action recognizer with theremin

Dependencies:   mbed

Files at this revision

API Documentation at this revision

Comitter:
peccu
Date:
Wed Sep 14 13:42:46 2011 +0000
Commit message:

Changed in this revision

Output.cpp Show annotated file Show diff for this revision Revisions of this file
Output.h Show annotated file Show diff for this revision Revisions of this file
Svm.cpp Show annotated file Show diff for this revision Revisions of this file
lib.cpp Show annotated file Show diff for this revision Revisions of this file
lib.h Show annotated file Show diff for this revision Revisions of this file
main.cpp Show annotated file Show diff for this revision Revisions of this file
main.h Show annotated file Show diff for this revision Revisions of this file
mbed.bld Show annotated file Show diff for this revision Revisions of this file
predict.c Show annotated file Show diff for this revision Revisions of this file
predict.h Show annotated file Show diff for this revision Revisions of this file
svm-scale.c Show annotated file Show diff for this revision Revisions of this file
svm-scale.h Show annotated file Show diff for this revision Revisions of this file
svm/svm.cpp Show annotated file Show diff for this revision Revisions of this file
svm/svm.h Show annotated file Show diff for this revision Revisions of this file
diff -r 000000000000 -r b9ac53c439ed Output.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Output.cpp	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,174 @@
+/*
+ *  Output.cpp
+ *  Theremi
+ *
+ *  Created by peccu on 11/09/12.
+ *  Copyright 2011 __MyCompanyName__. All rights reserved.
+ *
+ */
+#include "stdlib.h"
+#include "main.h"
+#include "Output.h"
+#include "lib.h"
+#include "predict.h"
+#include "svm-scale.h"
+LocalFileSystem local("local");
+Serial pc2(USBTX, USBRX); // tx, rx
+
+void showDistance(int count){
+    if(count>300){
+        return;
+    }
+    printf("%4d",count);
+    //std::cout << count;
+    for(int i=0;i<(count-100);i++){
+        printf(" ");
+        //std::cout << " ";
+    }
+    printf("*\r\n");
+    //std::cout << "*\r\n";
+    return;
+}
+
+void showCounts(int *count,int size){
+    for(int i=0;i<size;i++){
+        printf("%d: %d\r\n",i, *(count+i));
+        //std::cout << i << ": " << *(count+i) << "\r\n";
+    }
+}
+
+// public method
+Output::Output(void){
+    counts=(int*)malloc(sizeof(int)*DIVISION);
+    data=(int*)malloc((sizeof(int)*READSIZE*DIVISION)/THRESHOLD);
+    for(int i=0;i<DIVISION;i++){
+      *(counts+i)=0;
+    }
+    countNumber = 0;
+    loopCounter = 0;
+    prev = 1;
+    init();
+    ave = 0.0;
+    var = 0.0;
+}
+
+void Output::init(void){
+  windowSize=0;
+  newCount=0;
+}
+
+void Output::reset(void){
+    for(int i=0;i<DIVISION;i++){
+        *(counts+i)=0;
+    }
+    countNumber = 0;
+    loopCounter = 0;
+    prev = 1;
+    init();
+    ave = 0.0;
+    var = 0.0;
+}
+
+void Output::fopen(void){
+#ifdef SAVE
+/*    if ( NULL == (fp = fopen( "/local/test.csv", "w" )) ){
+        error( "" );
+    }
+    if ( NULL == (fft = fopen( "/local/fft.csv", "w" )) ){
+        error( "" );
+    }
+*/
+    fp.open( "/local/test.csv" );
+    fft.open( "/local/fft.csv" );
+#endif
+}
+
+void Output::fclose(void){
+#ifdef SAVE
+    fp.close();
+    fft.close();
+#endif
+}
+
+bool Output::iterate(void){
+  windowSize++;
+#ifdef SAVE
+    // for ( int i = 0; i < READSIZE; i++ ) {
+    return loopCounter++<READSIZE;
+#else
+    return true;
+#endif
+}
+
+void Output::write(float plus, float minus){
+#ifdef SAVE
+/*
+  fprintf( fp, "%f\t%f\n", plus, minus );
+  fprintf( fft, "%d %d\n", sum(counts,DIVISION),countNumber );
+*/
+  fp << plus << "\t" << minus << "\n";
+  fft << sum(counts,DIVISION) << " " << countNumber << "\n";
+#else
+  showDistance(sum(counts,DIVISION));
+#endif
+    ave += sum(counts,DIVISION);
+    *(data+countNumber-DIVISION) = sum(counts,DIVISION);
+}
+
+void Output::count(float plus, float minus){
+    if(((plus-minus)*prev)<0){ // 0をまたいだ回数を数える
+        newCount++;
+        prev*=-1;
+    }
+    if (windowSize > THRESHOLD/DIVISION) {
+        // ウィンドウサイズ分データが集まったらcountsにプッシュする
+        countNumber++;// = pushed count
+        if(countNumber>DIVISION-1){
+            write(plus,minus);
+        }
+        counts = pushCount(counts,DIVISION,newCount);
+        init();
+    }
+}
+
+void Output::calcAveVar(void){
+  int dataSize = countNumber-DIVISION+1;
+  ave = average(data,dataSize)-(*data);
+  var = variance(data,ave+(*data),dataSize);
+}
+
+void Output::writeTest(void){
+/*    FILE *test;
+    if ( NULL == (test = fopen( "/local/test.txt", "w" )) ){
+        error( "" );
+    }
+*/
+    std::ofstream ofs( "/local/test.txt" );
+    
+    ofs << "+0 1:" << ave << " 2:" << var << "\n";
+    ofs.close();
+/*
+    fprintf(test,"+0 1:%f 2:%f\n",ave,var);
+    fclose(test);
+*/
+    pc2.printf("+0 1:%f 2:%f\n",ave,var);
+}
+
+void Output::scale(void){
+    main_scale();
+}
+void Output::predict(void){
+    main_();
+}
+
+// デストラクタ
+Output::~Output(){
+#ifdef SAVE
+/*
+    fclose(fp);
+    fclose(fft);
+*/
+fp.close();
+fft.close();
+#endif
+}
diff -r 000000000000 -r b9ac53c439ed Output.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Output.h	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,45 @@
+/*
+ *  Output.h
+ *  Theremi
+ *
+ *  Created by peccu on 11/09/12.
+ *  Copyright 2011 __MyCompanyName__. All rights reserved.
+ *
+ */
+
+#ifndef _INC_OUTPUT
+#define _INC_OUTPUT
+#include <fstream>
+
+class Output {
+private:
+#ifdef SAVE
+    /*
+    FILE *fp,*fft;
+    */
+    std::ofstream fp,fft;
+#endif
+    int windowSize, newCount, countNumber;
+    int *counts,*data;
+    int readSize;
+    int loopCounter;
+    int division;
+    int prev;
+    float ave,var;
+public:
+    Output(void);
+    void reset(void);
+    void init(void);
+    void fopen(void);
+    void fclose(void);
+    bool iterate(void);
+    void write(float plus, float minus);
+    void count(float plus, float minus);
+    void calcAveVar(void);
+    void writeTest(void);
+    void scale(void);
+    void predict(void);
+    ~Output();
+};
+
+#endif
diff -r 000000000000 -r b9ac53c439ed Svm.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Svm.cpp	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,14 @@
+class Svm{
+public:
+    // for SVM
+    struct svm_model *model;
+    struct svm_node *node;
+    
+    Svm(void){};
+    /*Coin(void):Music(2,200){};
+    void play(void){
+     s.p(&s.B4,8);
+     s.p(&s.E5,8.0/7);
+     s.s(8);
+    }*/
+};
diff -r 000000000000 -r b9ac53c439ed lib.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib.cpp	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,59 @@
+/*
+ *  lib.cpp
+ *  Theremi
+ *
+ *  Created by peccu on 11/09/12.
+ *  Copyright 2011 __MyCompanyName__. All rights reserved.
+ *
+ */
+
+#include "main.h"
+#include "lib.h"
+
+// 配列とかの演算用
+
+// for output
+// 配列もどきの操作
+int *pushCount(int *count,int size,int newcount){
+    for(int i=0;i<size-1;i++){
+        *(count+i)=*(count+i+1);
+    }
+    *(count+size-1)=newcount;
+    return count;
+}
+
+// 演算補助
+int sum(int *count, int size){
+    int ret=0;
+    for(int i=0;i<size;i++){
+        ret+=(*count++);
+    }
+    return ret;
+}
+
+float average(int *data, int size){
+    float ret=0.0;
+    ret = sum(data,size) / size;
+    return ret;
+}
+
+// 平均がわかってるときの分散
+float variance(int *data, float average, int size){
+    float ret=0.0;
+    for(int i=0;i<size-1;i++){
+        ret += (*(data+i)-average) * (*(data+i)-average);
+    }
+    ret /= size -1;
+    return ret;
+}
+
+// 平均の計算もする分散
+float variance(int *data, int size){
+    float ret=0.0;
+    float ave=average(data, size);
+    for(int i=0;i<size-1;i++){
+        ret += (*(data+i)-ave) * (*(data+i)-ave);
+    }
+    ret /= size -1;
+    return ret;
+}
diff -r 000000000000 -r b9ac53c439ed lib.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lib.h	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,19 @@
+/*
+ *  lib.h
+ *  Theremi
+ *
+ *  Created by peccu on 11/09/12.
+ *  Copyright 2011 __MyCompanyName__. All rights reserved.
+ *
+ */
+
+#ifndef _INC_LIB
+#define _INC_LIB
+
+int sum(int *count, int size);
+int *pushCount(int *count,int size,int newcount);
+float average(int *data, int size);
+float variance(int *data, float average, int size);
+float variance(int *data, int size);
+
+#endif
diff -r 000000000000 -r b9ac53c439ed main.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,101 @@
+    #include "main.h"
+    #include "lib.h"
+    #include "Output.h"
+    
+    AnalogIn myinput20(p20);        // speaker minus
+    AnalogIn myinput19(p19);        // speaker plus
+    DigitalInOut io(p5);
+    Serial pc(USBTX, USBRX); // tx, rx
+    
+    DigitalOut myled1(LED1);
+    DigitalOut myled2(LED2);
+    DigitalOut myled3(LED3);
+    DigitalOut myled4(LED4);
+    void lighton(void){
+        myled1 = 1;
+        myled2 = 1;
+        myled3 = 1;
+        myled4 = 1;
+    }
+    
+    void lightoff(void){
+        myled1 = 0;
+        myled2 = 0;
+        myled3 = 0;
+        myled4 = 0;
+    }
+    
+    int main (int argc, char * const argv[]) {
+      //std::cout << "Hello, World!\n";
+      io.mode( PullUp );
+      io.input();
+      io   = 0;
+    
+        // このへんでSVMのモデルを読み込む
+        //main_();
+    
+        Output *out;
+        out = new Output();
+    
+        float inplus,inminus;
+    
+        bool reset=false;
+        while(!reset){
+          // このループは認識を繰り返すループになると思う
+            pc.printf("Let's start!");
+            myled1 = 0;
+            wait(1);
+            lighton();
+    
+            out->reset();
+            out->fopen();
+    
+            pc.printf("start\r\n");
+            while(out->iterate()){
+              // このループは一回の認識に必要な分のセンサデータを集める
+              // まだOutputクラスに分離しきれてない
+                inplus=(float)myinput19;
+                inminus=(float)myinput20;
+    
+                // 0をまたいだ回数を数えてウィンドウサイズ分集まったらcountsにプッシュする
+                out->count(inplus, inminus);
+            }
+            pc.printf("end\r\n");
+            // ここで一回の認識に必要なセンサデータが集まっている
+    
+            // この辺で平均と分散を計算
+            // lib.cppに関数書いた気がする
+            out->calcAveVar();
+            //pc.printf("\r");
+    
+            // この辺で平均と分散を2次元のデータとしてSVMで識別する
+            out->writeTest();
+            pc.printf("\r");
+            out->scale();
+            pc.printf("-sc\r");
+            out->predict();
+            pc.printf("\r");
+    
+            // この辺でマリオの曲を読み込んで,コンテキストごとにメロディを切り替えて再生
+    
+            out->fclose();
+            lightoff();
+            wait(1);
+            // ここから,ループするかやめるか選ぶ入力待ち
+            char c = 'a';
+            while (1) {
+                pc.printf("restart to type r\r\nreset to c :\r\n");
+                c = pc.getc();
+                if (c=='r') {
+                    break;
+                } else if (c=='c') {
+                    reset=true;
+                    break;
+                }
+            }
+            // ここまで
+        }
+        pc.printf("reset!!\r\n");
+        io.output();
+        //mbed_reset();
+    }
diff -r 000000000000 -r b9ac53c439ed main.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.h	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,26 @@
+
+/*
+ *  main.h
+ *  Theremin
+ *
+ *  Created by peccu on 11/09/13.
+ *  Copyright 2011 __MyCompanyName__. All rights reserved.
