+    info("C = %f\n",1/r);
+
+    for(i=0;i<l;i++)
+        alpha[i] *= y[i]/r;
+
+    si->rho /= r;
+    si->obj /= (r*r);
+    si->upper_bound_p = 1/r;
+    si->upper_bound_n = 1/r;
+
+    delete[] y;
+    delete[] zeros;
+}
+
+static void solve_one_class(
+    const svm_problem *prob, const svm_parameter *param,
+    double *alpha, Solver::SolutionInfo* si)
+{
+    int l = prob->l;
+    double *zeros = new double[l];
+    schar *ones = new schar[l];
+    int i;
+
+    int n = (int)(param->nu*prob->l);    // # of alpha's at upper bound
+
+    for(i=0;i<n;i++)
+        alpha[i] = 1;
+    if(n<prob->l)
+        alpha[n] = param->nu * prob->l - n;
+    for(i=n+1;i<l;i++)
+        alpha[i] = 0;
+
+    for(i=0;i<l;i++)
+    {
+        zeros[i] = 0;
+        ones[i] = 1;
+    }
+
+    Solver s;
+    s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
+        alpha, 1.0, 1.0, param->eps, si, param->shrinking);
+
+    delete[] zeros;
+    delete[] ones;
+}
+
+static void solve_epsilon_svr(
+    const svm_problem *prob, const svm_parameter *param,
+    double *alpha, Solver::SolutionInfo* si)
+{
+    int l = prob->l;
+    double *alpha2 = new double[2*l];
+    double *linear_term = new double[2*l];
+    schar *y = new schar[2*l];
+    int i;
+
+    for(i=0;i<l;i++)
+    {
+        alpha2[i] = 0;
+        linear_term[i] = param->p - prob->y[i];
+        y[i] = 1;
+
+        alpha2[i+l] = 0;
+        linear_term[i+l] = param->p + prob->y[i];
+        y[i+l] = -1;
+    }
+
+    Solver s;
+    s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+        alpha2, param->C, param->C, param->eps, si, param->shrinking);
+
+    double sum_alpha = 0;
+    for(i=0;i<l;i++)
+    {
+        alpha[i] = alpha2[i] - alpha2[i+l];
+        sum_alpha += fabs(alpha[i]);
+    }
+    info("nu = %f\n",sum_alpha/(param->C*l));
+
+    delete[] alpha2;
+    delete[] linear_term;
+    delete[] y;
+}
+
+static void solve_nu_svr(
+    const svm_problem *prob, const svm_parameter *param,
+    double *alpha, Solver::SolutionInfo* si)
+{
+    int l = prob->l;
+    double C = param->C;
+    double *alpha2 = new double[2*l];
+    double *linear_term = new double[2*l];
+    schar *y = new schar[2*l];
+    int i;
+
+    double sum = C * param->nu * l / 2;
+    for(i=0;i<l;i++)
+    {
+        alpha2[i] = alpha2[i+l] = min(sum,C);
+        sum -= alpha2[i];
+
+        linear_term[i] = - prob->y[i];
+        y[i] = 1;
+
+        linear_term[i+l] = prob->y[i];
+        y[i+l] = -1;
+    }
+
+    Solver_NU s;
+    s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+        alpha2, C, C, param->eps, si, param->shrinking);
+
+    info("epsilon = %f\n",-si->r);
+
+    for(i=0;i<l;i++)
+        alpha[i] = alpha2[i] - alpha2[i+l];
+
+    delete[] alpha2;
+    delete[] linear_term;
+    delete[] y;
+}
+
+//
+// decision_function
+//
+struct decision_function
+{
+    double *alpha;
+    double rho;    
+};
+
+static decision_function svm_train_one(
+    const svm_problem *prob, const svm_parameter *param,
+    double Cp, double Cn)
+{
+    double *alpha = Malloc(double,prob->l);
+    Solver::SolutionInfo si;
+    switch(param->svm_type)
+    {
+        case C_SVC:
+            solve_c_svc(prob,param,alpha,&si,Cp,Cn);
+            break;
+        case NU_SVC:
+            solve_nu_svc(prob,param,alpha,&si);
+            break;
+        case ONE_CLASS:
+            solve_one_class(prob,param,alpha,&si);
+            break;
+        case EPSILON_SVR:
+            solve_epsilon_svr(prob,param,alpha,&si);
+            break;
+        case NU_SVR:
+            solve_nu_svr(prob,param,alpha,&si);
+            break;
+    }
+
+    info("obj = %f, rho = %f\n",si.obj,si.rho);
+
+    // output SVs
+
+    int nSV = 0;
+    int nBSV = 0;
+    for(int i=0;i<prob->l;i++)
+    {
+        if(fabs(alpha[i]) > 0)
+        {
+            ++nSV;
+            if(prob->y[i] > 0)
+            {
+                if(fabs(alpha[i]) >= si.upper_bound_p)
+                    ++nBSV;
+            }
+            else
+            {
+                if(fabs(alpha[i]) >= si.upper_bound_n)
+                    ++nBSV;
+            }
+        }
+    }
+
+    info("nSV = %d, nBSV = %d\n",nSV,nBSV);
+
+    decision_function f;
+    f.alpha = alpha;
+    f.rho = si.rho;
+    return f;
+}
+
+// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
+static void sigmoid_train(
+    int l, const double *dec_values, const double *labels, 
+    double& A, double& B)
+{
+    double prior1=0, prior0 = 0;
+    int i;
+
+    for (i=0;i<l;i++)
+        if (labels[i] > 0) prior1+=1;
+        else prior0+=1;
+    
+    int max_iter=100;    // Maximal number of iterations
+    double min_step=1e-10;    // Minimal step taken in line search
+    double sigma=1e-12;    // For numerically strict PD of Hessian
+    double eps=1e-5;
+    double hiTarget=(prior1+1.0)/(prior1+2.0);
+    double loTarget=1/(prior0+2.0);
+    double *t=Malloc(double,l);
+    double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
+    double newA,newB,newf,d1,d2;
+    int iter; 
+    
+    // Initial Point and Initial Fun Value
+    A=0.0; B=log((prior0+1.0)/(prior1+1.0));
+    double fval = 0.0;
+
+    for (i=0;i<l;i++)
+    {
+        if (labels[i]>0) t[i]=hiTarget;
+        else t[i]=loTarget;
+        fApB = dec_values[i]*A+B;
+        if (fApB>=0)
+            fval += t[i]*fApB + log(1+exp(-fApB));
+        else
+            fval += (t[i] - 1)*fApB +log(1+exp(fApB));
+    }
+    for (iter=0;iter<max_iter;iter++)
+    {
+        // Update Gradient and Hessian (use H' = H + sigma I)
+        h11=sigma; // numerically ensures strict PD
+        h22=sigma;
+        h21=0.0;g1=0.0;g2=0.0;
+        for (i=0;i<l;i++)
+        {
+            fApB = dec_values[i]*A+B;
+            if (fApB >= 0)
+            {
+                p=exp(-fApB)/(1.0+exp(-fApB));
+                q=1.0/(1.0+exp(-fApB));
+            }
+            else
+            {
+                p=1.0/(1.0+exp(fApB));
+                q=exp(fApB)/(1.0+exp(fApB));
+            }
+            d2=p*q;
+            h11+=dec_values[i]*dec_values[i]*d2;
+            h22+=d2;
+            h21+=dec_values[i]*d2;
+            d1=t[i]-p;
+            g1+=dec_values[i]*d1;
+            g2+=d1;
+        }
+
+        // Stopping Criteria
+        if (fabs(g1)<eps && fabs(g2)<eps)
+            break;
+
+        // Finding Newton direction: -inv(H') * g
+        det=h11*h22-h21*h21;
+        dA=-(h22*g1 - h21 * g2) / det;
+        dB=-(-h21*g1+ h11 * g2) / det;
+        gd=g1*dA+g2*dB;
+
+
+        stepsize = 1;        // Line Search
+        while (stepsize >= min_step)
+        {
+            newA = A + stepsize * dA;
+            newB = B + stepsize * dB;
+
+            // New function value
+            newf = 0.0;
+            for (i=0;i<l;i++)
+            {
+                fApB = dec_values[i]*newA+newB;
+                if (fApB >= 0)
+                    newf += t[i]*fApB + log(1+exp(-fApB));
+                else
+                    newf += (t[i] - 1)*fApB +log(1+exp(fApB));
+            }
+            // Check sufficient decrease
+            if (newf<fval+0.0001*stepsize*gd)
+            {
+                A=newA;B=newB;fval=newf;
+                break;
+            }
+            else
+                stepsize = stepsize / 2.0;
+        }
+
+        if (stepsize < min_step)
+        {
+            info("Line search fails in two-class probability estimates\n");
+            break;
+        }
+    }
+
+    if (iter>=max_iter)
+        info("Reaching maximal iterations in two-class probability estimates\n");
+    free(t);
+}
+
+static double sigmoid_predict(double decision_value, double A, double B)
+{
+    double fApB = decision_value*A+B;
+    if (fApB >= 0)
+        return exp(-fApB)/(1.0+exp(-fApB));
+    else
+        return 1.0/(1+exp(fApB)) ;
+}
+
+// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
+static void multiclass_probability(int k, double **r, double *p)
+{
+    int t,j;
+    int iter = 0, max_iter=max(100,k);
+    double **Q=Malloc(double *,k);
+    double *Qp=Malloc(double,k);
+    double pQp, eps=0.005/k;
+    
+    for (t=0;t<k;t++)
+    {
+        p[t]=1.0/k;  // Valid if k = 1
+        Q[t]=Malloc(double,k);
+        Q[t][t]=0;
+        for (j=0;j<t;j++)
+        {
+            Q[t][t]+=r[j][t]*r[j][t];
+            Q[t][j]=Q[j][t];
+        }
+        for (j=t+1;j<k;j++)
+        {
+            Q[t][t]+=r[j][t]*r[j][t];
+            Q[t][j]=-r[j][t]*r[t][j];
+        }
+    }
+    for (iter=0;iter<max_iter;iter++)
+    {
+        // stopping condition, recalculate QP,pQP for numerical accuracy
+        pQp=0;
+        for (t=0;t<k;t++)
+        {
+            Qp[t]=0;
+            for (j=0;j<k;j++)
+                Qp[t]+=Q[t][j]*p[j];
+            pQp+=p[t]*Qp[t];
+        }
+        double max_error=0;
+        for (t=0;t<k;t++)
+        {
+            double error=fabs(Qp[t]-pQp);
+            if (error>max_error)
+                max_error=error;
+        }
+        if (max_error<eps) break;
+        
+        for (t=0;t<k;t++)
+        {
+            double diff=(-Qp[t]+pQp)/Q[t][t];
+            p[t]+=diff;
+            pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
+            for (j=0;j<k;j++)
+            {
+                Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
+                p[j]/=(1+diff);
+            }
+        }
+    }
+    if (iter>=max_iter)
+        info("Exceeds max_iter in multiclass_prob\n");
+    for(t=0;t<k;t++) free(Q[t]);
+    free(Q);
+    free(Qp);
+}
+
+// Cross-validation decision values for probability estimates
+static void svm_binary_svc_probability(
+    const svm_problem *prob, const svm_parameter *param,
+    double Cp, double Cn, double& probA, double& probB)
+{
+    int i;
+    int nr_fold = 5;
+    int *perm = Malloc(int,prob->l);
+    double *dec_values = Malloc(double,prob->l);
+
+    // random shuffle
+    for(i=0;i<prob->l;i++) perm[i]=i;
+    for(i=0;i<prob->l;i++)
+    {
+        int j = i+rand()%(prob->l-i);
+        swap(perm[i],perm[j]);
+    }
+    for(i=0;i<nr_fold;i++)
+    {
+        int begin = i*prob->l/nr_fold;
+        int end = (i+1)*prob->l/nr_fold;
+        int j,k;
+        struct svm_problem subprob;
+
+        subprob.l = prob->l-(end-begin);
+        subprob.x = Malloc(struct svm_node*,subprob.l);
+        subprob.y = Malloc(double,subprob.l);
+            
+        k=0;
+        for(j=0;j<begin;j++)
+        {
+            subprob.x[k] = prob->x[perm[j]];
+            subprob.y[k] = prob->y[perm[j]];
+            ++k;
+        }
+        for(j=end;j<prob->l;j++)
+        {
+            subprob.x[k] = prob->x[perm[j]];
+            subprob.y[k] = prob->y[perm[j]];
+            ++k;
+        }
+        int p_count=0,n_count=0;
+        for(j=0;j<k;j++)
+            if(subprob.y[j]>0)
+                p_count++;
+            else
+                n_count++;
+
+        if(p_count==0 && n_count==0)
+            for(j=begin;j<end;j++)
+                dec_values[perm[j]] = 0;
+        else if(p_count > 0 && n_count == 0)
+            for(j=begin;j<end;j++)
+                dec_values[perm[j]] = 1;
+        else if(p_count == 0 && n_count > 0)
+            for(j=begin;j<end;j++)
+                dec_values[perm[j]] = -1;
+        else
+        {
+            svm_parameter subparam = *param;
+            subparam.probability=0;
+            subparam.C=1.0;
+            subparam.nr_weight=2;
+            subparam.weight_label = Malloc(int,2);
+            subparam.weight = Malloc(double,2);
+            subparam.weight_label[0]=+1;
+            subparam.weight_label[1]=-1;
+            subparam.weight[0]=Cp;
+            subparam.weight[1]=Cn;
+            struct svm_model *submodel = svm_train(&subprob,&subparam);
+            for(j=begin;j<end;j++)
+            {
+                svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); 
+                // ensure +1 -1 order; reason not using CV subroutine
+                dec_values[perm[j]] *= submodel->label[0];
+            }        
+            svm_free_and_destroy_model(&submodel);
+            svm_destroy_param(&subparam);
+        }
+        free(subprob.x);
+        free(subprob.y);