+ *
+ */
+
+#include <iostream>
+#include "mbed.h"
+
+#ifndef _INC_MAIN
+#define _INC_MAIN
+
+#define EPSILON 0.001
+#define READSIZE 30000
+// 10000 = 7secs
+// 7150 = 5secs
+#define THRESHOLD 1000
+#define DIVISION 2
+
+#define SAVE
+
+#endif
\ No newline at end of file
diff -r 000000000000 -r b9ac53c439ed mbed.bld
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mbed.bld	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,1 @@
+http://mbed.org/users/mbed_official/code/mbed/builds/63bcd7ba4912
diff -r 000000000000 -r b9ac53c439ed predict.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/predict.c	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,237 @@
+#include <stdio.h>
+#include <ctype.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include "svm.h"
+#include "predict.h"
+
+struct svm_node *x;
+int max_nr_attr = 64;
+
+struct svm_model* model;
+int predict_probability=0;
+
+static char *line = NULL;
+static int max_line_len;
+
+static char* readline(FILE *input)
+{
+    int len;
+    
+    if(fgets(line,max_line_len,input) == NULL)
+        return NULL;
+    
+    while(strrchr(line,'\n') == NULL)
+    {
+        max_line_len *= 2;
+        line = (char *) realloc(line,max_line_len);
+        len = (int) strlen(line);
+        if(fgets(line+len,max_line_len-len,input) == NULL)
+            break;
+    }
+    return line;
+}
+
+void exit_input_error(int line_num)
+{
+    printf("Wrong input format at line %d\n", line_num);
+    exit(1);
+}
+
+void predict(FILE *input, FILE *output)
+{
+    int correct = 0;
+    int total = 0;
+    double error = 0;
+    double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
+    
+    int svm_type=svm_get_svm_type(model);
+    int nr_class=svm_get_nr_class(model);
+    double *prob_estimates=NULL;
+    int j;
+    
+    if(predict_probability)
+    {
+        if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
+            printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
+        else
+        {
+            int *labels=(int *) malloc(nr_class*sizeof(int));
+            svm_get_labels(model,labels);
+            prob_estimates = (double *) malloc(nr_class*sizeof(double));
+            fprintf(output,"labels");        
+            for(j=0;j<nr_class;j++)
+                fprintf(output," %d",labels[j]);
+            fprintf(output,"\n");
+            free(labels);
+        }
+    }
+    
+    max_line_len = 1024;
+    line = (char *)malloc(max_line_len*sizeof(char));
+    while(readline(input) != NULL)
+    {
+        int i = 0;
+        double target_label, predict_label;
+        char *idx, *val, *label, *endptr;
+        int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
+        
+        label = strtok(line," \t");
+        target_label = strtod(label,&endptr);
+        if(endptr == label)
+            exit_input_error(total+1);
+        
+        while(1)
+        {
+            if(i>=max_nr_attr-1)    // need one more for index = -1
+            {
+                max_nr_attr *= 2;
+                x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
+            }
+            
+            idx = strtok(NULL,":");
+            val = strtok(NULL," \t");
+            
+            if(val == NULL)
+                break;
+            errno = 0;
+            x[i].index = (int) strtol(idx,&endptr,10);
+            if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
+                exit_input_error(total+1);
+            else
+                inst_max_index = x[i].index;
+            
+            errno = 0;
+            x[i].value = strtod(val,&endptr);
+            if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
+                exit_input_error(total+1);
+            
+            ++i;
+        }
+        x[i].index = -1;
+        
+        if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC))
+        {
+            predict_label = svm_predict_probability(model,x,prob_estimates);
+            fprintf(output,"%g",predict_label);
+            for(j=0;j<nr_class;j++)
+                fprintf(output," %g",prob_estimates[j]);
+            fprintf(output,"\n");
+        }
+        else
+        {
+            predict_label = svm_predict(model,x);
+            fprintf(output,"%g\n",predict_label);
+        }
+        printf("predicted:%g\r\n",predict_label);        
+        if(predict_label == target_label)
+            ++correct;
+        error += (predict_label-target_label)*(predict_label-target_label);
+        sump += predict_label;
+        sumt += target_label;
+        sumpp += predict_label*predict_label;
+        sumtt += target_label*target_label;
+        sumpt += predict_label*target_label;
+        ++total;
+    }
+    if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
+    {
+        printf("Mean squared error = %g (regression)\n",error/total);
+        printf("Squared correlation coefficient = %g (regression)\n",
+               ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
+               ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
+               );
+    }
+    else
+        printf("Accuracy = %g%% (%d/%d) (classification)\n",
+               (double)correct/total*100,correct,total);
+    if(predict_probability)
+        free(prob_estimates);
+}
+
+void exit_with_help()
+{
+    printf(
+           "Usage: svm-predict [options] test_file model_file output_file\n"
+           "options:\n"
+           "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n"
+           );
+    exit(1);
+}
+
+int main_(void)
+{
+    FILE *input, *output;
+    int i;
+    
+    //printf("*in main_\r\n");
+    /*// parse options
+     for(i=1;i<argc;i++)
+     {
+     if(argv[i][0] != '-') break;
+     ++i;
+     switch(argv[i-1][1])
+     {
+     case 'b':
+     predict_probability = atoi(argv[i]);
+     break;
+     default:
+     //                fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]);
+     printf("Unknown option: -%c\n", argv[i-1][1]);
+     exit_with_help();
+     }
+     }
+     if(i>=argc-2)
+     exit_with_help();
+     */
+    //printf("in main_\r\n");
+    input = fopen("/local/test.txt","r");
+    if(input == NULL)
+    {
+        //        fprintf(stderr,"can't open input file %s\n",argv[i]);
+        printf("can't open input file %s\n","/local/test.txt");
+        exit(1);
+    }
+    //printf("in main_\r\n");
+    output = fopen("/local/output.txt","w");
+    if(output == NULL)
+    {
+        //        fprintf(stderr,"can't open output file %s\n",argv[i+2]);
+        printf("can't open output file %s\n","/local/output.txt");
+        exit(1);
+    }
+    //printf("in main_\r\n");
+    if((model=svm_load_model("/local/model.txt"))==0)
+    {
+        //        fprintf(stderr,"can't open model file %s\n",argv[i+1]);
+        printf("can't open model file %s\n","/local/model.txt");
+        exit(1);
+    }
+    
+    //printf("in main_\r\n");
+    x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node));
+    if(predict_probability)
+    {
+        if(svm_check_probability_model(model)==0)
+        {
+            printf("Model does not support probabiliy estimates\n");
+            exit(1);
+        }
+    }
+    else
+    {
+        if(svm_check_probability_model(model)!=0)
+            printf("Model supports probability estimates, but disabled in prediction.\n");
+    }
+    //printf("in main_\r\n");
+    predict(input,output);
+//printf("in main_\r\n");
+    svm_free_and_destroy_model(&model);
+//printf("in main_\r\n");
+    free(x);
+    free(line);
+    fclose(input);
+    fclose(output);
+    return 0;
+}
diff -r 000000000000 -r b9ac53c439ed predict.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/predict.h	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,6 @@
+#include "svm.h"
+static char* readline(FILE *input);
+void exit_input_error(int line_num);
+void predict(FILE *input, FILE *output);
+void exit_with_help();
+int main_(void);
diff -r 000000000000 -r b9ac53c439ed svm-scale.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/svm-scale.c	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,353 @@
+#include <float.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <string.h>
+
+void _exit_with_help()
+{
+    printf(
+    "Usage: svm-scale [options] data_filename\n"
+    "options:\n"
+    "-l lower : x scaling lower limit (default -1)\n"
+    "-u scale_upper : x scaling scale_upper limit (default +1)\n"
+    "-y y_lower y_scale_upper : y scaling limits (default: no y scaling)\n"
+    "-s save_filename : save scaling parameters to save_filename\n"
+    "-r restore_filename : restore scaling parameters from restore_filename\n"
+    );
+    exit(1);
+}
+
+char *scale_line = NULL;
+int scale_max_line_len = 1024;
+double scale_lower=-1.0,scale_upper=1.0,y_scale_lower,y_scale_upper;
+int y_scaling = 0;
+double *feature_max;
+double *feature_min;
+double y_max = -DBL_MAX;
+double y_min = DBL_MAX;
+int max_index;
+long int num_nonzeros = 0;
+long int new_num_nonzeros = 0;
+
+#define max(x,y) (((x)>(y))?(x):(y))
+#define min(x,y) (((x)<(y))?(x):(y))
+
+void output_target(double value);
+void output(int index, double value);
+char* readline(FILE *input);
+
+int main_scale(void)
+{
+    int i,index;
+    FILE *fp, *fp_restore = NULL;
+    char *save_filename = NULL;
+    char *restore_filename = "/local/range.txt";
+
+    /*for(i=1;i<argc;i++)
+    {
+        if(argv[i][0] != '-') break;
+        ++i;
+        switch(argv[i-1][1])
+        {
+            case 'l': scale_lower = atof(argv[i]); break;
+            case 'u': scale_upper = atof(argv[i]); break;
+            case 'y':
+                y_scale_lower = atof(argv[i]);
+                ++i;
+                y_scale_upper = atof(argv[i]);
+                y_scaling = 1;
+                break;
+            case 's': save_filename = argv[i]; break;
+            case 'r': restore_filename = argv[i]; break;
+            default:
+                fprintf(stderr,"unknown option\n");
+                exit_with_help();
+        }
+    }
+*/
+    if(!(scale_upper > scale_lower) || (y_scaling && !(y_scale_upper > y_scale_lower)))
+    {
+        fprintf(stderr,"inconsistent scale_lower/scale_upper specification\n");
+        exit(1);
+    }
+    
+    if(restore_filename && save_filename)
+    {
+        fprintf(stderr,"cannot use -r and -s simultaneously\n");
+        exit(1);
+    }
+
+/*    if(argc != i+1) 
+        _exit_with_help();
+*/
+    fp=fopen("/local/test.txt","r");
+    
+    if(fp==NULL)
+    {
+        fprintf(stderr,"can't open file %s\n", "/local/test.txt");
+        exit(1);
+    }
+
+    scale_line = (char *) malloc(scale_max_line_len*sizeof(char));
+
+#define SKIP_TARGET\
+    while(isspace(*p)) ++p;\
+    while(!isspace(*p)) ++p;
+
+#define SKIP_ELEMENT\
+    while(*p!=':') ++p;\
+    ++p;\
+    while(isspace(*p)) ++p;\
+    while(*p && !isspace(*p)) ++p;
+    
+    /* assumption: min index of attributes is 1 */
+    /* pass 1: find out max index of attributes */
+    max_index = 0;
+
+    if(restore_filename)
+    {
+        int idx, c;
+
+        fp_restore = fopen(restore_filename,"r");
+        if(fp_restore==NULL)
+        {
+            fprintf(stderr,"can't open file %s\n", restore_filename);
+            exit(1);
+        }
+
+        c = fgetc(fp_restore);
+        if(c == 'y')
+        {
+            readline(fp_restore);
+            readline(fp_restore);
+            readline(fp_restore);
+        }
+        readline(fp_restore);
+        readline(fp_restore);
+
+        while(fscanf(fp_restore,"%d %*f %*f\n",&idx) == 1)
+            max_index = max(idx,max_index);
+        rewind(fp_restore);
+    }
+
+    while(readline(fp)!=NULL)
+    {
+        char *p=scale_line;
+
+        SKIP_TARGET
+
+        while(sscanf(p,"%d:%*f",&index)==1)
+        {
+            max_index = max(max_index, index);
+            SKIP_ELEMENT
+            num_nonzeros++;
+        }        
+    }
+    rewind(fp);
+    
+    feature_max = (double *)malloc((max_index+1)* sizeof(double));
+    feature_min = (double *)malloc((max_index+1)* sizeof(double));
+    
+    if(feature_max == NULL || feature_min == NULL)
+    {
+        fprintf(stderr,"can't allocate enough memory\n");
+        exit(1);
+    }
+
+    for(i=0;i<=max_index;i++)
+    {
+        feature_max[i]=-DBL_MAX;
+        feature_min[i]=DBL_MAX;
+    }
+
+    /* pass 2: find out min/max value */
+    while(readline(fp)!=NULL)
+    {
+        char *p=scale_line;
+        int next_index=1;
+        double target;
+        double value;
+
+        sscanf(p,"%lf",&target);
+        y_max = max(y_max,target);
+        y_min = min(y_min,target);
+        
+        SKIP_TARGET
+
+        while(sscanf(p,"%d:%lf",&index,&value)==2)
+        {
+            for(i=next_index;i<index;i++)
+            {
+                feature_max[i]=max(feature_max[i],0);
+                feature_min[i]=min(feature_min[i],0);
+            }
+            
+            feature_max[index]=max(feature_max[index],value);
+            feature_min[index]=min(feature_min[index],value);
+
+            SKIP_ELEMENT
+            next_index=index+1;
+        }        
+
+        for(i=next_index;i<=max_index;i++)
+        {
+            feature_max[i]=max(feature_max[i],0);
+            feature_min[i]=min(feature_min[i],0);
+        }    
+    }
+
+    rewind(fp);
+
+    /* pass 2.5: save/restore feature_min/feature_max */
+    
+    if(restore_filename)
+    {
+        /* fp_restore rewinded in finding max_index */
+        int idx, c;
+        double fmin, fmax;
+        
+        if((c = fgetc(fp_restore)) == 'y')
+        {
+            fscanf(fp_restore, "%lf %lf\n", &y_scale_lower, &y_scale_upper);
+            fscanf(fp_restore, "%lf %lf\n", &y_min, &y_max);
+            y_scaling = 1;
+        }
+        else
+            ungetc(c, fp_restore);
+
+        if (fgetc(fp_restore) == 'x') {
+            fscanf(fp_restore, "%lf %lf\n", &scale_lower, &scale_upper);
+            while(fscanf(fp_restore,"%d %lf %lf\n",&idx,&fmin,&fmax)==3)
+            {
+                if(idx<=max_index)
+                {
+                    feature_min[idx] = fmin;
+                    feature_max[idx] = fmax;
+                }
+            }
+        }
+        fclose(fp_restore);
+    }
+    
+    if(save_filename)
+    {
+        FILE *fp_save = fopen(save_filename,"w");
+        if(fp_save==NULL)
+        {
+            fprintf(stderr,"can't open file %s\n", save_filename);
+            exit(1);
+        }
+        if(y_scaling)
+        {
+            fprintf(fp_save, "y\n");
+            fprintf(fp_save, "%.16g %.16g\n", y_scale_lower, y_scale_upper);
+            fprintf(fp_save, "%.16g %.16g\n", y_min, y_max);
+        }
+        fprintf(fp_save, "x\n");
+        fprintf(fp_save, "%.16g %.16g\n", scale_lower, scale_upper);
+        for(i=1;i<=max_index;i++)
+        {
+            if(feature_min[i]!=feature_max[i])
+                fprintf(fp_save,"%d %.16g %.16g\n",i,feature_min[i],feature_max[i]);
+        }
+        fclose(fp_save);
+    }
+    
+    /* pass 3: scale */
+    while(readline(fp)!=NULL)
+    {
+        char *p=scale_line;
+        int next_index=1;
+        double target;
+        double value;
+        
+        sscanf(p,"%lf",&target);
+        output_target(target);
+
+        SKIP_TARGET
+
+        while(sscanf(p,"%d:%lf",&index,&value)==2)
+        {
+            for(i=next_index;i<index;i++)
+                output(i,0);
+            
+            output(index,value);
+
+            SKIP_ELEMENT
+            next_index=index+1;
+        }        
+
+        for(i=next_index;i<=max_index;i++)
+            output(i,0);
+
+        printf("\n");
+    }
+
+    if (new_num_nonzeros > num_nonzeros)
+        fprintf(stderr, 
+            "Warning: original #nonzeros %ld\n"
+            "         new      #nonzeros %ld\n"
+            "Use -l 0 if many original feature values are zeros\n",
+            num_nonzeros, new_num_nonzeros);
+
+    free(scale_line);
+    free(feature_max);
+    free(feature_min);
+    fclose(fp);
+    return 0;
+}
+
+char* readline(FILE *input)
+{
+    int len;
+    
+    if(fgets(scale_line,scale_max_line_len,input) == NULL)
+        return NULL;
+
+    while(strrchr(scale_line,'\n') == NULL)
+    {
+        scale_max_line_len *= 2;
+        scale_line = (char *) realloc(scale_line, scale_max_line_len);
+        len = (int) strlen(scale_line);
+        if(fgets(scale_line+len,scale_max_line_len-len,input) == NULL)
+            break;
+    }
+    return scale_line;
+}
+
+void output_target(double value)
+{
+    if(y_scaling)
+    {
+        if(value == y_min)
+            value = y_scale_lower;
+        else if(value == y_max)
+            value = y_scale_upper;
+        else value = y_scale_lower + (y_scale_upper-y_scale_lower) *
+                 (value - y_min)/(y_max-y_min);
+    }
+    printf("%g ",value);
+}
+
+void output(int index, double value)
+{
+    /* skip single-valued attribute */
+    if(feature_max[index] == feature_min[index])
+        return;
+
+    if(value == feature_min[index])
+        value = scale_lower;
+    else if(value == feature_max[index])
+        value = scale_upper;
+    else
+        value = scale_lower + (scale_upper-scale_lower) * 
+            (value-feature_min[index])/
+            (feature_max[index]-feature_min[index]);
+
+    if(value != 0)
+    {
+        printf("%d:%g ",index, value);
+        new_num_nonzeros++;
+    }
+}
diff -r 000000000000 -r b9ac53c439ed svm-scale.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/svm-scale.h	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,10 @@
+/*
+ *  svm-scale.h
+ *  Theremin
+ *
+ *  Created by peccu on 11/09/13.