+    }        
+    sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
+    free(dec_values);
+    free(perm);
+}
+
+// Return parameter of a Laplace distribution 
+static double svm_svr_probability(
+    const svm_problem *prob, const svm_parameter *param)
+{
+    int i;
+    int nr_fold = 5;
+    double *ymv = Malloc(double,prob->l);
+    double mae = 0;
+
+    svm_parameter newparam = *param;
+    newparam.probability = 0;
+    svm_cross_validation(prob,&newparam,nr_fold,ymv);
+    for(i=0;i<prob->l;i++)
+    {
+        ymv[i]=prob->y[i]-ymv[i];
+        mae += fabs(ymv[i]);
+    }        
+    mae /= prob->l;
+    double std=sqrt(2*mae*mae);
+    int count=0;
+    mae=0;
+    for(i=0;i<prob->l;i++)
+        if (fabs(ymv[i]) > 5*std) 
+            count=count+1;
+        else 
+            mae+=fabs(ymv[i]);
+    mae /= (prob->l-count);
+    info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
+    free(ymv);
+    return mae;
+}
+
+
+// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
+// perm, length l, must be allocated before calling this subroutine
+static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
+{
+    int l = prob->l;
+    int max_nr_class = 16;
+    int nr_class = 0;
+    int *label = Malloc(int,max_nr_class);
+    int *count = Malloc(int,max_nr_class);
+    int *data_label = Malloc(int,l);    
+    int i;
+
+    for(i=0;i<l;i++)
+    {
+        int this_label = (int)prob->y[i];
+        int j;
+        for(j=0;j<nr_class;j++)
+        {
+            if(this_label == label[j])
+            {
+                ++count[j];
+                break;
+            }
+        }
+        data_label[i] = j;
+        if(j == nr_class)
+        {
+            if(nr_class == max_nr_class)
+            {
+                max_nr_class *= 2;
+                label = (int *)realloc(label,max_nr_class*sizeof(int));
+                count = (int *)realloc(count,max_nr_class*sizeof(int));
+            }
+            label[nr_class] = this_label;
+            count[nr_class] = 1;
+            ++nr_class;
+        }
+    }
+
+    int *start = Malloc(int,nr_class);
+    start[0] = 0;
+    for(i=1;i<nr_class;i++)
+        start[i] = start[i-1]+count[i-1];
+    for(i=0;i<l;i++)
+    {
+        perm[start[data_label[i]]] = i;
+        ++start[data_label[i]];
+    }
+    start[0] = 0;
+    for(i=1;i<nr_class;i++)
+        start[i] = start[i-1]+count[i-1];
+
+    *nr_class_ret = nr_class;
+    *label_ret = label;
+    *start_ret = start;
+    *count_ret = count;
+    free(data_label);
+}
+
+//
+// Interface functions
+//
+svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
+{
+    svm_model *model = Malloc(svm_model,1);
+    model->param = *param;
+    model->free_sv = 0;    // XXX
+
+    if(param->svm_type == ONE_CLASS ||
+       param->svm_type == EPSILON_SVR ||
+       param->svm_type == NU_SVR)
+    {
+        // regression or one-class-svm
+        model->nr_class = 2;
+        model->label = NULL;
+        model->nSV = NULL;
+        model->probA = NULL; model->probB = NULL;
+        model->sv_coef = Malloc(double *,1);
+
+        if(param->probability && 
+           (param->svm_type == EPSILON_SVR ||
+            param->svm_type == NU_SVR))
+        {
+            model->probA = Malloc(double,1);
+            model->probA[0] = svm_svr_probability(prob,param);
+        }
+
+        decision_function f = svm_train_one(prob,param,0,0);
+        model->rho = Malloc(double,1);
+        model->rho[0] = f.rho;
+
+        int nSV = 0;
+        int i;
+        for(i=0;i<prob->l;i++)
+            if(fabs(f.alpha[i]) > 0) ++nSV;
+        model->l = nSV;
+        model->SV = Malloc(svm_node *,nSV);
+        model->sv_coef[0] = Malloc(double,nSV);
+        int j = 0;
+        for(i=0;i<prob->l;i++)
+            if(fabs(f.alpha[i]) > 0)
+            {
+                model->SV[j] = prob->x[i];
+                model->sv_coef[0][j] = f.alpha[i];
+                ++j;
+            }        
+
+        free(f.alpha);
+    }
+    else
+    {
+        // classification
+        int l = prob->l;
+        int nr_class;
+        int *label = NULL;
+        int *start = NULL;
+        int *count = NULL;
+        int *perm = Malloc(int,l);
+
+        // group training data of the same class
+        svm_group_classes(prob,&nr_class,&label,&start,&count,perm);        
+        svm_node **x = Malloc(svm_node *,l);
+        int i;
+        for(i=0;i<l;i++)
+            x[i] = prob->x[perm[i]];
+
+        // calculate weighted C
+
+        double *weighted_C = Malloc(double, nr_class);
+        for(i=0;i<nr_class;i++)
+            weighted_C[i] = param->C;
+        for(i=0;i<param->nr_weight;i++)
+        {    
+            int j;
+            for(j=0;j<nr_class;j++)
+                if(param->weight_label[i] == label[j])
+                    break;
+            if(j == nr_class)
+                fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]);
+            else
+                weighted_C[j] *= param->weight[i];
+        }
+
+        // train k*(k-1)/2 models
+        
+        bool *nonzero = Malloc(bool,l);
+        for(i=0;i<l;i++)
+            nonzero[i] = false;
+        decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
+
+        double *probA=NULL,*probB=NULL;
+        if (param->probability)
+        {
+            probA=Malloc(double,nr_class*(nr_class-1)/2);
+            probB=Malloc(double,nr_class*(nr_class-1)/2);
+        }
+
+        int p = 0;
+        for(i=0;i<nr_class;i++)
+            for(int j=i+1;j<nr_class;j++)
+            {
+                svm_problem sub_prob;
+                int si = start[i], sj = start[j];
+                int ci = count[i], cj = count[j];
+                sub_prob.l = ci+cj;
+                sub_prob.x = Malloc(svm_node *,sub_prob.l);
+                sub_prob.y = Malloc(double,sub_prob.l);
+                int k;
+                for(k=0;k<ci;k++)
+                {
+                    sub_prob.x[k] = x[si+k];
+                    sub_prob.y[k] = +1;
+                }
+                for(k=0;k<cj;k++)
+                {
+                    sub_prob.x[ci+k] = x[sj+k];
+                    sub_prob.y[ci+k] = -1;
+                }
+
+                if(param->probability)
+                    svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
+
+                f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
+                for(k=0;k<ci;k++)
+                    if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
+                        nonzero[si+k] = true;
+                for(k=0;k<cj;k++)
+                    if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
+                        nonzero[sj+k] = true;
+                free(sub_prob.x);
+                free(sub_prob.y);
+                ++p;
+            }
+
+        // build output
+
+        model->nr_class = nr_class;
+        
+        model->label = Malloc(int,nr_class);
+        for(i=0;i<nr_class;i++)
+            model->label[i] = label[i];
+        
+        model->rho = Malloc(double,nr_class*(nr_class-1)/2);
+        for(i=0;i<nr_class*(nr_class-1)/2;i++)
+            model->rho[i] = f[i].rho;
+
+        if(param->probability)
+        {
+            model->probA = Malloc(double,nr_class*(nr_class-1)/2);
+            model->probB = Malloc(double,nr_class*(nr_class-1)/2);
+            for(i=0;i<nr_class*(nr_class-1)/2;i++)
+            {
+                model->probA[i] = probA[i];
+                model->probB[i] = probB[i];
+            }
+        }
+        else
+        {
+            model->probA=NULL;
+            model->probB=NULL;
+        }
+
+        int total_sv = 0;
+        int *nz_count = Malloc(int,nr_class);
+        model->nSV = Malloc(int,nr_class);
+        for(i=0;i<nr_class;i++)
+        {
+            int nSV = 0;
+            for(int j=0;j<count[i];j++)
+                if(nonzero[start[i]+j])
+                {    
+                    ++nSV;
+                    ++total_sv;
+                }
+            model->nSV[i] = nSV;
+            nz_count[i] = nSV;
+        }
+        
+        info("Total nSV = %d\n",total_sv);
+
+        model->l = total_sv;
+        model->SV = Malloc(svm_node *,total_sv);
+        p = 0;
+        for(i=0;i<l;i++)
+            if(nonzero[i]) model->SV[p++] = x[i];
+
+        int *nz_start = Malloc(int,nr_class);
+        nz_start[0] = 0;
+        for(i=1;i<nr_class;i++)
+            nz_start[i] = nz_start[i-1]+nz_count[i-1];
+
+        model->sv_coef = Malloc(double *,nr_class-1);
+        for(i=0;i<nr_class-1;i++)
+            model->sv_coef[i] = Malloc(double,total_sv);
+
+        p = 0;
+        for(i=0;i<nr_class;i++)
+            for(int j=i+1;j<nr_class;j++)
+            {
+                // classifier (i,j): coefficients with
+                // i are in sv_coef[j-1][nz_start[i]...],
+                // j are in sv_coef[i][nz_start[j]...]
+
+                int si = start[i];
+                int sj = start[j];
+                int ci = count[i];
+                int cj = count[j];
+                
+                int q = nz_start[i];
+                int k;
+                for(k=0;k<ci;k++)
+                    if(nonzero[si+k])
+                        model->sv_coef[j-1][q++] = f[p].alpha[k];
+                q = nz_start[j];
+                for(k=0;k<cj;k++)
+                    if(nonzero[sj+k])
+                        model->sv_coef[i][q++] = f[p].alpha[ci+k];
+                ++p;
+            }
+        
+        free(label);
+        free(probA);
+        free(probB);
+        free(count);
+        free(perm);
+        free(start);
+        free(x);
+        free(weighted_C);
+        free(nonzero);
+        for(i=0;i<nr_class*(nr_class-1)/2;i++)
+            free(f[i].alpha);
+        free(f);
+        free(nz_count);
+        free(nz_start);
+    }
+    return model;
+}
+
+// Stratified cross validation
+void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
+{
+    int i;
+    int *fold_start = Malloc(int,nr_fold+1);
+    int l = prob->l;
+    int *perm = Malloc(int,l);
+    int nr_class;
+
+    // stratified cv may not give leave-one-out rate
+    // Each class to l folds -> some folds may have zero elements
+    if((param->svm_type == C_SVC ||
+        param->svm_type == NU_SVC) && nr_fold < l)
+    {
+        int *start = NULL;
+        int *label = NULL;
+        int *count = NULL;
+        svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+
+        // random shuffle and then data grouped by fold using the array perm
+        int *fold_count = Malloc(int,nr_fold);
+        int c;
+        int *index = Malloc(int,l);
+        for(i=0;i<l;i++)
+            index[i]=perm[i];
+        for (c=0; c<nr_class; c++) 
+            for(i=0;i<count[c];i++)
+            {
+                int j = i+rand()%(count[c]-i);
+                swap(index[start[c]+j],index[start[c]+i]);
+            }
+        for(i=0;i<nr_fold;i++)
+        {
+            fold_count[i] = 0;
+            for (c=0; c<nr_class;c++)
+                fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
+        }
+        fold_start[0]=0;
+        for (i=1;i<=nr_fold;i++)
+            fold_start[i] = fold_start[i-1]+fold_count[i-1];
+        for (c=0; c<nr_class;c++)
+            for(i=0;i<nr_fold;i++)
+            {
+                int begin = start[c]+i*count[c]/nr_fold;
+                int end = start[c]+(i+1)*count[c]/nr_fold;
+                for(int j=begin;j<end;j++)
+                {
+                    perm[fold_start[i]] = index[j];
+                    fold_start[i]++;
+                }
+            }
+        fold_start[0]=0;
+        for (i=1;i<=nr_fold;i++)
+            fold_start[i] = fold_start[i-1]+fold_count[i-1];
+        free(start);    
+        free(label);
+        free(count);    
+        free(index);
+        free(fold_count);
+    }
+    else
+    {
+        for(i=0;i<l;i++) perm[i]=i;
+        for(i=0;i<l;i++)
+        {
+            int j = i+rand()%(l-i);
+            swap(perm[i],perm[j]);
+        }
+        for(i=0;i<=nr_fold;i++)
+            fold_start[i]=i*l/nr_fold;
+    }
+
+    for(i=0;i<nr_fold;i++)
+    {
+        int begin = fold_start[i];