+ *  Copyright 2011 __MyCompanyName__. All rights reserved.
+ *
+ */
+
+int main_scale(void);
diff -r 000000000000 -r b9ac53c439ed svm/svm.cpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/svm/svm.cpp	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,3262 @@
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <float.h>
+#include <string.h>
+#include <stdarg.h>
+#include "svm.h"
+int libsvm_version = LIBSVM_VERSION;
+typedef float Qfloat;
+typedef signed char schar;
+#ifndef min
+template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
+#endif
+#ifndef max
+template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
+#endif
+template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
+template <class S, class T> static inline void clone(T*& dst, S* src, int n)
+{
+    dst = new T[n];
+    memcpy((void *)dst,(void *)src,sizeof(T)*n);
+}
+static inline double powi(double base, int times)
+{
+    double tmp = base, ret = 1.0;
+
+    for(int t=times; t>0; t/=2)
+    {
+        if(t%2==1) ret*=tmp;
+        tmp = tmp * tmp;
+    }
+    return ret;
+}
+#define INF HUGE_VAL
+#define TAU 1e-12
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+static void print_string_stdout(const char *s)
+{
+    fputs(s,stdout);
+    fflush(stdout);
+}
+static void (*svm_print_string) (const char *) = &print_string_stdout;
+#if 1
+static void info(const char *fmt,...)
+{
+    char buf[BUFSIZ];
+    va_list ap;
+    va_start(ap,fmt);
+    vsprintf(buf,fmt,ap);
+    va_end(ap);
+    (*svm_print_string)(buf);
+}
+#else
+static void info(const char *fmt,...) {}
+#endif
+
+//
+// Kernel Cache
+//
+// l is the number of total data items
+// size is the cache size limit in bytes
+//
+class Cache
+{
+public:
+    Cache(int l,long int size);
+    ~Cache();
+
+    // request data [0,len)
+    // return some position p where [p,len) need to be filled
+    // (p >= len if nothing needs to be filled)
+    int get_data(const int index, Qfloat **data, int len);
+    void swap_index(int i, int j);    
+private:
+    int l;
+    long int size;
+    struct head_t
+    {
+        head_t *prev, *next;    // a circular list
+        Qfloat *data;
+        int len;        // data[0,len) is cached in this entry
+    };
+
+    head_t *head;
+    head_t lru_head;
+    void lru_delete(head_t *h);
+    void lru_insert(head_t *h);
+};
+
+Cache::Cache(int l_,long int size_):l(l_),size(size_)
+{
+    head = (head_t *)calloc(l,sizeof(head_t));    // initialized to 0
+    size /= sizeof(Qfloat);
+    size -= l * sizeof(head_t) / sizeof(Qfloat);
+    size = max(size, 2 * (long int) l);    // cache must be large enough for two columns
+    lru_head.next = lru_head.prev = &lru_head;
+}
+
+Cache::~Cache()
+{
+    for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
+        free(h->data);
+    free(head);
+}
+
+void Cache::lru_delete(head_t *h)
+{
+    // delete from current location
+    h->prev->next = h->next;
+    h->next->prev = h->prev;
+}
+
+void Cache::lru_insert(head_t *h)
+{
+    // insert to last position
+    h->next = &lru_head;
+    h->prev = lru_head.prev;
+    h->prev->next = h;
+    h->next->prev = h;
+}
+
+int Cache::get_data(const int index, Qfloat **data, int len)
+{
+    head_t *h = &head[index];
+    if(h->len) lru_delete(h);
+    int more = len - h->len;
+
+    if(more > 0)
+    {
+        // free old space
+        while(size < more)
+        {
+            head_t *old = lru_head.next;
+            lru_delete(old);
+            free(old->data);
+            size += old->len;
+            old->data = 0;
+            old->len = 0;
+        }
+
+        // allocate new space
+        h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
+        size -= more;
+        swap(h->len,len);
+    }
+
+    lru_insert(h);
+    *data = h->data;
+    return len;
+}
+
+void Cache::swap_index(int i, int j)
+{
+    if(i==j) return;
+
+    if(head[i].len) lru_delete(&head[i]);
+    if(head[j].len) lru_delete(&head[j]);
+    swap(head[i].data,head[j].data);
+    swap(head[i].len,head[j].len);
+    if(head[i].len) lru_insert(&head[i]);
+    if(head[j].len) lru_insert(&head[j]);
+
+    if(i>j) swap(i,j);
+    for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
+    {
+        if(h->len > i)
+        {
+            if(h->len > j)
+                swap(h->data[i],h->data[j]);
+            else
+            {
+                // give up
+                lru_delete(h);
+                free(h->data);
+                size += h->len;
+                h->data = 0;
+                h->len = 0;
+            }
+        }
+    }
+}
+
+//
+// Kernel evaluation
+//
+// the static method k_function is for doing single kernel evaluation
+// the constructor of Kernel prepares to calculate the l*l kernel matrix
+// the member function get_Q is for getting one column from the Q Matrix
+//
+class QMatrix {
+public:
+    virtual Qfloat *get_Q(int column, int len) const = 0;
+    virtual double *get_QD() const = 0;
+    virtual void swap_index(int i, int j) const = 0;
+    virtual ~QMatrix() {}
+};
+
+class Kernel: public QMatrix {
+public:
+    Kernel(int l, svm_node * const * x, const svm_parameter& param);
+    virtual ~Kernel();
+
+    static double k_function(const svm_node *x, const svm_node *y,
+                 const svm_parameter& param);
+    virtual Qfloat *get_Q(int column, int len) const = 0;
+    virtual double *get_QD() const = 0;
+    virtual void swap_index(int i, int j) const    // no so const...
+    {
+        swap(x[i],x[j]);
+        if(x_square) swap(x_square[i],x_square[j]);
+    }
+protected:
+
+    double (Kernel::*kernel_function)(int i, int j) const;
+
+private:
+    const svm_node **x;
+    double *x_square;
+
+    // svm_parameter
+    const int kernel_type;
+    const int degree;
+    const double gamma;
+    const double coef0;
+
+    static double dot(const svm_node *px, const svm_node *py);
+    double kernel_linear(int i, int j) const
+    {
+        return dot(x[i],x[j]);
+    }
+    double kernel_poly(int i, int j) const
+    {
+        return powi(gamma*dot(x[i],x[j])+coef0,degree);
+    }
+    double kernel_rbf(int i, int j) const
+    {
+        return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
+    }
+    double kernel_sigmoid(int i, int j) const
+    {
+        return tanh(gamma*dot(x[i],x[j])+coef0);
+    }
+    double kernel_precomputed(int i, int j) const
+    {
+        return x[i][(int)(x[j][0].value)].value;
+    }
+};
+
+Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
+:kernel_type(param.kernel_type), degree(param.degree),
+ gamma(param.gamma), coef0(param.coef0)
+{
+    switch(kernel_type)
+    {
+        case LINEAR:
+            kernel_function = &Kernel::kernel_linear;
+            break;
+        case POLY:
+            kernel_function = &Kernel::kernel_poly;
+            break;
+        case RBF:
+            kernel_function = &Kernel::kernel_rbf;
+            break;
+        case SIGMOID:
+            kernel_function = &Kernel::kernel_sigmoid;
+            break;
+        case PRECOMPUTED:
+            kernel_function = &Kernel::kernel_precomputed;
+            break;
+    }
+
+    clone(x,x_,l);
+
+    if(kernel_type == RBF)
+    {
+        x_square = new double[l];
+        for(int i=0;i<l;i++)
+            x_square[i] = dot(x[i],x[i]);
+    }
+    else
+        x_square = 0;
+}
+
+Kernel::~Kernel()
+{
+    delete[] x;
+    delete[] x_square;
+}
+
+double Kernel::dot(const svm_node *px, const svm_node *py)
+{
+    double sum = 0;
+    while(px->index != -1 && py->index != -1)
+    {
+        if(px->index == py->index)
+        {
+            sum += px->value * py->value;
+            ++px;
+            ++py;
+        }
+        else
+        {
+            if(px->index > py->index)
+                ++py;
+            else
+                ++px;
+        }            
+    }
+    return sum;
+}
+
+double Kernel::k_function(const svm_node *x, const svm_node *y,
+              const svm_parameter& param)
+{
+    switch(param.kernel_type)
+    {
+        case LINEAR:
+            return dot(x,y);
+        case POLY:
+            return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
+        case RBF:
+        {
+            double sum = 0;
+            while(x->index != -1 && y->index !=-1)
+            {
+                if(x->index == y->index)
+                {
+                    double d = x->value - y->value;
+                    sum += d*d;
+                    ++x;
+                    ++y;
+                }
+                else
+                {
+                    if(x->index > y->index)
+                    {    
+                        sum += y->value * y->value;
+                        ++y;
+                    }
+                    else
+                    {
+                        sum += x->value * x->value;
+                        ++x;
+                    }
+                }
+            }
+
+            while(x->index != -1)
+            {
+                sum += x->value * x->value;
+                ++x;
+            }
+
+            while(y->index != -1)
+            {
+                sum += y->value * y->value;
+                ++y;
+            }
+            
+            return exp(-param.gamma*sum);
+        }
+        case SIGMOID:
+            return tanh(param.gamma*dot(x,y)+param.coef0);
+        case PRECOMPUTED:  //x: test (validation), y: SV
+            return x[(int)(y->value)].value;
+        default:
+            return 0;  // Unreachable 
+    }
+}
+
+// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
+// Solves:
+//
+//    min 0.5(\alpha^T Q \alpha) + p^T \alpha
+//
+//        y^T \alpha = \delta
+//        y_i = +1 or -1
+//        0 <= alpha_i <= Cp for y_i = 1
+//        0 <= alpha_i <= Cn for y_i = -1
+//
+// Given:
+//
+//    Q, p, y, Cp, Cn, and an initial feasible point \alpha
+//    l is the size of vectors and matrices
+//    eps is the stopping tolerance
+//
+// solution will be put in \alpha, objective value will be put in obj
+//
+class Solver {
+public:
+    Solver() {};
+    virtual ~Solver() {};
+
+    struct SolutionInfo {
+        double obj;
+        double rho;
+        double upper_bound_p;
+        double upper_bound_n;
+        double r;    // for Solver_NU
+    };
+
+    void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+           double *alpha_, double Cp, double Cn, double eps,
+           SolutionInfo* si, int shrinking);
+protected:
+    int active_size;
+    schar *y;
+    double *G;        // gradient of objective function
+    enum { LOWER_BOUND, UPPER_BOUND, FREE };
+    char *alpha_status;    // LOWER_BOUND, UPPER_BOUND, FREE
+    double *alpha;
+    const QMatrix *Q;
+    const double *QD;
+    double eps;
+    double Cp,Cn;
+    double *p;
+    int *active_set;
+    double *G_bar;        // gradient, if we treat free variables as 0
+    int l;
+    bool unshrink;    // XXX
+
+    double get_C(int i)
+    {
+        return (y[i] > 0)? Cp : Cn;
+    }
+    void update_alpha_status(int i)
+    {
+        if(alpha[i] >= get_C(i))
+            alpha_status[i] = UPPER_BOUND;
+        else if(alpha[i] <= 0)
+            alpha_status[i] = LOWER_BOUND;
+        else alpha_status[i] = FREE;
+    }
+    bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
+    bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
+    bool is_free(int i) { return alpha_status[i] == FREE; }
+    void swap_index(int i, int j);
+    void reconstruct_gradient();
+    virtual int select_working_set(int &i, int &j);
+    virtual double calculate_rho();
+    virtual void do_shrinking();
+private:
+    bool be_shrunk(int i, double Gmax1, double Gmax2);    
+};
+
+void Solver::swap_index(int i, int j)
+{
+    Q->swap_index(i,j);
+    swap(y[i],y[j]);
+    swap(G[i],G[j]);
+    swap(alpha_status[i],alpha_status[j]);
+    swap(alpha[i],alpha[j]);
+    swap(p[i],p[j]);
+    swap(active_set[i],active_set[j]);
+    swap(G_bar[i],G_bar[j]);
+}
+
+void Solver::reconstruct_gradient()
+{
+    // reconstruct inactive elements of G from G_bar and free variables
+
+    if(active_size == l) return;
+
+    int i,j;
+    int nr_free = 0;
+
+    for(j=active_size;j<l;j++)
+        G[j] = G_bar[j] + p[j];
+
+    for(j=0;j<active_size;j++)
+        if(is_free(j))
+            nr_free++;
+
+    if(2*nr_free < active_size)
+        info("\nWarning: using -h 0 may be faster\n");
+
+    if (nr_free*l > 2*active_size*(l-active_size))
+    {
+        for(i=active_size;i<l;i++)
+        {
+            const Qfloat *Q_i = Q->get_Q(i,active_size);
+            for(j=0;j<active_size;j++)
+                if(is_free(j))
+                    G[i] += alpha[j] * Q_i[j];
+        }
+    }
+    else
+    {
+        for(i=0;i<active_size;i++)
+            if(is_free(i))
+            {
+                const Qfloat *Q_i = Q->get_Q(i,l);
+                double alpha_i = alpha[i];
+                for(j=active_size;j<l;j++)
+                    G[j] += alpha_i * Q_i[j];
+            }
+    }
+}
+
+void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
+           double *alpha_, double Cp, double Cn, double eps,
+           SolutionInfo* si, int shrinking)
+{
+    this->l = l;
+    this->Q = &Q;
+    QD=Q.get_QD();
+    clone(p, p_,l);
+    clone(y, y_,l);
+    clone(alpha,alpha_,l);
+    this->Cp = Cp;
+    this->Cn = Cn;
+    this->eps = eps;
+    unshrink = false;
+
+    // initialize alpha_status
+    {
+        alpha_status = new char[l];
+        for(int i=0;i<l;i++)
+            update_alpha_status(i);
+    }
+
+    // initialize active set (for shrinking)
+    {
+        active_set = new int[l];
+        for(int i=0;i<l;i++)
+            active_set[i] = i;
+        active_size = l;
+    }
+
+    // initialize gradient
+    {
+        G = new double[l];
+        G_bar = new double[l];
+        int i;
+        for(i=0;i<l;i++)
+        {
+            G[i] = p[i];
+            G_bar[i] = 0;
+        }
+        for(i=0;i<l;i++)
+            if(!is_lower_bound(i))
+            {
+                const Qfloat *Q_i = Q.get_Q(i,l);
+                double alpha_i = alpha[i];
+                int j;
+                for(j=0;j<l;j++)
+                    G[j] += alpha_i*Q_i[j];
+                if(is_upper_bound(i))
+                    for(j=0;j<l;j++)
+                        G_bar[j] += get_C(i) * Q_i[j];
+            }
+    }
+
+    // optimization step
+
+    int iter = 0;
+    int counter = min(l,1000)+1;
+
+    while(1)
+    {
+        // show progress and do shrinking
+
+        if(--counter == 0)
+        {
+            counter = min(l,1000);
+            if(shrinking) do_shrinking();
+            info(".");
+        }
+
+        int i,j;
+        if(select_working_set(i,j)!=0)
+        {
+            // reconstruct the whole gradient