+        int end = fold_start[i+1];
+        int j,k;
+        struct svm_problem subprob;
+
+        subprob.l = l-(end-begin);
+        subprob.x = Malloc(struct svm_node*,subprob.l);
+        subprob.y = Malloc(double,subprob.l);
+            
+        k=0;
+        for(j=0;j<begin;j++)
+        {
+            subprob.x[k] = prob->x[perm[j]];
+            subprob.y[k] = prob->y[perm[j]];
+            ++k;
+        }
+        for(j=end;j<l;j++)
+        {
+            subprob.x[k] = prob->x[perm[j]];
+            subprob.y[k] = prob->y[perm[j]];
+            ++k;
+        }
+        struct svm_model *submodel = svm_train(&subprob,param);
+        if(param->probability && 
+           (param->svm_type == C_SVC || param->svm_type == NU_SVC))
+        {
+            double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
+            for(j=begin;j<end;j++)
+                target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
+            free(prob_estimates);            
+        }
+        else
+            for(j=begin;j<end;j++)
+                target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
+        svm_free_and_destroy_model(&submodel);
+        free(subprob.x);
+        free(subprob.y);
+    }        
+    free(fold_start);
+    free(perm);    
+}
+
+
+int svm_get_svm_type(const svm_model *model)
+{
+    return model->param.svm_type;
+}
+
+int svm_get_nr_class(const svm_model *model)
+{
+    return model->nr_class;
+}
+
+void svm_get_labels(const svm_model *model, int* label)
+{
+    if (model->label != NULL)
+        for(int i=0;i<model->nr_class;i++)
+            label[i] = model->label[i];
+}
+
+double svm_get_svr_probability(const svm_model *model)
+{
+    if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+        model->probA!=NULL)
+        return model->probA[0];
+    else
+    {
+        fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
+        return 0;
+    }
+}
+
+double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
+{
+    if(model->param.svm_type == ONE_CLASS ||
+       model->param.svm_type == EPSILON_SVR ||
+       model->param.svm_type == NU_SVR)
+    {
+        double *sv_coef = model->sv_coef[0];
+        double sum = 0;
+        for(int i=0;i<model->l;i++)
+            sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
+        sum -= model->rho[0];
+        *dec_values = sum;
+
+        if(model->param.svm_type == ONE_CLASS)
+            return (sum>0)?1:-1;
+        else
+            return sum;
+    }
+    else
+    {
+        int i;
+        int nr_class = model->nr_class;
+        int l = model->l;
+        
+        double *kvalue = Malloc(double,l);
+        for(i=0;i<l;i++)
+            kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
+
+        int *start = Malloc(int,nr_class);
+        start[0] = 0;
+        for(i=1;i<nr_class;i++)
+            start[i] = start[i-1]+model->nSV[i-1];
+
+        int *vote = Malloc(int,nr_class);
+        for(i=0;i<nr_class;i++)
+            vote[i] = 0;
+
+        int p=0;
+        for(i=0;i<nr_class;i++)
+            for(int j=i+1;j<nr_class;j++)
+            {
+                double sum = 0;
+                int si = start[i];
+                int sj = start[j];
+                int ci = model->nSV[i];
+                int cj = model->nSV[j];
+                
+                int k;
+                double *coef1 = model->sv_coef[j-1];
+                double *coef2 = model->sv_coef[i];
+                for(k=0;k<ci;k++)
+                    sum += coef1[si+k] * kvalue[si+k];
+                for(k=0;k<cj;k++)
+                    sum += coef2[sj+k] * kvalue[sj+k];
+                sum -= model->rho[p];
+                dec_values[p] = sum;
+
+                if(dec_values[p] > 0)
+                    ++vote[i];
+                else
+                    ++vote[j];
+                p++;
+            }
+
+        int vote_max_idx = 0;
+        for(i=1;i<nr_class;i++)
+            if(vote[i] > vote[vote_max_idx])
+                vote_max_idx = i;
+
+        free(kvalue);
+        free(start);
+        free(vote);
+        return model->label[vote_max_idx];
+    }
+}
+
+double svm_predict(const svm_model *model, const svm_node *x)
+{
+    int nr_class = model->nr_class;
+    double *dec_values;
+    if(model->param.svm_type == ONE_CLASS ||
+       model->param.svm_type == EPSILON_SVR ||
+       model->param.svm_type == NU_SVR)
+        dec_values = Malloc(double, 1);
+    else 
+        dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+    double pred_result = svm_predict_values(model, x, dec_values);
+    free(dec_values);
+    return pred_result;
+}
+
+double svm_predict_probability(
+    const svm_model *model, const svm_node *x, double *prob_estimates)
+{
+    if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+        model->probA!=NULL && model->probB!=NULL)
+    {
+        int i;
+        int nr_class = model->nr_class;
+        double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+        svm_predict_values(model, x, dec_values);
+
+        double min_prob=1e-7;
+        double **pairwise_prob=Malloc(double *,nr_class);
+        for(i=0;i<nr_class;i++)
+            pairwise_prob[i]=Malloc(double,nr_class);
+        int k=0;
+        for(i=0;i<nr_class;i++)
+            for(int j=i+1;j<nr_class;j++)
+            {
+                pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
+                pairwise_prob[j][i]=1-pairwise_prob[i][j];
+                k++;
+            }
+        multiclass_probability(nr_class,pairwise_prob,prob_estimates);
+
+        int prob_max_idx = 0;
+        for(i=1;i<nr_class;i++)
+            if(prob_estimates[i] > prob_estimates[prob_max_idx])
+                prob_max_idx = i;
+        for(i=0;i<nr_class;i++)
+            free(pairwise_prob[i]);
+        free(dec_values);
+        free(pairwise_prob);         
+        return model->label[prob_max_idx];
+    }
+    else 
+        return svm_predict(model, x);
+}
+
+static const char *svm_type_table[] =
+{
+    "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
+};
+
+static const char *kernel_type_table[]=
+{
+    "linear","polynomial","rbf","sigmoid","precomputed",NULL
+};
+
+int svm_save_model(const char *model_file_name, const svm_model *model)
+{
+    FILE *fp = fopen(model_file_name,"w");
+    if(fp==NULL) return -1;
+
+    const svm_parameter& param = model->param;
+
+    fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
+    fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
+
+    if(param.kernel_type == POLY)
+        fprintf(fp,"degree %d\n", param.degree);
+
+    if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
+        fprintf(fp,"gamma %g\n", param.gamma);
+
+    if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
+        fprintf(fp,"coef0 %g\n", param.coef0);
+
+    int nr_class = model->nr_class;
+    int l = model->l;
+    fprintf(fp, "nr_class %d\n", nr_class);
+    fprintf(fp, "total_sv %d\n",l);
+    
+    {
+        fprintf(fp, "rho");
+        for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+            fprintf(fp," %g",model->rho[i]);
+        fprintf(fp, "\n");
+    }
+    
+    if(model->label)
+    {
+        fprintf(fp, "label");
+        for(int i=0;i<nr_class;i++)
+            fprintf(fp," %d",model->label[i]);
+        fprintf(fp, "\n");
+    }
+
+    if(model->probA) // regression has probA only
+    {
+        fprintf(fp, "probA");
+        for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+            fprintf(fp," %g",model->probA[i]);
+        fprintf(fp, "\n");
+    }
+    if(model->probB)
+    {
+        fprintf(fp, "probB");
+        for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+            fprintf(fp," %g",model->probB[i]);
+        fprintf(fp, "\n");
+    }
+
+    if(model->nSV)
+    {
+        fprintf(fp, "nr_sv");
+        for(int i=0;i<nr_class;i++)
+            fprintf(fp," %d",model->nSV[i]);
+        fprintf(fp, "\n");
+    }
+
+    fprintf(fp, "SV\n");
+    const double * const *sv_coef = model->sv_coef;
+    const svm_node * const *SV = model->SV;
+
+    for(int i=0;i<l;i++)
+    {
+        for(int j=0;j<nr_class-1;j++)
+            fprintf(fp, "%.16g ",sv_coef[j][i]);
+
+        const svm_node *p = SV[i];
+
+        if(param.kernel_type == PRECOMPUTED)
+            fprintf(fp,"0:%d ",(int)(p->value));
+        else
+            while(p->index != -1)
+            {
+                fprintf(fp,"%d:%.8g ",p->index,p->value);
+                p++;
+            }
+        fprintf(fp, "\n");
+    }
+    if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
+    else return 0;
+}
+
+static char *line = NULL;
+static int max_line_len;
+
+static char* readline(FILE *input)
+{
+    int len;
+
+    if(fgets(line,max_line_len,input) == NULL)
+        return NULL;
+
+    while(strrchr(line,'\n') == NULL)
+    {
+        max_line_len *= 2;
+        line = (char *) realloc(line,max_line_len);
+        len = (int) strlen(line);
+        if(fgets(line+len,max_line_len-len,input) == NULL)
+            break;
+    }
+    return line;
+}
+
+svm_model *svm_load_model(const char *model_file_name)
+{
+    FILE *fp = fopen(model_file_name,"rb");
+    printf("load\r\n");
+    if(fp==NULL) return NULL;
+    printf("loaded\r\n");
+    // read parameters
+
+    svm_model *model = Malloc(svm_model,1);
+    svm_parameter& param = model->param;
+    model->rho = NULL;
+    model->probA = NULL;
+    model->probB = NULL;
+    model->label = NULL;
+    model->nSV = NULL;
+
+    char cmd[81];
+    while(1)
+    {
+        fscanf(fp,"%80s",cmd);
+
+        if(strcmp(cmd,"svm_type")==0)
+        {
+            fscanf(fp,"%80s",cmd);
+            int i;
+            for(i=0;svm_type_table[i];i++)
+            {
+                if(strcmp(svm_type_table[i],cmd)==0)
+                {
+                    param.svm_type=i;
+                    break;
+                }
+            }
+            if(svm_type_table[i] == NULL)
+            {
+                fprintf(stderr,"unknown svm type.\n");
+                free(model->rho);
+                free(model->label);
+                free(model->nSV);
+                free(model);
+                return NULL;
+            }
+        }
+        else if(strcmp(cmd,"kernel_type")==0)
+        {        
+            fscanf(fp,"%80s",cmd);
+            int i;
+            for(i=0;kernel_type_table[i];i++)
+            {
+                if(strcmp(kernel_type_table[i],cmd)==0)
+                {
+                    param.kernel_type=i;
+                    break;
+                }
+            }
+            if(kernel_type_table[i] == NULL)
+            {
+                fprintf(stderr,"unknown kernel function.\n");
+                free(model->rho);
+                free(model->label);
+                free(model->nSV);
+                free(model);
+                return NULL;
+            }
+        }
+        else if(strcmp(cmd,"degree")==0)
+            fscanf(fp,"%d",&param.degree);
+        else if(strcmp(cmd,"gamma")==0)
+            fscanf(fp,"%lf",&param.gamma);
+        else if(strcmp(cmd,"coef0")==0)
+            fscanf(fp,"%lf",&param.coef0);
+        else if(strcmp(cmd,"nr_class")==0)
+            fscanf(fp,"%d",&model->nr_class);
+        else if(strcmp(cmd,"total_sv")==0)
+            fscanf(fp,"%d",&model->l);
+        else if(strcmp(cmd,"rho")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->rho = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->rho[i]);
+        }
+        else if(strcmp(cmd,"label")==0)
+        {
+            int n = model->nr_class;
+            model->label = Malloc(int,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%d",&model->label[i]);
+        }
+        else if(strcmp(cmd,"probA")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->probA = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->probA[i]);
+        }
+        else if(strcmp(cmd,"probB")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->probB = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->probB[i]);
+        }
+        else if(strcmp(cmd,"nr_sv")==0)
+        {
+            int n = model->nr_class;