+            reconstruct_gradient();
+            // reset active set size and check
+            active_size = l;
+            info("*");
+            if(select_working_set(i,j)!=0)
+                break;
+            else
+                counter = 1;    // do shrinking next iteration
+        }
+        
+        ++iter;
+
+        // update alpha[i] and alpha[j], handle bounds carefully
+        
+        const Qfloat *Q_i = Q.get_Q(i,active_size);
+        const Qfloat *Q_j = Q.get_Q(j,active_size);
+
+        double C_i = get_C(i);
+        double C_j = get_C(j);
+
+        double old_alpha_i = alpha[i];
+        double old_alpha_j = alpha[j];
+
+        if(y[i]!=y[j])
+        {
+            double quad_coef = QD[i]+QD[j]+2*Q_i[j];
+            if (quad_coef <= 0)
+                quad_coef = TAU;
+            double delta = (-G[i]-G[j])/quad_coef;
+            double diff = alpha[i] - alpha[j];
+            alpha[i] += delta;
+            alpha[j] += delta;
+            
+            if(diff > 0)
+            {
+                if(alpha[j] < 0)
+                {
+                    alpha[j] = 0;
+                    alpha[i] = diff;
+                }
+            }
+            else
+            {
+                if(alpha[i] < 0)
+                {
+                    alpha[i] = 0;
+                    alpha[j] = -diff;
+                }
+            }
+            if(diff > C_i - C_j)
+            {
+                if(alpha[i] > C_i)
+                {
+                    alpha[i] = C_i;
+                    alpha[j] = C_i - diff;
+                }
+            }
+            else
+            {
+                if(alpha[j] > C_j)
+                {
+                    alpha[j] = C_j;
+                    alpha[i] = C_j + diff;
+                }
+            }
+        }
+        else
+        {
+            double quad_coef = QD[i]+QD[j]-2*Q_i[j];
+            if (quad_coef <= 0)
+                quad_coef = TAU;
+            double delta = (G[i]-G[j])/quad_coef;
+            double sum = alpha[i] + alpha[j];
+            alpha[i] -= delta;
+            alpha[j] += delta;
+
+            if(sum > C_i)
+            {
+                if(alpha[i] > C_i)
+                {
+                    alpha[i] = C_i;
+                    alpha[j] = sum - C_i;
+                }
+            }
+            else
+            {
+                if(alpha[j] < 0)
+                {
+                    alpha[j] = 0;
+                    alpha[i] = sum;
+                }
+            }
+            if(sum > C_j)
+            {
+                if(alpha[j] > C_j)
+                {
+                    alpha[j] = C_j;
+                    alpha[i] = sum - C_j;
+                }
+            }
+            else
+            {
+                if(alpha[i] < 0)
+                {
+                    alpha[i] = 0;
+                    alpha[j] = sum;
+                }
+            }
+        }
+
+        // update G
+
+        double delta_alpha_i = alpha[i] - old_alpha_i;
+        double delta_alpha_j = alpha[j] - old_alpha_j;
+        
+        for(int k=0;k<active_size;k++)
+        {
+            G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
+        }
+
+        // update alpha_status and G_bar
+
+        {
+            bool ui = is_upper_bound(i);
+            bool uj = is_upper_bound(j);
+            update_alpha_status(i);
+            update_alpha_status(j);
+            int k;
+            if(ui != is_upper_bound(i))
+            {
+                Q_i = Q.get_Q(i,l);
+                if(ui)
+                    for(k=0;k<l;k++)
+                        G_bar[k] -= C_i * Q_i[k];
+                else
+                    for(k=0;k<l;k++)
+                        G_bar[k] += C_i * Q_i[k];
+            }
+
+            if(uj != is_upper_bound(j))
+            {
+                Q_j = Q.get_Q(j,l);
+                if(uj)
+                    for(k=0;k<l;k++)
+                        G_bar[k] -= C_j * Q_j[k];
+                else
+                    for(k=0;k<l;k++)
+                        G_bar[k] += C_j * Q_j[k];
+            }
+        }
+    }
+
+    // calculate rho
+
+    si->rho = calculate_rho();
+
+    // calculate objective value
+    {
+        double v = 0;
+        int i;
+        for(i=0;i<l;i++)
+            v += alpha[i] * (G[i] + p[i]);
+
+        si->obj = v/2;
+    }
+
+    // put back the solution
+    {
+        for(int i=0;i<l;i++)
+            alpha_[active_set[i]] = alpha[i];
+    }
+
+    // juggle everything back
+    /*{
+        for(int i=0;i<l;i++)
+            while(active_set[i] != i)
+                swap_index(i,active_set[i]);
+                // or Q.swap_index(i,active_set[i]);
+    }*/
+
+    si->upper_bound_p = Cp;
+    si->upper_bound_n = Cn;
+
+    info("\noptimization finished, #iter = %d\n",iter);
+
+    delete[] p;
+    delete[] y;
+    delete[] alpha;
+    delete[] alpha_status;
+    delete[] active_set;
+    delete[] G;
+    delete[] G_bar;
+}
+
+// return 1 if already optimal, return 0 otherwise
+int Solver::select_working_set(int &out_i, int &out_j)
+{
+    // return i,j such that
+    // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+    // j: minimizes the decrease of obj value
+    //    (if quadratic coefficeint <= 0, replace it with tau)
+    //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+    
+    double Gmax = -INF;
+    double Gmax2 = -INF;
+    int Gmax_idx = -1;
+    int Gmin_idx = -1;
+    double obj_diff_min = INF;
+
+    for(int t=0;t<active_size;t++)
+        if(y[t]==+1)    
+        {
+            if(!is_upper_bound(t))
+                if(-G[t] >= Gmax)
+                {
+                    Gmax = -G[t];
+                    Gmax_idx = t;
+                }
+        }
+        else
+        {
+            if(!is_lower_bound(t))
+                if(G[t] >= Gmax)
+                {
+                    Gmax = G[t];
+                    Gmax_idx = t;
+                }
+        }
+
+    int i = Gmax_idx;
+    const Qfloat *Q_i = NULL;
+    if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
+        Q_i = Q->get_Q(i,active_size);
+
+    for(int j=0;j<active_size;j++)
+    {
+        if(y[j]==+1)
+        {
+            if (!is_lower_bound(j))
+            {
+                double grad_diff=Gmax+G[j];
+                if (G[j] >= Gmax2)
+                    Gmax2 = G[j];
+                if (grad_diff > 0)
+                {
+                    double obj_diff; 
+                    double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
+                    if (quad_coef > 0)
+                        obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                    else
+                        obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                    if (obj_diff <= obj_diff_min)
+                    {
+                        Gmin_idx=j;
+                        obj_diff_min = obj_diff;
+                    }
+                }
+            }
+        }
+        else
+        {
+            if (!is_upper_bound(j))
+            {
+                double grad_diff= Gmax-G[j];
+                if (-G[j] >= Gmax2)
+                    Gmax2 = -G[j];
+                if (grad_diff > 0)
+                {
+                    double obj_diff; 
+                    double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
+                    if (quad_coef > 0)
+                        obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                    else
+                        obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                    if (obj_diff <= obj_diff_min)
+                    {
+                        Gmin_idx=j;
+                        obj_diff_min = obj_diff;
+                    }
+                }
+            }
+        }
+    }
+
+    if(Gmax+Gmax2 < eps)
+        return 1;
+
+    out_i = Gmax_idx;
+    out_j = Gmin_idx;
+    return 0;
+}
+
+bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
+{
+    if(is_upper_bound(i))
+    {
+        if(y[i]==+1)
+            return(-G[i] > Gmax1);
+        else
+            return(-G[i] > Gmax2);
+    }
+    else if(is_lower_bound(i))
+    {
+        if(y[i]==+1)
+            return(G[i] > Gmax2);
+        else    
+            return(G[i] > Gmax1);
+    }
+    else
+        return(false);
+}
+
+void Solver::do_shrinking()
+{
+    int i;
+    double Gmax1 = -INF;        // max { -y_i * grad(f)_i | i in I_up(\alpha) }
+    double Gmax2 = -INF;        // max { y_i * grad(f)_i | i in I_low(\alpha) }
+
+    // find maximal violating pair first
+    for(i=0;i<active_size;i++)
+    {
+        if(y[i]==+1)    
+        {
+            if(!is_upper_bound(i))    
+            {
+                if(-G[i] >= Gmax1)
+                    Gmax1 = -G[i];
+            }
+            if(!is_lower_bound(i))    
+            {
+                if(G[i] >= Gmax2)
+                    Gmax2 = G[i];
+            }
+        }
+        else    
+        {
+            if(!is_upper_bound(i))    
+            {
+                if(-G[i] >= Gmax2)
+                    Gmax2 = -G[i];
+            }
+            if(!is_lower_bound(i))    
+            {
+                if(G[i] >= Gmax1)
+                    Gmax1 = G[i];
+            }
+        }
+    }
+
+    if(unshrink == false && Gmax1 + Gmax2 <= eps*10) 
+    {
+        unshrink = true;
+        reconstruct_gradient();
+        active_size = l;
+        info("*");
+    }
+
+    for(i=0;i<active_size;i++)
+        if (be_shrunk(i, Gmax1, Gmax2))
+        {
+            active_size--;
+            while (active_size > i)
+            {
+                if (!be_shrunk(active_size, Gmax1, Gmax2))
+                {
+                    swap_index(i,active_size);
+                    break;
+                }
+                active_size--;
+            }
+        }
+}
+
+double Solver::calculate_rho()
+{
+    double r;
+    int nr_free = 0;
+    double ub = INF, lb = -INF, sum_free = 0;
+    for(int i=0;i<active_size;i++)
+    {
+        double yG = y[i]*G[i];
+
+        if(is_upper_bound(i))
+        {
+            if(y[i]==-1)
+                ub = min(ub,yG);
+            else
+                lb = max(lb,yG);
+        }
+        else if(is_lower_bound(i))
+        {
+            if(y[i]==+1)
+                ub = min(ub,yG);
+            else
+                lb = max(lb,yG);
+        }
+        else
+        {
+            ++nr_free;
+            sum_free += yG;
+        }
+    }
+
+    if(nr_free>0)
+        r = sum_free/nr_free;
+    else
+        r = (ub+lb)/2;
+
+    return r;
+}
+
+//
+// Solver for nu-svm classification and regression
+//
+// additional constraint: e^T \alpha = constant
+//
+class Solver_NU : public Solver
+{
+public:
+    Solver_NU() {}
+    void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
+           double *alpha, double Cp, double Cn, double eps,
+           SolutionInfo* si, int shrinking)
+    {
+        this->si = si;
+        Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
+    }
+private:
+    SolutionInfo *si;
+    int select_working_set(int &i, int &j);
+    double calculate_rho();
+    bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
+    void do_shrinking();
+};
+
+// return 1 if already optimal, return 0 otherwise
+int Solver_NU::select_working_set(int &out_i, int &out_j)
+{
+    // return i,j such that y_i = y_j and
+    // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
+    // j: minimizes the decrease of obj value
+    //    (if quadratic coefficeint <= 0, replace it with tau)
+    //    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
+
+    double Gmaxp = -INF;
+    double Gmaxp2 = -INF;
+    int Gmaxp_idx = -1;
+
+    double Gmaxn = -INF;
+    double Gmaxn2 = -INF;
+    int Gmaxn_idx = -1;
+
+    int Gmin_idx = -1;
+    double obj_diff_min = INF;
+
+    for(int t=0;t<active_size;t++)
+        if(y[t]==+1)
+        {
+            if(!is_upper_bound(t))
+                if(-G[t] >= Gmaxp)
+                {
+                    Gmaxp = -G[t];
+                    Gmaxp_idx = t;
+                }
+        }
+        else
+        {
+            if(!is_lower_bound(t))
+                if(G[t] >= Gmaxn)
+                {
+                    Gmaxn = G[t];
+                    Gmaxn_idx = t;
+                }
+        }
+
+    int ip = Gmaxp_idx;
+    int in = Gmaxn_idx;
+    const Qfloat *Q_ip = NULL;
+    const Qfloat *Q_in = NULL;
+    if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
+        Q_ip = Q->get_Q(ip,active_size);
+    if(in != -1)
+        Q_in = Q->get_Q(in,active_size);
+
+    for(int j=0;j<active_size;j++)
+    {
+        if(y[j]==+1)
+        {
+            if (!is_lower_bound(j))    
+            {
+                double grad_diff=Gmaxp+G[j];
+                if (G[j] >= Gmaxp2)
+                    Gmaxp2 = G[j];
+                if (grad_diff > 0)
+                {
+                    double obj_diff; 
+                    double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
+                    if (quad_coef > 0)
+                        obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                    else
+                        obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                    if (obj_diff <= obj_diff_min)
+                    {
+                        Gmin_idx=j;
+                        obj_diff_min = obj_diff;
+                    }
+                }
+            }
+        }
+        else
+        {
+            if (!is_upper_bound(j))
+            {
+                double grad_diff=Gmaxn-G[j];
+                if (-G[j] >= Gmaxn2)
+                    Gmaxn2 = -G[j];
+                if (grad_diff > 0)
+                {
+                    double obj_diff; 
+                    double quad_coef = QD[in]+QD[j]-2*Q_in[j];
+                    if (quad_coef > 0)
+                        obj_diff = -(grad_diff*grad_diff)/quad_coef;
+                    else
+                        obj_diff = -(grad_diff*grad_diff)/TAU;
+
+                    if (obj_diff <= obj_diff_min)
+                    {
+                        Gmin_idx=j;
+                        obj_diff_min = obj_diff;
+                    }
+                }
+            }
+        }
+    }
+
+    if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
+        return 1;
+
+    if (y[Gmin_idx] == +1)
+        out_i = Gmaxp_idx;
+    else
+        out_i = Gmaxn_idx;
+    out_j = Gmin_idx;
+
+    return 0;
+}
+
+bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
+{
+    if(is_upper_bound(i))
+    {
+        if(y[i]==+1)
+            return(-G[i] > Gmax1);
+        else    
+            return(-G[i] > Gmax4);
+    }
+    else if(is_lower_bound(i))
+    {
+        if(y[i]==+1)
+            return(G[i] > Gmax2);
+        else    
+            return(G[i] > Gmax3);
+    }
+    else
+        return(false);
+}
+
+void Solver_NU::do_shrinking()
+{
+    double Gmax1 = -INF;    // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
+    double Gmax2 = -INF;    // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
+    double Gmax3 = -INF;    // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
+    double Gmax4 = -INF;    // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
+
+    // find maximal violating pair first
+    int i;
+    for(i=0;i<active_size;i++)
+    {
+        if(!is_upper_bound(i))
+        {
+            if(y[i]==+1)
+            {
+                if(-G[i] > Gmax1) Gmax1 = -G[i];
+            }
+            else    if(-G[i] > Gmax4) Gmax4 = -G[i];
+        }
+        if(!is_lower_bound(i))
+        {
+            if(y[i]==+1)
+            {    
+                if(G[i] > Gmax2) Gmax2 = G[i];
+            }
+            else    if(G[i] > Gmax3) Gmax3 = G[i];
+        }
+    }
+
+    if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) 
+    {
+        unshrink = true;
+        reconstruct_gradient();
+        active_size = l;
+    }
+
+    for(i=0;i<active_size;i++)
+        if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
+        {
+            active_size--;
+            while (active_size > i)
+            {
+                if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
+                {
+                    swap_index(i,active_size);
+                    break;
+                }
+                active_size--;
+            }
+        }
+}
+
+double Solver_NU::calculate_rho()
+{
+    int nr_free1 = 0,nr_free2 = 0;
+    double ub1 = INF, ub2 = INF;
+    double lb1 = -INF, lb2 = -INF;
+    double sum_free1 = 0, sum_free2 = 0;
+
+    for(int i=0;i<active_size;i++)
+    {
+        if(y[i]==+1)
+        {
+            if(is_upper_bound(i))
+                lb1 = max(lb1,G[i]);
+            else if(is_lower_bound(i))
+                ub1 = min(ub1,G[i]);
+            else
+            {
+                ++nr_free1;
+                sum_free1 += G[i];
+            }
+        }
+        else
+        {
+            if(is_upper_bound(i))
+                lb2 = max(lb2,G[i]);
+            else if(is_lower_bound(i))
+                ub2 = min(ub2,G[i]);
+            else
+            {
+                ++nr_free2;
+                sum_free2 += G[i];
+            }
+        }
+    }
+
+    double r1,r2;
+    if(nr_free1 > 0)
+        r1 = sum_free1/nr_free1;
+    else
+        r1 = (ub1+lb1)/2;
+    
+    if(nr_free2 > 0)
+        r2 = sum_free2/nr_free2;
+    else
+        r2 = (ub2+lb2)/2;
+    
+    si->r = (r1+r2)/2;
+    return (r1-r2)/2;
+}
+
+//
+// Q matrices for various formulations
+//
+class SVC_Q: public Kernel
+{ 
+public:
+    SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
+    :Kernel(prob.l, prob.x, param)
+    {
+        clone(y,y_,prob.l);
+        cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+        QD = new double[prob.l];
+        for(int i=0;i<prob.l;i++)
+            QD[i] = (this->*kernel_function)(i,i);
+    }
+    
+    Qfloat *get_Q(int i, int len) const
+    {
+        Qfloat *data;
+        int start, j;
+        if((start = cache->get_data(i,&data,len)) < len)
+        {
+            for(j=start;j<len;j++)
+                data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
+        }
+        return data;
+    }
+
+    double *get_QD() const
+    {
+        return QD;
+    }
+
+    void swap_index(int i, int j) const
+    {
+        cache->swap_index(i,j);
+        Kernel::swap_index(i,j);
+        swap(y[i],y[j]);
+        swap(QD[i],QD[j]);
+    }
+
+    ~SVC_Q()
+    {
+        delete[] y;
+        delete cache;
+        delete[] QD;
+    }
+private:
+    schar *y;
+    Cache *cache;
+    double *QD;
+};
+
+class ONE_CLASS_Q: public Kernel
+{
+public:
+    ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
+    :Kernel(prob.l, prob.x, param)
+    {
+        cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
+        QD = new double[prob.l];
+        for(int i=0;i<prob.l;i++)
+            QD[i] = (this->*kernel_function)(i,i);
+    }
+    
+    Qfloat *get_Q(int i, int len) const
+    {
+        Qfloat *data;
+        int start, j;
+        if((start = cache->get_data(i,&data,len)) < len)
+        {
+            for(j=start;j<len;j++)
+                data[j] = (Qfloat)(this->*kernel_function)(i,j);
+        }
+        return data;
+    }
+
+    double *get_QD() const
+    {
+        return QD;
+    }
+
+    void swap_index(int i, int j) const
+    {
+        cache->swap_index(i,j);
+        Kernel::swap_index(i,j);
+        swap(QD[i],QD[j]);
+    }
+
+    ~ONE_CLASS_Q()
+    {
+        delete cache;
+        delete[] QD;
+    }
+private:
+    Cache *cache;
+    double *QD;
+};
+
+class SVR_Q: public Kernel
+{ 
+public:
+    SVR_Q(const svm_problem& prob, const svm_parameter& param)
+    :Kernel(prob.l, prob.x, param)
+    {
+        l = prob.l;
+        cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
+        QD = new double[2*l];
+        sign = new schar[2*l];
+        index = new int[2*l];
+        for(int k=0;k<l;k++)
+        {
+            sign[k] = 1;
+            sign[k+l] = -1;
+            index[k] = k;
+            index[k+l] = k;
+            QD[k] = (this->*kernel_function)(k,k);
+            QD[k+l] = QD[k];
+        }
+        buffer[0] = new Qfloat[2*l];
+        buffer[1] = new Qfloat[2*l];
+        next_buffer = 0;
+    }
+
+    void swap_index(int i, int j) const
+    {
+        swap(sign[i],sign[j]);
+        swap(index[i],index[j]);
+        swap(QD[i],QD[j]);
+    }
+    
+    Qfloat *get_Q(int i, int len) const
+    {
+        Qfloat *data;
+        int j, real_i = index[i];
+        if(cache->get_data(real_i,&data,l) < l)
+        {
+            for(j=0;j<l;j++)
+                data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
+        }
+
+        // reorder and copy
+        Qfloat *buf = buffer[next_buffer];
+        next_buffer = 1 - next_buffer;
+        schar si = sign[i];
+        for(j=0;j<len;j++)
+            buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
+        return buf;
+    }
+
+    double *get_QD() const
+    {
+        return QD;
+    }
+
+    ~SVR_Q()
+    {
+        delete cache;
+        delete[] sign;
+        delete[] index;
+        delete[] buffer[0];
+        delete[] buffer[1];
+        delete[] QD;
+    }
+private:
+    int l;
+    Cache *cache;
+    schar *sign;
+    int *index;
+    mutable int next_buffer;
+    Qfloat *buffer[2];
+    double *QD;
+};
+
+//
+// construct and solve various formulations
+//
+static void solve_c_svc(
+    const svm_problem *prob, const svm_parameter* param,
+    double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
+{
+    int l = prob->l;
+    double *minus_ones = new double[l];
+    schar *y = new schar[l];
+
+    int i;
+
+    for(i=0;i<l;i++)
+    {
+        alpha[i] = 0;
+        minus_ones[i] = -1;
+        if(prob->y[i] > 0) y[i] = +1; else y[i] = -1;
+    }
+
+    Solver s;
+    s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
+        alpha, Cp, Cn, param->eps, si, param->shrinking);
+
+    double sum_alpha=0;
+    for(i=0;i<l;i++)
+        sum_alpha += alpha[i];
+
+    if (Cp==Cn)
+        info("nu = %f\n", sum_alpha/(Cp*prob->l));
+
+    for(i=0;i<l;i++)
+        alpha[i] *= y[i];
+
+    delete[] minus_ones;
+    delete[] y;
+}
+
+static void solve_nu_svc(
+    const svm_problem *prob, const svm_parameter *param,
+    double *alpha, Solver::SolutionInfo* si)
+{
+    int i;
+    int l = prob->l;
+    double nu = param->nu;
+
+    schar *y = new schar[l];
+
+    for(i=0;i<l;i++)
+        if(prob->y[i]>0)
+            y[i] = +1;
+        else
+            y[i] = -1;
+
+    double sum_pos = nu*l/2;
+    double sum_neg = nu*l/2;
+
+    for(i=0;i<l;i++)
+        if(y[i] == +1)
+        {
+            alpha[i] = min(1.0,sum_pos);
+            sum_pos -= alpha[i];
+        }
+        else
+        {
+            alpha[i] = min(1.0,sum_neg);
+            sum_neg -= alpha[i];
+        }
+
+    double *zeros = new double[l];
+
+    for(i=0;i<l;i++)
+        zeros[i] = 0;
+
+    Solver_NU s;
+    s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
+        alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
+    double r = si->r;
+
+    info("C = %f\n",1/r);
+
+    for(i=0;i<l;i++)
+        alpha[i] *= y[i]/r;
+
+    si->rho /= r;
+    si->obj /= (r*r);
+    si->upper_bound_p = 1/r;
+    si->upper_bound_n = 1/r;
+
+    delete[] y;
+    delete[] zeros;
+}
+
+static void solve_one_class(
+    const svm_problem *prob, const svm_parameter *param,
+    double *alpha, Solver::SolutionInfo* si)
+{
+    int l = prob->l;
+    double *zeros = new double[l];
+    schar *ones = new schar[l];
+    int i;
+
+    int n = (int)(param->nu*prob->l);    // # of alpha's at upper bound
+
+    for(i=0;i<n;i++)
+        alpha[i] = 1;
+    if(n<prob->l)
+        alpha[n] = param->nu * prob->l - n;
+    for(i=n+1;i<l;i++)
+        alpha[i] = 0;
+
+    for(i=0;i<l;i++)
+    {
+        zeros[i] = 0;
+        ones[i] = 1;
+    }
+
+    Solver s;
+    s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
+        alpha, 1.0, 1.0, param->eps, si, param->shrinking);
+
+    delete[] zeros;
+    delete[] ones;
+}
+
+static void solve_epsilon_svr(
+    const svm_problem *prob, const svm_parameter *param,
+    double *alpha, Solver::SolutionInfo* si)
+{
+    int l = prob->l;
+    double *alpha2 = new double[2*l];
+    double *linear_term = new double[2*l];
+    schar *y = new schar[2*l];
+    int i;
+
+    for(i=0;i<l;i++)
+    {
+        alpha2[i] = 0;
+        linear_term[i] = param->p - prob->y[i];
+        y[i] = 1;
+
+        alpha2[i+l] = 0;
+        linear_term[i+l] = param->p + prob->y[i];
+        y[i+l] = -1;
+    }
+
+    Solver s;
+    s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+        alpha2, param->C, param->C, param->eps, si, param->shrinking);
+
+    double sum_alpha = 0;
+    for(i=0;i<l;i++)
+    {
+        alpha[i] = alpha2[i] - alpha2[i+l];
+        sum_alpha += fabs(alpha[i]);
+    }
+    info("nu = %f\n",sum_alpha/(param->C*l));
+
+    delete[] alpha2;
+    delete[] linear_term;
+    delete[] y;
+}
+
+static void solve_nu_svr(
+    const svm_problem *prob, const svm_parameter *param,
+    double *alpha, Solver::SolutionInfo* si)
+{
+    int l = prob->l;
+    double C = param->C;
+    double *alpha2 = new double[2*l];
+    double *linear_term = new double[2*l];
+    schar *y = new schar[2*l];
+    int i;
+
+    double sum = C * param->nu * l / 2;
+    for(i=0;i<l;i++)
+    {
+        alpha2[i] = alpha2[i+l] = min(sum,C);
+        sum -= alpha2[i];
+
+        linear_term[i] = - prob->y[i];
+        y[i] = 1;
+
+        linear_term[i+l] = prob->y[i];
+        y[i+l] = -1;
+    }
+
+    Solver_NU s;
+    s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
+        alpha2, C, C, param->eps, si, param->shrinking);
+
+    info("epsilon = %f\n",-si->r);
+
+    for(i=0;i<l;i++)
+        alpha[i] = alpha2[i] - alpha2[i+l];
+
+    delete[] alpha2;
+    delete[] linear_term;
+    delete[] y;
+}
+
+//
+// decision_function
+//
+struct decision_function
+{
+    double *alpha;
+    double rho;    
+};
+
+static decision_function svm_train_one(
+    const svm_problem *prob, const svm_parameter *param,
+    double Cp, double Cn)
+{
+    double *alpha = Malloc(double,prob->l);
+    Solver::SolutionInfo si;
+    switch(param->svm_type)
+    {
+        case C_SVC:
+            solve_c_svc(prob,param,alpha,&si,Cp,Cn);
+            break;
+        case NU_SVC:
+            solve_nu_svc(prob,param,alpha,&si);
+            break;
+        case ONE_CLASS:
+            solve_one_class(prob,param,alpha,&si);
+            break;
+        case EPSILON_SVR:
+            solve_epsilon_svr(prob,param,alpha,&si);
+            break;
+        case NU_SVR:
+            solve_nu_svr(prob,param,alpha,&si);
+            break;
+    }
+
+    info("obj = %f, rho = %f\n",si.obj,si.rho);
+
+    // output SVs
+
+    int nSV = 0;
+    int nBSV = 0;
+    for(int i=0;i<prob->l;i++)
+    {
+        if(fabs(alpha[i]) > 0)
+        {
+            ++nSV;
+            if(prob->y[i] > 0)
+            {
+                if(fabs(alpha[i]) >= si.upper_bound_p)
+                    ++nBSV;
+            }
+            else
+            {
+                if(fabs(alpha[i]) >= si.upper_bound_n)
+                    ++nBSV;
+            }
+        }
+    }
+
+    info("nSV = %d, nBSV = %d\n",nSV,nBSV);
+
+    decision_function f;
+    f.alpha = alpha;
+    f.rho = si.rho;
+    return f;
+}
+
+// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
+static void sigmoid_train(
+    int l, const double *dec_values, const double *labels, 
+    double& A, double& B)
+{
+    double prior1=0, prior0 = 0;
+    int i;
+
+    for (i=0;i<l;i++)
+        if (labels[i] > 0) prior1+=1;
+        else prior0+=1;
+    
+    int max_iter=100;    // Maximal number of iterations
+    double min_step=1e-10;    // Minimal step taken in line search
+    double sigma=1e-12;    // For numerically strict PD of Hessian
+    double eps=1e-5;
+    double hiTarget=(prior1+1.0)/(prior1+2.0);
+    double loTarget=1/(prior0+2.0);
+    double *t=Malloc(double,l);
+    double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
+    double newA,newB,newf,d1,d2;
+    int iter; 
+    
+    // Initial Point and Initial Fun Value
+    A=0.0; B=log((prior0+1.0)/(prior1+1.0));
+    double fval = 0.0;
+
+    for (i=0;i<l;i++)
+    {
+        if (labels[i]>0) t[i]=hiTarget;
+        else t[i]=loTarget;
+        fApB = dec_values[i]*A+B;
+        if (fApB>=0)
+            fval += t[i]*fApB + log(1+exp(-fApB));
+        else
+            fval += (t[i] - 1)*fApB +log(1+exp(fApB));
+    }
+    for (iter=0;iter<max_iter;iter++)
+    {
+        // Update Gradient and Hessian (use H' = H + sigma I)
+        h11=sigma; // numerically ensures strict PD
+        h22=sigma;
+        h21=0.0;g1=0.0;g2=0.0;
+        for (i=0;i<l;i++)
+        {
+            fApB = dec_values[i]*A+B;
+            if (fApB >= 0)
+            {
+                p=exp(-fApB)/(1.0+exp(-fApB));
+                q=1.0/(1.0+exp(-fApB));
+            }
+            else
+            {
+                p=1.0/(1.0+exp(fApB));
+                q=exp(fApB)/(1.0+exp(fApB));
+            }
+            d2=p*q;
+            h11+=dec_values[i]*dec_values[i]*d2;
+            h22+=d2;
+            h21+=dec_values[i]*d2;
+            d1=t[i]-p;
+            g1+=dec_values[i]*d1;
+            g2+=d1;
+        }
+
+        // Stopping Criteria
+        if (fabs(g1)<eps && fabs(g2)<eps)
+            break;