+            model->nSV = Malloc(int,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%d",&model->nSV[i]);
+        }
+        else if(strcmp(cmd,"SV")==0)
+        {
+            while(1)
+            {
+                int c = getc(fp);
+                if(c==EOF || c=='\n') break;    
+            }
+            break;
+        }
+        else
+        {
+            fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
+            free(model->rho);
+            free(model->label);
+            free(model->nSV);
+            free(model);
+            return NULL;
+        }
+    }
+
+    // read sv_coef and SV
+
+    int elements = 0;
+    long pos = ftell(fp);
+
+    max_line_len = 1024;
+    line = Malloc(char,max_line_len);
+    char *p,*endptr,*idx,*val;
+
+    while(readline(fp)!=NULL)
+    {
+        p = strtok(line,":");
+        while(1)
+        {
+            p = strtok(NULL,":");
+            if(p == NULL)
+                break;
+            ++elements;
+        }
+    }
+    elements += model->l;
+
+    fseek(fp,pos,SEEK_SET);
+
+    int m = model->nr_class - 1;
+    int l = model->l;
+    model->sv_coef = Malloc(double *,m);
+    int i;
+    for(i=0;i<m;i++)
+        model->sv_coef[i] = Malloc(double,l);
+    model->SV = Malloc(svm_node*,l);
+    svm_node *x_space = NULL;
+    if(l>0) x_space = Malloc(svm_node,elements);
+
+    int j=0;
+    for(i=0;i<l;i++)
+    {
+        readline(fp);
+        model->SV[i] = &x_space[j];
+
+        p = strtok(line, " \t");
+        model->sv_coef[0][i] = strtod(p,&endptr);
+        for(int k=1;k<m;k++)
+        {
+            p = strtok(NULL, " \t");
+            model->sv_coef[k][i] = strtod(p,&endptr);
+        }
+
+        while(1)
+        {
+            idx = strtok(NULL, ":");
+            val = strtok(NULL, " \t");
+
+            if(val == NULL)
+                break;
+            x_space[j].index = (int) strtol(idx,&endptr,10);
+            x_space[j].value = strtod(val,&endptr);
+
+            ++j;
+        }
+        x_space[j++].index = -1;
+    }
+    free(line);
+
+    if (ferror(fp) != 0 || fclose(fp) != 0)
+        return NULL;
+
+    model->free_sv = 1;    // XXX
+    return model;
+}
+
+void svm_free_model_content(svm_model* model_ptr)
+{
+    if(model_ptr->free_sv && model_ptr->l > 0)
+        free((void *)(model_ptr->SV[0]));
+    for(int i=0;i<model_ptr->nr_class-1;i++)
+        free(model_ptr->sv_coef[i]);
+    free(model_ptr->SV);
+    free(model_ptr->sv_coef);
+    free(model_ptr->rho);
+    free(model_ptr->label);
+    free(model_ptr->probA);
+    free(model_ptr->probB);
+    free(model_ptr->nSV);
+}
+
+void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
+{
+    svm_model* model_ptr = *model_ptr_ptr;
+    if(model_ptr != NULL)
+    {
+        svm_free_model_content(model_ptr);
+        free(model_ptr);
+    }
+}
+
+void svm_destroy_model(svm_model* model_ptr)
+{
+    fprintf(stderr,"warning: svm_destroy_model is deprecated and should not be used. Please use svm_free_and_destroy_model(svm_model **model_ptr_ptr)\n");
+    svm_free_and_destroy_model(&model_ptr);
+}
+
+void svm_destroy_param(svm_parameter* param)
+{
+    free(param->weight_label);
+    free(param->weight);
+}
+
+const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
+{
+    // svm_type
+
+    int svm_type = param->svm_type;
+    if(svm_type != C_SVC &&
+       svm_type != NU_SVC &&
+       svm_type != ONE_CLASS &&
+       svm_type != EPSILON_SVR &&
+       svm_type != NU_SVR)
+        return "unknown svm type";
+    
+    // kernel_type, degree
+    
+    int kernel_type = param->kernel_type;
+    if(kernel_type != LINEAR &&
+       kernel_type != POLY &&
+       kernel_type != RBF &&
+       kernel_type != SIGMOID &&
+       kernel_type != PRECOMPUTED)
+        return "unknown kernel type";
+
+    if(param->gamma < 0)
+        return "gamma < 0";
+
+    if(param->degree < 0)
+        return "degree of polynomial kernel < 0";
+
+    // cache_size,eps,C,nu,p,shrinking
+
+    if(param->cache_size <= 0)
+        return "cache_size <= 0";
+
+    if(param->eps <= 0)
+        return "eps <= 0";
+
+    if(svm_type == C_SVC ||
+       svm_type == EPSILON_SVR ||
+       svm_type == NU_SVR)
+        if(param->C <= 0)
+            return "C <= 0";
+
+    if(svm_type == NU_SVC ||
+       svm_type == ONE_CLASS ||
+       svm_type == NU_SVR)
+        if(param->nu <= 0 || param->nu > 1)
+            return "nu <= 0 or nu > 1";
+
+    if(svm_type == EPSILON_SVR)
+        if(param->p < 0)
+            return "p < 0";
+
+    if(param->shrinking != 0 &&
+       param->shrinking != 1)
+        return "shrinking != 0 and shrinking != 1";
+
+    if(param->probability != 0 &&
+       param->probability != 1)
+        return "probability != 0 and probability != 1";
+
+    if(param->probability == 1 &&
+       svm_type == ONE_CLASS)
+        return "one-class SVM probability output not supported yet";
+
+
+    // check whether nu-svc is feasible
+    
+    if(svm_type == NU_SVC)
+    {
+        int l = prob->l;
+        int max_nr_class = 16;
+        int nr_class = 0;
+        int *label = Malloc(int,max_nr_class);
+        int *count = Malloc(int,max_nr_class);
+
+        int i;
+        for(i=0;i<l;i++)
+        {
+            int this_label = (int)prob->y[i];
+            int j;
+            for(j=0;j<nr_class;j++)
+                if(this_label == label[j])
+                {
+                    ++count[j];
+                    break;
+                }
+            if(j == nr_class)
+            {
+                if(nr_class == max_nr_class)
+                {
+                    max_nr_class *= 2;
+                    label = (int *)realloc(label,max_nr_class*sizeof(int));
+                    count = (int *)realloc(count,max_nr_class*sizeof(int));
+                }
+                label[nr_class] = this_label;
+                count[nr_class] = 1;
+                ++nr_class;
+            }
+        }
+    
+        for(i=0;i<nr_class;i++)
+        {
+            int n1 = count[i];
+            for(int j=i+1;j<nr_class;j++)
+            {
+                int n2 = count[j];