+
+        // Finding Newton direction: -inv(H') * g
+        det=h11*h22-h21*h21;
+        dA=-(h22*g1 - h21 * g2) / det;
+        dB=-(-h21*g1+ h11 * g2) / det;
+        gd=g1*dA+g2*dB;
+
+
+        stepsize = 1;        // Line Search
+        while (stepsize >= min_step)
+        {
+            newA = A + stepsize * dA;
+            newB = B + stepsize * dB;
+
+            // New function value
+            newf = 0.0;
+            for (i=0;i<l;i++)
+            {
+                fApB = dec_values[i]*newA+newB;
+                if (fApB >= 0)
+                    newf += t[i]*fApB + log(1+exp(-fApB));
+                else
+                    newf += (t[i] - 1)*fApB +log(1+exp(fApB));
+            }
+            // Check sufficient decrease
+            if (newf<fval+0.0001*stepsize*gd)
+            {
+                A=newA;B=newB;fval=newf;
+                break;
+            }
+            else
+                stepsize = stepsize / 2.0;
+        }
+
+        if (stepsize < min_step)
+        {
+            info("Line search fails in two-class probability estimates\n");
+            break;
+        }
+    }
+
+    if (iter>=max_iter)
+        info("Reaching maximal iterations in two-class probability estimates\n");
+    free(t);
+}
+
+static double sigmoid_predict(double decision_value, double A, double B)
+{
+    double fApB = decision_value*A+B;
+    if (fApB >= 0)
+        return exp(-fApB)/(1.0+exp(-fApB));
+    else
+        return 1.0/(1+exp(fApB)) ;
+}
+
+// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
+static void multiclass_probability(int k, double **r, double *p)
+{
+    int t,j;
+    int iter = 0, max_iter=max(100,k);
+    double **Q=Malloc(double *,k);
+    double *Qp=Malloc(double,k);
+    double pQp, eps=0.005/k;
+    
+    for (t=0;t<k;t++)
+    {
+        p[t]=1.0/k;  // Valid if k = 1
+        Q[t]=Malloc(double,k);
+        Q[t][t]=0;
+        for (j=0;j<t;j++)
+        {
+            Q[t][t]+=r[j][t]*r[j][t];
+            Q[t][j]=Q[j][t];
+        }
+        for (j=t+1;j<k;j++)
+        {
+            Q[t][t]+=r[j][t]*r[j][t];
+            Q[t][j]=-r[j][t]*r[t][j];
+        }
+    }
+    for (iter=0;iter<max_iter;iter++)
+    {
+        // stopping condition, recalculate QP,pQP for numerical accuracy
+        pQp=0;
+        for (t=0;t<k;t++)
+        {
+            Qp[t]=0;
+            for (j=0;j<k;j++)
+                Qp[t]+=Q[t][j]*p[j];
+            pQp+=p[t]*Qp[t];
+        }
+        double max_error=0;
+        for (t=0;t<k;t++)
+        {
+            double error=fabs(Qp[t]-pQp);
+            if (error>max_error)
+                max_error=error;
+        }
+        if (max_error<eps) break;
+        
+        for (t=0;t<k;t++)
+        {
+            double diff=(-Qp[t]+pQp)/Q[t][t];
+            p[t]+=diff;
+            pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
+            for (j=0;j<k;j++)
+            {
+                Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
+                p[j]/=(1+diff);
+            }
+        }
+    }
+    if (iter>=max_iter)
+        info("Exceeds max_iter in multiclass_prob\n");
+    for(t=0;t<k;t++) free(Q[t]);
+    free(Q);
+    free(Qp);
+}
+
+// Cross-validation decision values for probability estimates
+static void svm_binary_svc_probability(
+    const svm_problem *prob, const svm_parameter *param,
+    double Cp, double Cn, double& probA, double& probB)
+{
+    int i;
+    int nr_fold = 5;
+    int *perm = Malloc(int,prob->l);
+    double *dec_values = Malloc(double,prob->l);
+
+    // random shuffle
+    for(i=0;i<prob->l;i++) perm[i]=i;
+    for(i=0;i<prob->l;i++)
+    {
+        int j = i+rand()%(prob->l-i);
+        swap(perm[i],perm[j]);
+    }
+    for(i=0;i<nr_fold;i++)
+    {
+        int begin = i*prob->l/nr_fold;
+        int end = (i+1)*prob->l/nr_fold;
+        int j,k;
+        struct svm_problem subprob;
+
+        subprob.l = prob->l-(end-begin);
+        subprob.x = Malloc(struct svm_node*,subprob.l);
+        subprob.y = Malloc(double,subprob.l);
+            
+        k=0;
+        for(j=0;j<begin;j++)
+        {
+            subprob.x[k] = prob->x[perm[j]];
+            subprob.y[k] = prob->y[perm[j]];
+            ++k;
+        }
+        for(j=end;j<prob->l;j++)
+        {
+            subprob.x[k] = prob->x[perm[j]];
+            subprob.y[k] = prob->y[perm[j]];
+            ++k;
+        }
+        int p_count=0,n_count=0;
+        for(j=0;j<k;j++)
+            if(subprob.y[j]>0)
+                p_count++;
+            else
+                n_count++;
+
+        if(p_count==0 && n_count==0)
+            for(j=begin;j<end;j++)
+                dec_values[perm[j]] = 0;
+        else if(p_count > 0 && n_count == 0)
+            for(j=begin;j<end;j++)
+                dec_values[perm[j]] = 1;
+        else if(p_count == 0 && n_count > 0)
+            for(j=begin;j<end;j++)
+                dec_values[perm[j]] = -1;
+        else
+        {
+            svm_parameter subparam = *param;
+            subparam.probability=0;
+            subparam.C=1.0;
+            subparam.nr_weight=2;
+            subparam.weight_label = Malloc(int,2);
+            subparam.weight = Malloc(double,2);
+            subparam.weight_label[0]=+1;
+            subparam.weight_label[1]=-1;
+            subparam.weight[0]=Cp;
+            subparam.weight[1]=Cn;
+            struct svm_model *submodel = svm_train(&subprob,&subparam);
+            for(j=begin;j<end;j++)
+            {
+                svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]])); 
+                // ensure +1 -1 order; reason not using CV subroutine
+                dec_values[perm[j]] *= submodel->label[0];
+            }        
+            svm_free_and_destroy_model(&submodel);
+            svm_destroy_param(&subparam);
+        }
+        free(subprob.x);
+        free(subprob.y);
+    }        
+    sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
+    free(dec_values);
+    free(perm);
+}
+
+// Return parameter of a Laplace distribution 
+static double svm_svr_probability(
+    const svm_problem *prob, const svm_parameter *param)
+{
+    int i;
+    int nr_fold = 5;
+    double *ymv = Malloc(double,prob->l);
+    double mae = 0;
+
+    svm_parameter newparam = *param;
+    newparam.probability = 0;
+    svm_cross_validation(prob,&newparam,nr_fold,ymv);
+    for(i=0;i<prob->l;i++)
+    {
+        ymv[i]=prob->y[i]-ymv[i];
+        mae += fabs(ymv[i]);
+    }        
+    mae /= prob->l;
+    double std=sqrt(2*mae*mae);
+    int count=0;
+    mae=0;
+    for(i=0;i<prob->l;i++)
+        if (fabs(ymv[i]) > 5*std) 
+            count=count+1;
+        else 
+            mae+=fabs(ymv[i]);
+    mae /= (prob->l-count);
+    info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
+    free(ymv);
+    return mae;
+}
+
+
+// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
+// perm, length l, must be allocated before calling this subroutine
+static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
+{
+    int l = prob->l;
+    int max_nr_class = 16;
+    int nr_class = 0;
+    int *label = Malloc(int,max_nr_class);
+    int *count = Malloc(int,max_nr_class);
+    int *data_label = Malloc(int,l);    
+    int i;
+
+    for(i=0;i<l;i++)
+    {
+        int this_label = (int)prob->y[i];
+        int j;
+        for(j=0;j<nr_class;j++)
+        {
+            if(this_label == label[j])
+            {
+                ++count[j];
+                break;
+            }
+        }
+        data_label[i] = j;
+        if(j == nr_class)
+        {
+            if(nr_class == max_nr_class)
+            {
+                max_nr_class *= 2;
+                label = (int *)realloc(label,max_nr_class*sizeof(int));
+                count = (int *)realloc(count,max_nr_class*sizeof(int));
+            }
+            label[nr_class] = this_label;
+            count[nr_class] = 1;
+            ++nr_class;
+        }
+    }
+
+    int *start = Malloc(int,nr_class);
+    start[0] = 0;
+    for(i=1;i<nr_class;i++)
+        start[i] = start[i-1]+count[i-1];
+    for(i=0;i<l;i++)
+    {
+        perm[start[data_label[i]]] = i;
+        ++start[data_label[i]];
+    }
+    start[0] = 0;
+    for(i=1;i<nr_class;i++)
+        start[i] = start[i-1]+count[i-1];
+
+    *nr_class_ret = nr_class;
+    *label_ret = label;
+    *start_ret = start;
+    *count_ret = count;
+    free(data_label);
+}
+
+//
+// Interface functions
+//
+svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
+{
+    svm_model *model = Malloc(svm_model,1);
+    model->param = *param;
+    model->free_sv = 0;    // XXX
+
+    if(param->svm_type == ONE_CLASS ||
+       param->svm_type == EPSILON_SVR ||
+       param->svm_type == NU_SVR)
+    {
+        // regression or one-class-svm
+        model->nr_class = 2;
+        model->label = NULL;
+        model->nSV = NULL;
+        model->probA = NULL; model->probB = NULL;
+        model->sv_coef = Malloc(double *,1);
+
+        if(param->probability && 
+           (param->svm_type == EPSILON_SVR ||
+            param->svm_type == NU_SVR))
+        {
+            model->probA = Malloc(double,1);
+            model->probA[0] = svm_svr_probability(prob,param);
+        }
+
+        decision_function f = svm_train_one(prob,param,0,0);
+        model->rho = Malloc(double,1);
+        model->rho[0] = f.rho;
+
+        int nSV = 0;
+        int i;
+        for(i=0;i<prob->l;i++)
+            if(fabs(f.alpha[i]) > 0) ++nSV;
+        model->l = nSV;
+        model->SV = Malloc(svm_node *,nSV);
+        model->sv_coef[0] = Malloc(double,nSV);
+        int j = 0;
+        for(i=0;i<prob->l;i++)
+            if(fabs(f.alpha[i]) > 0)
+            {
+                model->SV[j] = prob->x[i];
+                model->sv_coef[0][j] = f.alpha[i];
+                ++j;
+            }        
+
+        free(f.alpha);
+    }
+    else
+    {
+        // classification
+        int l = prob->l;
+        int nr_class;
+        int *label = NULL;
+        int *start = NULL;
+        int *count = NULL;
+        int *perm = Malloc(int,l);
+
+        // group training data of the same class
+        svm_group_classes(prob,&nr_class,&label,&start,&count,perm);        
+        svm_node **x = Malloc(svm_node *,l);
+        int i;
+        for(i=0;i<l;i++)
+            x[i] = prob->x[perm[i]];
+
+        // calculate weighted C
+
+        double *weighted_C = Malloc(double, nr_class);
+        for(i=0;i<nr_class;i++)
+            weighted_C[i] = param->C;
+        for(i=0;i<param->nr_weight;i++)
+        {    
+            int j;
+            for(j=0;j<nr_class;j++)
+                if(param->weight_label[i] == label[j])
+                    break;
+            if(j == nr_class)
+                fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]);
+            else
+                weighted_C[j] *= param->weight[i];
+        }
+
+        // train k*(k-1)/2 models
+        
+        bool *nonzero = Malloc(bool,l);
+        for(i=0;i<l;i++)
+            nonzero[i] = false;
+        decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
+
+        double *probA=NULL,*probB=NULL;
+        if (param->probability)
+        {
+            probA=Malloc(double,nr_class*(nr_class-1)/2);
+            probB=Malloc(double,nr_class*(nr_class-1)/2);
+        }
+
+        int p = 0;
+        for(i=0;i<nr_class;i++)
+            for(int j=i+1;j<nr_class;j++)
+            {
+                svm_problem sub_prob;
+                int si = start[i], sj = start[j];
+                int ci = count[i], cj = count[j];
+                sub_prob.l = ci+cj;
+                sub_prob.x = Malloc(svm_node *,sub_prob.l);
+                sub_prob.y = Malloc(double,sub_prob.l);
+                int k;
+                for(k=0;k<ci;k++)
+                {
+                    sub_prob.x[k] = x[si+k];
+                    sub_prob.y[k] = +1;
+                }
+                for(k=0;k<cj;k++)
+                {
+                    sub_prob.x[ci+k] = x[sj+k];
+                    sub_prob.y[ci+k] = -1;
+                }
+
+                if(param->probability)
+                    svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
+
+                f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
+                for(k=0;k<ci;k++)
+                    if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
+                        nonzero[si+k] = true;
+                for(k=0;k<cj;k++)
+                    if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
+                        nonzero[sj+k] = true;
+                free(sub_prob.x);
+                free(sub_prob.y);
+                ++p;
+            }
+
+        // build output
+
+        model->nr_class = nr_class;
+        
+        model->label = Malloc(int,nr_class);
+        for(i=0;i<nr_class;i++)
+            model->label[i] = label[i];
+        
+        model->rho = Malloc(double,nr_class*(nr_class-1)/2);
+        for(i=0;i<nr_class*(nr_class-1)/2;i++)
+            model->rho[i] = f[i].rho;
+
+        if(param->probability)
+        {
+            model->probA = Malloc(double,nr_class*(nr_class-1)/2);
+            model->probB = Malloc(double,nr_class*(nr_class-1)/2);
+            for(i=0;i<nr_class*(nr_class-1)/2;i++)
+            {
+                model->probA[i] = probA[i];
+                model->probB[i] = probB[i];
+            }
+        }
+        else
+        {
+            model->probA=NULL;
+            model->probB=NULL;
+        }
+
+        int total_sv = 0;
+        int *nz_count = Malloc(int,nr_class);
+        model->nSV = Malloc(int,nr_class);
+        for(i=0;i<nr_class;i++)
+        {
+            int nSV = 0;
+            for(int j=0;j<count[i];j++)
+                if(nonzero[start[i]+j])
+                {    
+                    ++nSV;
+                    ++total_sv;
+                }
+            model->nSV[i] = nSV;
+            nz_count[i] = nSV;
+        }
+        
+        info("Total nSV = %d\n",total_sv);
+
+        model->l = total_sv;
+        model->SV = Malloc(svm_node *,total_sv);
+        p = 0;
+        for(i=0;i<l;i++)
+            if(nonzero[i]) model->SV[p++] = x[i];
+
+        int *nz_start = Malloc(int,nr_class);
+        nz_start[0] = 0;
+        for(i=1;i<nr_class;i++)
+            nz_start[i] = nz_start[i-1]+nz_count[i-1];
+
+        model->sv_coef = Malloc(double *,nr_class-1);
+        for(i=0;i<nr_class-1;i++)
+            model->sv_coef[i] = Malloc(double,total_sv);
+
+        p = 0;
+        for(i=0;i<nr_class;i++)
+            for(int j=i+1;j<nr_class;j++)
+            {
+                // classifier (i,j): coefficients with
+                // i are in sv_coef[j-1][nz_start[i]...],
+                // j are in sv_coef[i][nz_start[j]...]