+                if(param->nu*(n1+n2)/2 > min(n1,n2))
+                {
+                    free(label);
+                    free(count);
+                    return "specified nu is infeasible";
+                }
+            }
+        }
+        free(label);
+        free(count);
+    }
+
+    return NULL;
+}
+
+int svm_check_probability_model(const svm_model *model)
+{
+    return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+        model->probA!=NULL && model->probB!=NULL) ||
+        ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+         model->probA!=NULL);
+}
+
+void svm_set_print_string_function(void (*print_func)(const char *))
+{
+    if(print_func == NULL)
+        svm_print_string = &print_string_stdout;
+    else
+        svm_print_string = print_func;
+}
+
+// this function is copied by shimatani
+// for fopen on iPhone
+svm_model *svm_load_model_fp(FILE *fp)
+{
+    if(fp==NULL) return NULL;
+    
+    // read parameters
+    
+    svm_model *model = Malloc(svm_model,1);
+    svm_parameter& param = model->param;
+    model->rho = NULL;
+    model->probA = NULL;
+    model->probB = NULL;
+    model->label = NULL;
+    model->nSV = NULL;
+    
+    char cmd[81];
+    while(1)
+    {
+        fscanf(fp,"%80s",cmd);
+        
+        if(strcmp(cmd,"svm_type")==0)
+        {
+            fscanf(fp,"%80s",cmd);
+            int i;
+            for(i=0;svm_type_table[i];i++)
+            {
+                if(strcmp(svm_type_table[i],cmd)==0)
+                {
+                    param.svm_type=i;
+                    break;
+                }
+            }
+            if(svm_type_table[i] == NULL)
+            {
+                fprintf(stderr,"unknown svm type.\n");
+                free(model->rho);
+                free(model->label);
+                free(model->nSV);
+                free(model);
+                return NULL;
+            }
+        }
+        else if(strcmp(cmd,"kernel_type")==0)
+        {        
+            fscanf(fp,"%80s",cmd);
+            int i;
+            for(i=0;kernel_type_table[i];i++)
+            {
+                if(strcmp(kernel_type_table[i],cmd)==0)
+                {
+                    param.kernel_type=i;
+                    break;
+                }
+            }
+            if(kernel_type_table[i] == NULL)
+            {
+                fprintf(stderr,"unknown kernel function.\n");
+                free(model->rho);
+                free(model->label);
+                free(model->nSV);
+                free(model);
+                return NULL;
+            }
+        }
+        else if(strcmp(cmd,"degree")==0)
+            fscanf(fp,"%d",&param.degree);
+        else if(strcmp(cmd,"gamma")==0)
+            fscanf(fp,"%lf",&param.gamma);
+        else if(strcmp(cmd,"coef0")==0)
+            fscanf(fp,"%lf",&param.coef0);
+        else if(strcmp(cmd,"nr_class")==0)
+            fscanf(fp,"%d",&model->nr_class);
+        else if(strcmp(cmd,"total_sv")==0)
+            fscanf(fp,"%d",&model->l);
+        else if(strcmp(cmd,"rho")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->rho = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->rho[i]);
+        }
+        else if(strcmp(cmd,"label")==0)
+        {
+            int n = model->nr_class;
+            model->label = Malloc(int,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%d",&model->label[i]);
+        }
+        else if(strcmp(cmd,"probA")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->probA = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->probA[i]);
+        }
+        else if(strcmp(cmd,"probB")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->probB = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->probB[i]);
+        }
+        else if(strcmp(cmd,"nr_sv")==0)
+        {
+            int n = model->nr_class;
+            model->nSV = Malloc(int,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%d",&model->nSV[i]);
+        }
+        else if(strcmp(cmd,"SV")==0)
+        {
+            while(1)
+            {
+                int c = getc(fp);
+                if(c==EOF || c=='\n') break;    
+            }
+            break;
+        }
+        else
+        {
+            fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
+            free(model->rho);
+            free(model->label);
+            free(model->nSV);
+            free(model);
+            return NULL;
+        }
+    }
+    
+    // read sv_coef and SV
+    
+    int elements = 0;
+    long pos = ftell(fp);
+    
+    max_line_len = 1024;
+    line = Malloc(char,max_line_len);
+    char *p,*endptr,*idx,*val;
+    
+    while(readline(fp)!=NULL)
+    {
+        p = strtok(line,":");
+        while(1)
+        {
+            p = strtok(NULL,":");
+            if(p == NULL)
+                break;
+            ++elements;
+        }
+    }
+    elements += model->l;
+    
+    fseek(fp,pos,SEEK_SET);
+    
+    int m = model->nr_class - 1;
+    int l = model->l;
+    model->sv_coef = Malloc(double *,m);
+    int i;
+    for(i=0;i<m;i++)
+        model->sv_coef[i] = Malloc(double,l);
+    model->SV = Malloc(svm_node*,l);
+    svm_node *x_space = NULL;
+    if(l>0) x_space = Malloc(svm_node,elements);
+    
+    int j=0;
+    for(i=0;i<l;i++)
+    {
+        readline(fp);
+        model->SV[i] = &x_space[j];
+        
+        p = strtok(line, " \t");
+        model->sv_coef[0][i] = strtod(p,&endptr);
+        for(int k=1;k<m;k++)
+        {
+            p = strtok(NULL, " \t");
+            model->sv_coef[k][i] = strtod(p,&endptr);
+        }
+        
+        while(1)
+        {
+            idx = strtok(NULL, ":");
+            val = strtok(NULL, " \t");
+            
+            if(val == NULL)
+                break;
+            x_space[j].index = (int) strtol(idx,&endptr,10);
+            x_space[j].value = strtod(val,&endptr);
+            
+            ++j;
+        }
+        x_space[j++].index = -1;
+    }
+    free(line);
+    
+    if (ferror(fp) != 0 || fclose(fp) != 0)
+        return NULL;
+    
+    model->free_sv = 1;    // XXX
+    return model;
+}