+
+                int si = start[i];
+                int sj = start[j];
+                int ci = count[i];
+                int cj = count[j];
+                
+                int q = nz_start[i];
+                int k;
+                for(k=0;k<ci;k++)
+                    if(nonzero[si+k])
+                        model->sv_coef[j-1][q++] = f[p].alpha[k];
+                q = nz_start[j];
+                for(k=0;k<cj;k++)
+                    if(nonzero[sj+k])
+                        model->sv_coef[i][q++] = f[p].alpha[ci+k];
+                ++p;
+            }
+        
+        free(label);
+        free(probA);
+        free(probB);
+        free(count);
+        free(perm);
+        free(start);
+        free(x);
+        free(weighted_C);
+        free(nonzero);
+        for(i=0;i<nr_class*(nr_class-1)/2;i++)
+            free(f[i].alpha);
+        free(f);
+        free(nz_count);
+        free(nz_start);
+    }
+    return model;
+}
+
+// Stratified cross validation
+void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
+{
+    int i;
+    int *fold_start = Malloc(int,nr_fold+1);
+    int l = prob->l;
+    int *perm = Malloc(int,l);
+    int nr_class;
+
+    // stratified cv may not give leave-one-out rate
+    // Each class to l folds -> some folds may have zero elements
+    if((param->svm_type == C_SVC ||
+        param->svm_type == NU_SVC) && nr_fold < l)
+    {
+        int *start = NULL;
+        int *label = NULL;
+        int *count = NULL;
+        svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
+
+        // random shuffle and then data grouped by fold using the array perm
+        int *fold_count = Malloc(int,nr_fold);
+        int c;
+        int *index = Malloc(int,l);
+        for(i=0;i<l;i++)
+            index[i]=perm[i];
+        for (c=0; c<nr_class; c++) 
+            for(i=0;i<count[c];i++)
+            {
+                int j = i+rand()%(count[c]-i);
+                swap(index[start[c]+j],index[start[c]+i]);
+            }
+        for(i=0;i<nr_fold;i++)
+        {
+            fold_count[i] = 0;
+            for (c=0; c<nr_class;c++)
+                fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
+        }
+        fold_start[0]=0;
+        for (i=1;i<=nr_fold;i++)
+            fold_start[i] = fold_start[i-1]+fold_count[i-1];
+        for (c=0; c<nr_class;c++)
+            for(i=0;i<nr_fold;i++)
+            {
+                int begin = start[c]+i*count[c]/nr_fold;
+                int end = start[c]+(i+1)*count[c]/nr_fold;
+                for(int j=begin;j<end;j++)
+                {
+                    perm[fold_start[i]] = index[j];
+                    fold_start[i]++;
+                }
+            }
+        fold_start[0]=0;
+        for (i=1;i<=nr_fold;i++)
+            fold_start[i] = fold_start[i-1]+fold_count[i-1];
+        free(start);    
+        free(label);
+        free(count);    
+        free(index);
+        free(fold_count);
+    }
+    else
+    {
+        for(i=0;i<l;i++) perm[i]=i;
+        for(i=0;i<l;i++)
+        {
+            int j = i+rand()%(l-i);
+            swap(perm[i],perm[j]);
+        }
+        for(i=0;i<=nr_fold;i++)
+            fold_start[i]=i*l/nr_fold;
+    }
+
+    for(i=0;i<nr_fold;i++)
+    {
+        int begin = fold_start[i];
+        int end = fold_start[i+1];
+        int j,k;
+        struct svm_problem subprob;
+
+        subprob.l = l-(end-begin);
+        subprob.x = Malloc(struct svm_node*,subprob.l);
+        subprob.y = Malloc(double,subprob.l);
+            
+        k=0;
+        for(j=0;j<begin;j++)
+        {
+            subprob.x[k] = prob->x[perm[j]];
+            subprob.y[k] = prob->y[perm[j]];
+            ++k;
+        }
+        for(j=end;j<l;j++)
+        {
+            subprob.x[k] = prob->x[perm[j]];
+            subprob.y[k] = prob->y[perm[j]];
+            ++k;
+        }
+        struct svm_model *submodel = svm_train(&subprob,param);
+        if(param->probability && 
+           (param->svm_type == C_SVC || param->svm_type == NU_SVC))
+        {
+            double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
+            for(j=begin;j<end;j++)
+                target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
+            free(prob_estimates);            
+        }
+        else
+            for(j=begin;j<end;j++)
+                target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
+        svm_free_and_destroy_model(&submodel);
+        free(subprob.x);
+        free(subprob.y);
+    }        
+    free(fold_start);
+    free(perm);    
+}
+
+
+int svm_get_svm_type(const svm_model *model)
+{
+    return model->param.svm_type;
+}
+
+int svm_get_nr_class(const svm_model *model)
+{
+    return model->nr_class;
+}
+
+void svm_get_labels(const svm_model *model, int* label)
+{
+    if (model->label != NULL)
+        for(int i=0;i<model->nr_class;i++)
+            label[i] = model->label[i];
+}
+
+double svm_get_svr_probability(const svm_model *model)
+{
+    if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+        model->probA!=NULL)
+        return model->probA[0];
+    else
+    {
+        fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
+        return 0;
+    }
+}
+
+double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
+{
+    if(model->param.svm_type == ONE_CLASS ||
+       model->param.svm_type == EPSILON_SVR ||
+       model->param.svm_type == NU_SVR)
+    {
+        double *sv_coef = model->sv_coef[0];
+        double sum = 0;
+        for(int i=0;i<model->l;i++)
+            sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
+        sum -= model->rho[0];
+        *dec_values = sum;
+
+        if(model->param.svm_type == ONE_CLASS)
+            return (sum>0)?1:-1;
+        else
+            return sum;
+    }
+    else
+    {
+        int i;
+        int nr_class = model->nr_class;
+        int l = model->l;
+        
+        double *kvalue = Malloc(double,l);
+        for(i=0;i<l;i++)
+            kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
+
+        int *start = Malloc(int,nr_class);
+        start[0] = 0;
+        for(i=1;i<nr_class;i++)
+            start[i] = start[i-1]+model->nSV[i-1];
+
+        int *vote = Malloc(int,nr_class);
+        for(i=0;i<nr_class;i++)
+            vote[i] = 0;
+
+        int p=0;
+        for(i=0;i<nr_class;i++)
+            for(int j=i+1;j<nr_class;j++)
+            {
+                double sum = 0;
+                int si = start[i];
+                int sj = start[j];
+                int ci = model->nSV[i];
+                int cj = model->nSV[j];
+                
+                int k;
+                double *coef1 = model->sv_coef[j-1];
+                double *coef2 = model->sv_coef[i];
+                for(k=0;k<ci;k++)
+                    sum += coef1[si+k] * kvalue[si+k];
+                for(k=0;k<cj;k++)
+                    sum += coef2[sj+k] * kvalue[sj+k];
+                sum -= model->rho[p];
+                dec_values[p] = sum;
+
+                if(dec_values[p] > 0)
+                    ++vote[i];
+                else
+                    ++vote[j];
+                p++;
+            }
+
+        int vote_max_idx = 0;
+        for(i=1;i<nr_class;i++)
+            if(vote[i] > vote[vote_max_idx])
+                vote_max_idx = i;
+
+        free(kvalue);
+        free(start);
+        free(vote);
+        return model->label[vote_max_idx];
+    }
+}
+
+double svm_predict(const svm_model *model, const svm_node *x)
+{
+    int nr_class = model->nr_class;
+    double *dec_values;
+    if(model->param.svm_type == ONE_CLASS ||
+       model->param.svm_type == EPSILON_SVR ||
+       model->param.svm_type == NU_SVR)
+        dec_values = Malloc(double, 1);
+    else 
+        dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+    double pred_result = svm_predict_values(model, x, dec_values);
+    free(dec_values);
+    return pred_result;
+}
+
+double svm_predict_probability(
+    const svm_model *model, const svm_node *x, double *prob_estimates)
+{
+    if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+        model->probA!=NULL && model->probB!=NULL)
+    {
+        int i;
+        int nr_class = model->nr_class;
+        double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
+        svm_predict_values(model, x, dec_values);
+
+        double min_prob=1e-7;
+        double **pairwise_prob=Malloc(double *,nr_class);
+        for(i=0;i<nr_class;i++)
+            pairwise_prob[i]=Malloc(double,nr_class);
+        int k=0;
+        for(i=0;i<nr_class;i++)
+            for(int j=i+1;j<nr_class;j++)
+            {
+                pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
+                pairwise_prob[j][i]=1-pairwise_prob[i][j];
+                k++;
+            }
+        multiclass_probability(nr_class,pairwise_prob,prob_estimates);
+
+        int prob_max_idx = 0;
+        for(i=1;i<nr_class;i++)
+            if(prob_estimates[i] > prob_estimates[prob_max_idx])
+                prob_max_idx = i;
+        for(i=0;i<nr_class;i++)
+            free(pairwise_prob[i]);
+        free(dec_values);
+        free(pairwise_prob);         
+        return model->label[prob_max_idx];
+    }
+    else 
+        return svm_predict(model, x);
+}
+
+static const char *svm_type_table[] =
+{
+    "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
+};
+
+static const char *kernel_type_table[]=
+{
+    "linear","polynomial","rbf","sigmoid","precomputed",NULL
+};
+
+int svm_save_model(const char *model_file_name, const svm_model *model)
+{
+    FILE *fp = fopen(model_file_name,"w");
+    if(fp==NULL) return -1;
+
+    const svm_parameter& param = model->param;
+
+    fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
+    fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
+
+    if(param.kernel_type == POLY)
+        fprintf(fp,"degree %d\n", param.degree);
+
+    if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
+        fprintf(fp,"gamma %g\n", param.gamma);
+
+    if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
+        fprintf(fp,"coef0 %g\n", param.coef0);
+
+    int nr_class = model->nr_class;
+    int l = model->l;
+    fprintf(fp, "nr_class %d\n", nr_class);
+    fprintf(fp, "total_sv %d\n",l);
+    
+    {
+        fprintf(fp, "rho");
+        for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+            fprintf(fp," %g",model->rho[i]);
+        fprintf(fp, "\n");
+    }
+    
+    if(model->label)
+    {
+        fprintf(fp, "label");
+        for(int i=0;i<nr_class;i++)
+            fprintf(fp," %d",model->label[i]);
+        fprintf(fp, "\n");
+    }
+
+    if(model->probA) // regression has probA only
+    {
+        fprintf(fp, "probA");
+        for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+            fprintf(fp," %g",model->probA[i]);
+        fprintf(fp, "\n");
+    }
+    if(model->probB)
+    {
+        fprintf(fp, "probB");
+        for(int i=0;i<nr_class*(nr_class-1)/2;i++)
+            fprintf(fp," %g",model->probB[i]);
+        fprintf(fp, "\n");
+    }
+
+    if(model->nSV)
+    {
+        fprintf(fp, "nr_sv");
+        for(int i=0;i<nr_class;i++)
+            fprintf(fp," %d",model->nSV[i]);
+        fprintf(fp, "\n");
+    }
+
+    fprintf(fp, "SV\n");
+    const double * const *sv_coef = model->sv_coef;
+    const svm_node * const *SV = model->SV;
+
+    for(int i=0;i<l;i++)
+    {
+        for(int j=0;j<nr_class-1;j++)
+            fprintf(fp, "%.16g ",sv_coef[j][i]);
+
+        const svm_node *p = SV[i];
+
+        if(param.kernel_type == PRECOMPUTED)
+            fprintf(fp,"0:%d ",(int)(p->value));
+        else
+            while(p->index != -1)
+            {
+                fprintf(fp,"%d:%.8g ",p->index,p->value);
+                p++;
+            }
+        fprintf(fp, "\n");
+    }
+    if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
+    else return 0;
+}
+
+static char *line = NULL;
+static int max_line_len;
+
+static char* readline(FILE *input)
+{
+    int len;
+
+    if(fgets(line,max_line_len,input) == NULL)
+        return NULL;
+
+    while(strrchr(line,'\n') == NULL)
+    {
+        max_line_len *= 2;
+        line = (char *) realloc(line,max_line_len);
+        len = (int) strlen(line);
+        if(fgets(line+len,max_line_len-len,input) == NULL)
+            break;
+    }
+    return line;
+}
+
+svm_model *svm_load_model(const char *model_file_name)
+{
+    FILE *fp = fopen(model_file_name,"rb");
+    printf("load\r\n");
+    if(fp==NULL) return NULL;
+    printf("loaded\r\n");
+    // read parameters
+
+    svm_model *model = Malloc(svm_model,1);
+    svm_parameter& param = model->param;
+    model->rho = NULL;
+    model->probA = NULL;
+    model->probB = NULL;
+    model->label = NULL;
+    model->nSV = NULL;
+
+    char cmd[81];
+    while(1)
+    {
+        fscanf(fp,"%80s",cmd);
+
+        if(strcmp(cmd,"svm_type")==0)
+        {
+            fscanf(fp,"%80s",cmd);
+            int i;
+            for(i=0;svm_type_table[i];i++)
+            {
+                if(strcmp(svm_type_table[i],cmd)==0)
+                {
+                    param.svm_type=i;
+                    break;
+                }
+            }
+            if(svm_type_table[i] == NULL)
+            {
+                fprintf(stderr,"unknown svm type.\n");
+                free(model->rho);
+                free(model->label);
+                free(model->nSV);
+                free(model);
+                return NULL;
+            }
+        }
+        else if(strcmp(cmd,"kernel_type")==0)
+        {        
+            fscanf(fp,"%80s",cmd);
+            int i;
+            for(i=0;kernel_type_table[i];i++)
+            {
+                if(strcmp(kernel_type_table[i],cmd)==0)
+                {
+                    param.kernel_type=i;
+                    break;
+                }
+            }
+            if(kernel_type_table[i] == NULL)
+            {
+                fprintf(stderr,"unknown kernel function.\n");
+                free(model->rho);
+                free(model->label);
+                free(model->nSV);
+                free(model);
+                return NULL;
+            }
+        }
+        else if(strcmp(cmd,"degree")==0)
+            fscanf(fp,"%d",&param.degree);
+        else if(strcmp(cmd,"gamma")==0)
+            fscanf(fp,"%lf",&param.gamma);
+        else if(strcmp(cmd,"coef0")==0)
+            fscanf(fp,"%lf",&param.coef0);
+        else if(strcmp(cmd,"nr_class")==0)
+            fscanf(fp,"%d",&model->nr_class);
+        else if(strcmp(cmd,"total_sv")==0)
+            fscanf(fp,"%d",&model->l);
+        else if(strcmp(cmd,"rho")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->rho = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->rho[i]);
+        }
+        else if(strcmp(cmd,"label")==0)
+        {
+            int n = model->nr_class;
+            model->label = Malloc(int,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%d",&model->label[i]);
+        }
+        else if(strcmp(cmd,"probA")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->probA = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->probA[i]);
+        }
+        else if(strcmp(cmd,"probB")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->probB = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->probB[i]);
+        }
+        else if(strcmp(cmd,"nr_sv")==0)
+        {
+            int n = model->nr_class;
+            model->nSV = Malloc(int,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%d",&model->nSV[i]);
+        }
+        else if(strcmp(cmd,"SV")==0)
+        {
+            while(1)
+            {
+                int c = getc(fp);
+                if(c==EOF || c=='\n') break;    
+            }
+            break;
+        }
+        else
+        {
+            fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
+            free(model->rho);
+            free(model->label);
+            free(model->nSV);
+            free(model);
+            return NULL;
+        }
+    }
+
+    // read sv_coef and SV
+
+    int elements = 0;
+    long pos = ftell(fp);
+
+    max_line_len = 1024;
+    line = Malloc(char,max_line_len);
+    char *p,*endptr,*idx,*val;
+
+    while(readline(fp)!=NULL)
+    {
+        p = strtok(line,":");
+        while(1)
+        {
+            p = strtok(NULL,":");
+            if(p == NULL)
+                break;
+            ++elements;
+        }
+    }
+    elements += model->l;
+
+    fseek(fp,pos,SEEK_SET);
+
+    int m = model->nr_class - 1;
+    int l = model->l;
+    model->sv_coef = Malloc(double *,m);
+    int i;
+    for(i=0;i<m;i++)
+        model->sv_coef[i] = Malloc(double,l);
+    model->SV = Malloc(svm_node*,l);
+    svm_node *x_space = NULL;
+    if(l>0) x_space = Malloc(svm_node,elements);
+
+    int j=0;
+    for(i=0;i<l;i++)
+    {
+        readline(fp);
+        model->SV[i] = &x_space[j];
+
+        p = strtok(line, " \t");
+        model->sv_coef[0][i] = strtod(p,&endptr);
+        for(int k=1;k<m;k++)
+        {
+            p = strtok(NULL, " \t");
+            model->sv_coef[k][i] = strtod(p,&endptr);
+        }
+
+        while(1)
+        {
+            idx = strtok(NULL, ":");
+            val = strtok(NULL, " \t");
+
+            if(val == NULL)
+                break;
+            x_space[j].index = (int) strtol(idx,&endptr,10);
+            x_space[j].value = strtod(val,&endptr);
+
+            ++j;
+        }
+        x_space[j++].index = -1;
+    }
+    free(line);
+
+    if (ferror(fp) != 0 || fclose(fp) != 0)
+        return NULL;
+
+    model->free_sv = 1;    // XXX
+    return model;
+}
+
+void svm_free_model_content(svm_model* model_ptr)
+{
+    if(model_ptr->free_sv && model_ptr->l > 0)
+        free((void *)(model_ptr->SV[0]));
+    for(int i=0;i<model_ptr->nr_class-1;i++)
+        free(model_ptr->sv_coef[i]);
+    free(model_ptr->SV);
+    free(model_ptr->sv_coef);
+    free(model_ptr->rho);
+    free(model_ptr->label);
+    free(model_ptr->probA);
+    free(model_ptr->probB);
+    free(model_ptr->nSV);
+}
+
+void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
+{
+    svm_model* model_ptr = *model_ptr_ptr;
+    if(model_ptr != NULL)
+    {
+        svm_free_model_content(model_ptr);
+        free(model_ptr);
+    }
+}
+
+void svm_destroy_model(svm_model* model_ptr)
+{
+    fprintf(stderr,"warning: svm_destroy_model is deprecated and should not be used. Please use svm_free_and_destroy_model(svm_model **model_ptr_ptr)\n");
+    svm_free_and_destroy_model(&model_ptr);
+}
+
+void svm_destroy_param(svm_parameter* param)
+{
+    free(param->weight_label);
+    free(param->weight);
+}
+
+const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
+{
+    // svm_type
+
+    int svm_type = param->svm_type;
+    if(svm_type != C_SVC &&
+       svm_type != NU_SVC &&
+       svm_type != ONE_CLASS &&
+       svm_type != EPSILON_SVR &&
+       svm_type != NU_SVR)
+        return "unknown svm type";
+    
+    // kernel_type, degree
+    
+    int kernel_type = param->kernel_type;
+    if(kernel_type != LINEAR &&
+       kernel_type != POLY &&
+       kernel_type != RBF &&
+       kernel_type != SIGMOID &&
+       kernel_type != PRECOMPUTED)
+        return "unknown kernel type";
+
+    if(param->gamma < 0)
+        return "gamma < 0";
+
+    if(param->degree < 0)
+        return "degree of polynomial kernel < 0";
+
+    // cache_size,eps,C,nu,p,shrinking
+
+    if(param->cache_size <= 0)
+        return "cache_size <= 0";
+
+    if(param->eps <= 0)
+        return "eps <= 0";
+
+    if(svm_type == C_SVC ||
+       svm_type == EPSILON_SVR ||
+       svm_type == NU_SVR)
+        if(param->C <= 0)
+            return "C <= 0";
+
+    if(svm_type == NU_SVC ||
+       svm_type == ONE_CLASS ||
+       svm_type == NU_SVR)
+        if(param->nu <= 0 || param->nu > 1)
+            return "nu <= 0 or nu > 1";
+
+    if(svm_type == EPSILON_SVR)
+        if(param->p < 0)
+            return "p < 0";
+
+    if(param->shrinking != 0 &&
+       param->shrinking != 1)
+        return "shrinking != 0 and shrinking != 1";
+
+    if(param->probability != 0 &&
+       param->probability != 1)
+        return "probability != 0 and probability != 1";
+
+    if(param->probability == 1 &&
+       svm_type == ONE_CLASS)
+        return "one-class SVM probability output not supported yet";
+
+
+    // check whether nu-svc is feasible
+    
+    if(svm_type == NU_SVC)
+    {
+        int l = prob->l;
+        int max_nr_class = 16;
+        int nr_class = 0;
+        int *label = Malloc(int,max_nr_class);
+        int *count = Malloc(int,max_nr_class);
+
+        int i;
+        for(i=0;i<l;i++)
+        {
+            int this_label = (int)prob->y[i];
+            int j;
+            for(j=0;j<nr_class;j++)
+                if(this_label == label[j])
+                {
+                    ++count[j];
+                    break;
+                }
+            if(j == nr_class)
+            {
+                if(nr_class == max_nr_class)
+                {
+                    max_nr_class *= 2;
+                    label = (int *)realloc(label,max_nr_class*sizeof(int));
+                    count = (int *)realloc(count,max_nr_class*sizeof(int));
+                }
+                label[nr_class] = this_label;
+                count[nr_class] = 1;
+                ++nr_class;
+            }
+        }
+    
+        for(i=0;i<nr_class;i++)
+        {
+            int n1 = count[i];
+            for(int j=i+1;j<nr_class;j++)
+            {
+                int n2 = count[j];
+                if(param->nu*(n1+n2)/2 > min(n1,n2))
+                {
+                    free(label);
+                    free(count);
+                    return "specified nu is infeasible";
+                }
+            }
+        }
+        free(label);
+        free(count);
+    }
+
+    return NULL;
+}
+
+int svm_check_probability_model(const svm_model *model)
+{
+    return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
+        model->probA!=NULL && model->probB!=NULL) ||
+        ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
+         model->probA!=NULL);
+}
+
+void svm_set_print_string_function(void (*print_func)(const char *))
+{
+    if(print_func == NULL)
+        svm_print_string = &print_string_stdout;
+    else
+        svm_print_string = print_func;
+}
+
+// this function is copied by shimatani
+// for fopen on iPhone
+svm_model *svm_load_model_fp(FILE *fp)
+{
+    if(fp==NULL) return NULL;
+    
+    // read parameters
+    
+    svm_model *model = Malloc(svm_model,1);
+    svm_parameter& param = model->param;
+    model->rho = NULL;
+    model->probA = NULL;
+    model->probB = NULL;
+    model->label = NULL;
+    model->nSV = NULL;
+    
+    char cmd[81];
+    while(1)
+    {
+        fscanf(fp,"%80s",cmd);
+        
+        if(strcmp(cmd,"svm_type")==0)
+        {
+            fscanf(fp,"%80s",cmd);
+            int i;
+            for(i=0;svm_type_table[i];i++)
+            {
+                if(strcmp(svm_type_table[i],cmd)==0)
+                {
+                    param.svm_type=i;
+                    break;
+                }
+            }
+            if(svm_type_table[i] == NULL)
+            {
+                fprintf(stderr,"unknown svm type.\n");
+                free(model->rho);
+                free(model->label);
+                free(model->nSV);
+                free(model);
+                return NULL;
+            }
+        }
+        else if(strcmp(cmd,"kernel_type")==0)
+        {        
+            fscanf(fp,"%80s",cmd);
+            int i;
+            for(i=0;kernel_type_table[i];i++)
+            {
+                if(strcmp(kernel_type_table[i],cmd)==0)
+                {
+                    param.kernel_type=i;
+                    break;
+                }
+            }
+            if(kernel_type_table[i] == NULL)
+            {
+                fprintf(stderr,"unknown kernel function.\n");
+                free(model->rho);
+                free(model->label);
+                free(model->nSV);
+                free(model);
+                return NULL;
+            }
+        }
+        else if(strcmp(cmd,"degree")==0)
+            fscanf(fp,"%d",&param.degree);
+        else if(strcmp(cmd,"gamma")==0)
+            fscanf(fp,"%lf",&param.gamma);
+        else if(strcmp(cmd,"coef0")==0)
+            fscanf(fp,"%lf",&param.coef0);
+        else if(strcmp(cmd,"nr_class")==0)
+            fscanf(fp,"%d",&model->nr_class);
+        else if(strcmp(cmd,"total_sv")==0)
+            fscanf(fp,"%d",&model->l);
+        else if(strcmp(cmd,"rho")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->rho = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->rho[i]);
+        }
+        else if(strcmp(cmd,"label")==0)
+        {
+            int n = model->nr_class;
+            model->label = Malloc(int,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%d",&model->label[i]);
+        }
+        else if(strcmp(cmd,"probA")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->probA = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->probA[i]);
+        }
+        else if(strcmp(cmd,"probB")==0)
+        {
+            int n = model->nr_class * (model->nr_class-1)/2;
+            model->probB = Malloc(double,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%lf",&model->probB[i]);
+        }
+        else if(strcmp(cmd,"nr_sv")==0)
+        {
+            int n = model->nr_class;
+            model->nSV = Malloc(int,n);
+            for(int i=0;i<n;i++)
+                fscanf(fp,"%d",&model->nSV[i]);
+        }
+        else if(strcmp(cmd,"SV")==0)
+        {
+            while(1)
+            {
+                int c = getc(fp);
+                if(c==EOF || c=='\n') break;    
+            }
+            break;
+        }
+        else
+        {
+            fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
+            free(model->rho);
+            free(model->label);
+            free(model->nSV);
+            free(model);
+            return NULL;
+        }
+    }
+    
+    // read sv_coef and SV
+    
+    int elements = 0;
+    long pos = ftell(fp);
+    
+    max_line_len = 1024;
+    line = Malloc(char,max_line_len);
+    char *p,*endptr,*idx,*val;
+    
+    while(readline(fp)!=NULL)
+    {
+        p = strtok(line,":");
+        while(1)
+        {
+            p = strtok(NULL,":");
+            if(p == NULL)
+                break;
+            ++elements;
+        }
+    }
+    elements += model->l;
+    
+    fseek(fp,pos,SEEK_SET);
+    
+    int m = model->nr_class - 1;
+    int l = model->l;
+    model->sv_coef = Malloc(double *,m);
+    int i;
+    for(i=0;i<m;i++)
+        model->sv_coef[i] = Malloc(double,l);
+    model->SV = Malloc(svm_node*,l);
+    svm_node *x_space = NULL;
+    if(l>0) x_space = Malloc(svm_node,elements);
+    
+    int j=0;
+    for(i=0;i<l;i++)
+    {
+        readline(fp);
+        model->SV[i] = &x_space[j];
+        
+        p = strtok(line, " \t");
+        model->sv_coef[0][i] = strtod(p,&endptr);
+        for(int k=1;k<m;k++)
+        {
+            p = strtok(NULL, " \t");
+            model->sv_coef[k][i] = strtod(p,&endptr);
+        }
+        
+        while(1)
+        {
+            idx = strtok(NULL, ":");
+            val = strtok(NULL, " \t");
+            
+            if(val == NULL)
+                break;
+            x_space[j].index = (int) strtol(idx,&endptr,10);
+            x_space[j].value = strtod(val,&endptr);
+            
+            ++j;
+        }
+        x_space[j++].index = -1;
+    }
+    free(line);
+    
+    if (ferror(fp) != 0 || fclose(fp) != 0)
+        return NULL;
+    
+    model->free_sv = 1;    // XXX
+    return model;
+}
diff -r 000000000000 -r b9ac53c439ed svm/svm.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/svm/svm.h	Wed Sep 14 13:42:46 2011 +0000
@@ -0,0 +1,106 @@
+#ifndef _LIBSVM_H
+#define _LIBSVM_H
+
+#define LIBSVM_VERSION 300
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+extern int libsvm_version;
+
+struct svm_node
+{
+    int index;
+    double value;
+};
+
+struct svm_problem
+{
+    int l;
+    double *y;
+    struct svm_node **x;
+};
+
+enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };    /* svm_type */
+enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
+
+struct svm_parameter
+{
+    int svm_type;
+    int kernel_type;
+    int degree;    /* for poly */
+    double gamma;    /* for poly/rbf/sigmoid */
+    double coef0;    /* for poly/sigmoid */
+
+    /* these are for training only */
+    double cache_size; /* in MB */
+    double eps;    /* stopping criteria */
+    double C;    /* for C_SVC, EPSILON_SVR and NU_SVR */
+    int nr_weight;        /* for C_SVC */
+    int *weight_label;    /* for C_SVC */
+    double* weight;        /* for C_SVC */
+    double nu;    /* for NU_SVC, ONE_CLASS, and NU_SVR */
+    double p;    /* for EPSILON_SVR */
+    int shrinking;    /* use the shrinking heuristics */
+    int probability; /* do probability estimates */
+};
+
+//
+// svm_model
+// 
+struct svm_model
+{
+    struct svm_parameter param;    /* parameter */
+    int nr_class;        /* number of classes, = 2 in regression/one class svm */
+    int l;            /* total #SV */
+    struct svm_node **SV;        /* SVs (SV[l]) */
+    double **sv_coef;    /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
+    double *rho;        /* constants in decision functions (rho[k*(k-1)/2]) */
+    double *probA;        /* pariwise probability information */
+    double *probB;
+
+    /* for classification only */
+
+    int *label;        /* label of each class (label[k]) */
+    int *nSV;        /* number of SVs for each class (nSV[k]) */
+                /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
+    /* XXX */
+    int free_sv;        /* 1 if svm_model is created by svm_load_model*/
+                /* 0 if svm_model is created by svm_train */
+};
+
+struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
+void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
+
+int svm_save_model(const char *model_file_name, const struct svm_model *model);
+struct svm_model *svm_load_model(const char *model_file_name);
+struct svm_model *svm_load_model_fp(FILE *fp);
+
+int svm_get_svm_type(const struct svm_model *model);
+int svm_get_nr_class(const struct svm_model *model);
+void svm_get_labels(const struct svm_model *model, int *label);
+double svm_get_svr_probability(const struct svm_model *model);
+
+double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
+double svm_predict(const struct svm_model *model, const struct svm_node *x);
+double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
+
+void svm_free_model_content(struct svm_model *model_ptr);
+void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
+void svm_destroy_param(struct svm_parameter *param);
+
+const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
+int svm_check_probability_model(const struct svm_model *model);
+
+void svm_set_print_string_function(void (*print_func)(const char *));
+
+// deprecated
+// this function will be removed in future release
+void svm_destroy_model(struct svm_model *model_ptr); 
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _LIBSVM_H */